qrcode-kr
Version:
A customizable QR code generator for React and Next.js with logo support and styling options
1,742 lines (1,474 loc) • 92.7 kB
JavaScript
import { jsx } from 'react/jsx-runtime';
import { useRef, useState, useEffect } from 'react';
/******************************************************************************
Copyright (c) Microsoft Corporation.
Permission to use, copy, modify, and/or distribute this software for any
purpose with or without fee is hereby granted.
THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH
REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT,
INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM
LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR
OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
PERFORMANCE OF THIS SOFTWARE.
***************************************************************************** */
/* global Reflect, Promise, SuppressedError, Symbol, Iterator */
function __awaiter(thisArg, _arguments, P, generator) {
function adopt(value) { return value instanceof P ? value : new P(function (resolve) { resolve(value); }); }
return new (P || (P = Promise))(function (resolve, reject) {
function fulfilled(value) { try { step(generator.next(value)); } catch (e) { reject(e); } }
function rejected(value) { try { step(generator["throw"](value)); } catch (e) { reject(e); } }
function step(result) { result.done ? resolve(result.value) : adopt(result.value).then(fulfilled, rejected); }
step((generator = generator.apply(thisArg, _arguments || [])).next());
});
}
function __generator(thisArg, body) {
var _ = { label: 0, sent: function() { if (t[0] & 1) throw t[1]; return t[1]; }, trys: [], ops: [] }, f, y, t, g = Object.create((typeof Iterator === "function" ? Iterator : Object).prototype);
return g.next = verb(0), g["throw"] = verb(1), g["return"] = verb(2), typeof Symbol === "function" && (g[Symbol.iterator] = function() { return this; }), g;
function verb(n) { return function (v) { return step([n, v]); }; }
function step(op) {
if (f) throw new TypeError("Generator is already executing.");
while (g && (g = 0, op[0] && (_ = 0)), _) try {
if (f = 1, y && (t = op[0] & 2 ? y["return"] : op[0] ? y["throw"] || ((t = y["return"]) && t.call(y), 0) : y.next) && !(t = t.call(y, op[1])).done) return t;
if (y = 0, t) op = [op[0] & 2, t.value];
switch (op[0]) {
case 0: case 1: t = op; break;
case 4: _.label++; return { value: op[1], done: false };
case 5: _.label++; y = op[1]; op = [0]; continue;
case 7: op = _.ops.pop(); _.trys.pop(); continue;
default:
if (!(t = _.trys, t = t.length > 0 && t[t.length - 1]) && (op[0] === 6 || op[0] === 2)) { _ = 0; continue; }
if (op[0] === 3 && (!t || (op[1] > t[0] && op[1] < t[3]))) { _.label = op[1]; break; }
if (op[0] === 6 && _.label < t[1]) { _.label = t[1]; t = op; break; }
if (t && _.label < t[2]) { _.label = t[2]; _.ops.push(op); break; }
if (t[2]) _.ops.pop();
_.trys.pop(); continue;
}
op = body.call(thisArg, _);
} catch (e) { op = [6, e]; y = 0; } finally { f = t = 0; }
if (op[0] & 5) throw op[1]; return { value: op[0] ? op[1] : void 0, done: true };
}
}
typeof SuppressedError === "function" ? SuppressedError : function (error, suppressed, message) {
var e = new Error(message);
return e.name = "SuppressedError", e.error = error, e.suppressed = suppressed, e;
};
var browser = {};
// can-promise has a crash in some versions of react native that dont have
// standard global objects
// https://github.com/soldair/node-qrcode/issues/157
var canPromise$1 = function () {
return typeof Promise === 'function' && Promise.prototype && Promise.prototype.then
};
var qrcode = {};
var utils$1 = {};
let toSJISFunction;
const CODEWORDS_COUNT = [
0, // Not used
26, 44, 70, 100, 134, 172, 196, 242, 292, 346,
404, 466, 532, 581, 655, 733, 815, 901, 991, 1085,
1156, 1258, 1364, 1474, 1588, 1706, 1828, 1921, 2051, 2185,
2323, 2465, 2611, 2761, 2876, 3034, 3196, 3362, 3532, 3706
];
/**
* Returns the QR Code size for the specified version
*
* @param {Number} version QR Code version
* @return {Number} size of QR code
*/
utils$1.getSymbolSize = function getSymbolSize (version) {
if (!version) throw new Error('"version" cannot be null or undefined')
if (version < 1 || version > 40) throw new Error('"version" should be in range from 1 to 40')
return version * 4 + 17
};
/**
* Returns the total number of codewords used to store data and EC information.
*
* @param {Number} version QR Code version
* @return {Number} Data length in bits
*/
utils$1.getSymbolTotalCodewords = function getSymbolTotalCodewords (version) {
return CODEWORDS_COUNT[version]
};
/**
* Encode data with Bose-Chaudhuri-Hocquenghem
*
* @param {Number} data Value to encode
* @return {Number} Encoded value
*/
utils$1.getBCHDigit = function (data) {
let digit = 0;
while (data !== 0) {
digit++;
data >>>= 1;
}
return digit
};
utils$1.setToSJISFunction = function setToSJISFunction (f) {
if (typeof f !== 'function') {
throw new Error('"toSJISFunc" is not a valid function.')
}
toSJISFunction = f;
};
utils$1.isKanjiModeEnabled = function () {
return typeof toSJISFunction !== 'undefined'
};
utils$1.toSJIS = function toSJIS (kanji) {
return toSJISFunction(kanji)
};
var errorCorrectionLevel = {};
(function (exports) {
exports.L = { bit: 1 };
exports.M = { bit: 0 };
exports.Q = { bit: 3 };
exports.H = { bit: 2 };
function fromString (string) {
if (typeof string !== 'string') {
throw new Error('Param is not a string')
}
const lcStr = string.toLowerCase();
switch (lcStr) {
case 'l':
case 'low':
return exports.L
case 'm':
case 'medium':
return exports.M
case 'q':
case 'quartile':
return exports.Q
case 'h':
case 'high':
return exports.H
default:
throw new Error('Unknown EC Level: ' + string)
}
}
exports.isValid = function isValid (level) {
return level && typeof level.bit !== 'undefined' &&
level.bit >= 0 && level.bit < 4
};
exports.from = function from (value, defaultValue) {
if (exports.isValid(value)) {
return value
}
try {
return fromString(value)
} catch (e) {
return defaultValue
}
};
} (errorCorrectionLevel));
function BitBuffer$1 () {
this.buffer = [];
this.length = 0;
}
BitBuffer$1.prototype = {
get: function (index) {
const bufIndex = Math.floor(index / 8);
return ((this.buffer[bufIndex] >>> (7 - index % 8)) & 1) === 1
},
put: function (num, length) {
for (let i = 0; i < length; i++) {
this.putBit(((num >>> (length - i - 1)) & 1) === 1);
}
},
getLengthInBits: function () {
return this.length
},
putBit: function (bit) {
const bufIndex = Math.floor(this.length / 8);
if (this.buffer.length <= bufIndex) {
this.buffer.push(0);
}
if (bit) {
this.buffer[bufIndex] |= (0x80 >>> (this.length % 8));
}
this.length++;
}
};
var bitBuffer = BitBuffer$1;
/**
* Helper class to handle QR Code symbol modules
*
* @param {Number} size Symbol size
*/
function BitMatrix$1 (size) {
if (!size || size < 1) {
throw new Error('BitMatrix size must be defined and greater than 0')
}
this.size = size;
this.data = new Uint8Array(size * size);
this.reservedBit = new Uint8Array(size * size);
}
/**
* Set bit value at specified location
* If reserved flag is set, this bit will be ignored during masking process
*
* @param {Number} row
* @param {Number} col
* @param {Boolean} value
* @param {Boolean} reserved
*/
BitMatrix$1.prototype.set = function (row, col, value, reserved) {
const index = row * this.size + col;
this.data[index] = value;
if (reserved) this.reservedBit[index] = true;
};
/**
* Returns bit value at specified location
*
* @param {Number} row
* @param {Number} col
* @return {Boolean}
*/
BitMatrix$1.prototype.get = function (row, col) {
return this.data[row * this.size + col]
};
/**
* Applies xor operator at specified location
* (used during masking process)
*
* @param {Number} row
* @param {Number} col
* @param {Boolean} value
*/
BitMatrix$1.prototype.xor = function (row, col, value) {
this.data[row * this.size + col] ^= value;
};
/**
* Check if bit at specified location is reserved
*
* @param {Number} row
* @param {Number} col
* @return {Boolean}
*/
BitMatrix$1.prototype.isReserved = function (row, col) {
return this.reservedBit[row * this.size + col]
};
var bitMatrix = BitMatrix$1;
var alignmentPattern = {};
/**
* Alignment pattern are fixed reference pattern in defined positions
* in a matrix symbology, which enables the decode software to re-synchronise
* the coordinate mapping of the image modules in the event of moderate amounts
* of distortion of the image.
*
* Alignment patterns are present only in QR Code symbols of version 2 or larger
* and their number depends on the symbol version.
*/
(function (exports) {
const getSymbolSize = utils$1.getSymbolSize;
/**
* Calculate the row/column coordinates of the center module of each alignment pattern
* for the specified QR Code version.
*
* The alignment patterns are positioned symmetrically on either side of the diagonal
* running from the top left corner of the symbol to the bottom right corner.
*
* Since positions are simmetrical only half of the coordinates are returned.
* Each item of the array will represent in turn the x and y coordinate.
* @see {@link getPositions}
*
* @param {Number} version QR Code version
* @return {Array} Array of coordinate
*/
exports.getRowColCoords = function getRowColCoords (version) {
if (version === 1) return []
const posCount = Math.floor(version / 7) + 2;
const size = getSymbolSize(version);
const intervals = size === 145 ? 26 : Math.ceil((size - 13) / (2 * posCount - 2)) * 2;
const positions = [size - 7]; // Last coord is always (size - 7)
for (let i = 1; i < posCount - 1; i++) {
positions[i] = positions[i - 1] - intervals;
}
positions.push(6); // First coord is always 6
return positions.reverse()
};
/**
* Returns an array containing the positions of each alignment pattern.
* Each array's element represent the center point of the pattern as (x, y) coordinates
*
* Coordinates are calculated expanding the row/column coordinates returned by {@link getRowColCoords}
* and filtering out the items that overlaps with finder pattern
*
* @example
* For a Version 7 symbol {@link getRowColCoords} returns values 6, 22 and 38.
* The alignment patterns, therefore, are to be centered on (row, column)
* positions (6,22), (22,6), (22,22), (22,38), (38,22), (38,38).
* Note that the coordinates (6,6), (6,38), (38,6) are occupied by finder patterns
* and are not therefore used for alignment patterns.
*
* let pos = getPositions(7)
* // [[6,22], [22,6], [22,22], [22,38], [38,22], [38,38]]
*
* @param {Number} version QR Code version
* @return {Array} Array of coordinates
*/
exports.getPositions = function getPositions (version) {
const coords = [];
const pos = exports.getRowColCoords(version);
const posLength = pos.length;
for (let i = 0; i < posLength; i++) {
for (let j = 0; j < posLength; j++) {
// Skip if position is occupied by finder patterns
if ((i === 0 && j === 0) || // top-left
(i === 0 && j === posLength - 1) || // bottom-left
(i === posLength - 1 && j === 0)) { // top-right
continue
}
coords.push([pos[i], pos[j]]);
}
}
return coords
};
} (alignmentPattern));
var finderPattern = {};
const getSymbolSize = utils$1.getSymbolSize;
const FINDER_PATTERN_SIZE = 7;
/**
* Returns an array containing the positions of each finder pattern.
* Each array's element represent the top-left point of the pattern as (x, y) coordinates
*
* @param {Number} version QR Code version
* @return {Array} Array of coordinates
*/
finderPattern.getPositions = function getPositions (version) {
const size = getSymbolSize(version);
return [
// top-left
[0, 0],
// top-right
[size - FINDER_PATTERN_SIZE, 0],
// bottom-left
[0, size - FINDER_PATTERN_SIZE]
]
};
var maskPattern = {};
/**
* Data mask pattern reference
* @type {Object}
*/
(function (exports) {
exports.Patterns = {
PATTERN000: 0,
PATTERN001: 1,
PATTERN010: 2,
PATTERN011: 3,
PATTERN100: 4,
PATTERN101: 5,
PATTERN110: 6,
PATTERN111: 7
};
/**
* Weighted penalty scores for the undesirable features
* @type {Object}
*/
const PenaltyScores = {
N1: 3,
N2: 3,
N3: 40,
N4: 10
};
/**
* Check if mask pattern value is valid
*
* @param {Number} mask Mask pattern
* @return {Boolean} true if valid, false otherwise
*/
exports.isValid = function isValid (mask) {
return mask != null && mask !== '' && !isNaN(mask) && mask >= 0 && mask <= 7
};
/**
* Returns mask pattern from a value.
* If value is not valid, returns undefined
*
* @param {Number|String} value Mask pattern value
* @return {Number} Valid mask pattern or undefined
*/
exports.from = function from (value) {
return exports.isValid(value) ? parseInt(value, 10) : undefined
};
/**
* Find adjacent modules in row/column with the same color
* and assign a penalty value.
*
* Points: N1 + i
* i is the amount by which the number of adjacent modules of the same color exceeds 5
*/
exports.getPenaltyN1 = function getPenaltyN1 (data) {
const size = data.size;
let points = 0;
let sameCountCol = 0;
let sameCountRow = 0;
let lastCol = null;
let lastRow = null;
for (let row = 0; row < size; row++) {
sameCountCol = sameCountRow = 0;
lastCol = lastRow = null;
for (let col = 0; col < size; col++) {
let module = data.get(row, col);
if (module === lastCol) {
sameCountCol++;
} else {
if (sameCountCol >= 5) points += PenaltyScores.N1 + (sameCountCol - 5);
lastCol = module;
sameCountCol = 1;
}
module = data.get(col, row);
if (module === lastRow) {
sameCountRow++;
} else {
if (sameCountRow >= 5) points += PenaltyScores.N1 + (sameCountRow - 5);
lastRow = module;
sameCountRow = 1;
}
}
if (sameCountCol >= 5) points += PenaltyScores.N1 + (sameCountCol - 5);
if (sameCountRow >= 5) points += PenaltyScores.N1 + (sameCountRow - 5);
}
return points
};
/**
* Find 2x2 blocks with the same color and assign a penalty value
*
* Points: N2 * (m - 1) * (n - 1)
*/
exports.getPenaltyN2 = function getPenaltyN2 (data) {
const size = data.size;
let points = 0;
for (let row = 0; row < size - 1; row++) {
for (let col = 0; col < size - 1; col++) {
const last = data.get(row, col) +
data.get(row, col + 1) +
data.get(row + 1, col) +
data.get(row + 1, col + 1);
if (last === 4 || last === 0) points++;
}
}
return points * PenaltyScores.N2
};
/**
* Find 1:1:3:1:1 ratio (dark:light:dark:light:dark) pattern in row/column,
* preceded or followed by light area 4 modules wide
*
* Points: N3 * number of pattern found
*/
exports.getPenaltyN3 = function getPenaltyN3 (data) {
const size = data.size;
let points = 0;
let bitsCol = 0;
let bitsRow = 0;
for (let row = 0; row < size; row++) {
bitsCol = bitsRow = 0;
for (let col = 0; col < size; col++) {
bitsCol = ((bitsCol << 1) & 0x7FF) | data.get(row, col);
if (col >= 10 && (bitsCol === 0x5D0 || bitsCol === 0x05D)) points++;
bitsRow = ((bitsRow << 1) & 0x7FF) | data.get(col, row);
if (col >= 10 && (bitsRow === 0x5D0 || bitsRow === 0x05D)) points++;
}
}
return points * PenaltyScores.N3
};
/**
* Calculate proportion of dark modules in entire symbol
*
* Points: N4 * k
*
* k is the rating of the deviation of the proportion of dark modules
* in the symbol from 50% in steps of 5%
*/
exports.getPenaltyN4 = function getPenaltyN4 (data) {
let darkCount = 0;
const modulesCount = data.data.length;
for (let i = 0; i < modulesCount; i++) darkCount += data.data[i];
const k = Math.abs(Math.ceil((darkCount * 100 / modulesCount) / 5) - 10);
return k * PenaltyScores.N4
};
/**
* Return mask value at given position
*
* @param {Number} maskPattern Pattern reference value
* @param {Number} i Row
* @param {Number} j Column
* @return {Boolean} Mask value
*/
function getMaskAt (maskPattern, i, j) {
switch (maskPattern) {
case exports.Patterns.PATTERN000: return (i + j) % 2 === 0
case exports.Patterns.PATTERN001: return i % 2 === 0
case exports.Patterns.PATTERN010: return j % 3 === 0
case exports.Patterns.PATTERN011: return (i + j) % 3 === 0
case exports.Patterns.PATTERN100: return (Math.floor(i / 2) + Math.floor(j / 3)) % 2 === 0
case exports.Patterns.PATTERN101: return (i * j) % 2 + (i * j) % 3 === 0
case exports.Patterns.PATTERN110: return ((i * j) % 2 + (i * j) % 3) % 2 === 0
case exports.Patterns.PATTERN111: return ((i * j) % 3 + (i + j) % 2) % 2 === 0
default: throw new Error('bad maskPattern:' + maskPattern)
}
}
/**
* Apply a mask pattern to a BitMatrix
*
* @param {Number} pattern Pattern reference number
* @param {BitMatrix} data BitMatrix data
*/
exports.applyMask = function applyMask (pattern, data) {
const size = data.size;
for (let col = 0; col < size; col++) {
for (let row = 0; row < size; row++) {
if (data.isReserved(row, col)) continue
data.xor(row, col, getMaskAt(pattern, row, col));
}
}
};
/**
* Returns the best mask pattern for data
*
* @param {BitMatrix} data
* @return {Number} Mask pattern reference number
*/
exports.getBestMask = function getBestMask (data, setupFormatFunc) {
const numPatterns = Object.keys(exports.Patterns).length;
let bestPattern = 0;
let lowerPenalty = Infinity;
for (let p = 0; p < numPatterns; p++) {
setupFormatFunc(p);
exports.applyMask(p, data);
// Calculate penalty
const penalty =
exports.getPenaltyN1(data) +
exports.getPenaltyN2(data) +
exports.getPenaltyN3(data) +
exports.getPenaltyN4(data);
// Undo previously applied mask
exports.applyMask(p, data);
if (penalty < lowerPenalty) {
lowerPenalty = penalty;
bestPattern = p;
}
}
return bestPattern
};
} (maskPattern));
var errorCorrectionCode = {};
const ECLevel$1 = errorCorrectionLevel;
const EC_BLOCKS_TABLE = [
// L M Q H
1, 1, 1, 1,
1, 1, 1, 1,
1, 1, 2, 2,
1, 2, 2, 4,
1, 2, 4, 4,
2, 4, 4, 4,
2, 4, 6, 5,
2, 4, 6, 6,
2, 5, 8, 8,
4, 5, 8, 8,
4, 5, 8, 11,
4, 8, 10, 11,
4, 9, 12, 16,
4, 9, 16, 16,
6, 10, 12, 18,
6, 10, 17, 16,
6, 11, 16, 19,
6, 13, 18, 21,
7, 14, 21, 25,
8, 16, 20, 25,
8, 17, 23, 25,
9, 17, 23, 34,
9, 18, 25, 30,
10, 20, 27, 32,
12, 21, 29, 35,
12, 23, 34, 37,
12, 25, 34, 40,
13, 26, 35, 42,
14, 28, 38, 45,
15, 29, 40, 48,
16, 31, 43, 51,
17, 33, 45, 54,
18, 35, 48, 57,
19, 37, 51, 60,
19, 38, 53, 63,
20, 40, 56, 66,
21, 43, 59, 70,
22, 45, 62, 74,
24, 47, 65, 77,
25, 49, 68, 81
];
const EC_CODEWORDS_TABLE = [
// L M Q H
7, 10, 13, 17,
10, 16, 22, 28,
15, 26, 36, 44,
20, 36, 52, 64,
26, 48, 72, 88,
36, 64, 96, 112,
40, 72, 108, 130,
48, 88, 132, 156,
60, 110, 160, 192,
72, 130, 192, 224,
80, 150, 224, 264,
96, 176, 260, 308,
104, 198, 288, 352,
120, 216, 320, 384,
132, 240, 360, 432,
144, 280, 408, 480,
168, 308, 448, 532,
180, 338, 504, 588,
196, 364, 546, 650,
224, 416, 600, 700,
224, 442, 644, 750,
252, 476, 690, 816,
270, 504, 750, 900,
300, 560, 810, 960,
312, 588, 870, 1050,
336, 644, 952, 1110,
360, 700, 1020, 1200,
390, 728, 1050, 1260,
420, 784, 1140, 1350,
450, 812, 1200, 1440,
480, 868, 1290, 1530,
510, 924, 1350, 1620,
540, 980, 1440, 1710,
570, 1036, 1530, 1800,
570, 1064, 1590, 1890,
600, 1120, 1680, 1980,
630, 1204, 1770, 2100,
660, 1260, 1860, 2220,
720, 1316, 1950, 2310,
750, 1372, 2040, 2430
];
/**
* Returns the number of error correction block that the QR Code should contain
* for the specified version and error correction level.
*
* @param {Number} version QR Code version
* @param {Number} errorCorrectionLevel Error correction level
* @return {Number} Number of error correction blocks
*/
errorCorrectionCode.getBlocksCount = function getBlocksCount (version, errorCorrectionLevel) {
switch (errorCorrectionLevel) {
case ECLevel$1.L:
return EC_BLOCKS_TABLE[(version - 1) * 4 + 0]
case ECLevel$1.M:
return EC_BLOCKS_TABLE[(version - 1) * 4 + 1]
case ECLevel$1.Q:
return EC_BLOCKS_TABLE[(version - 1) * 4 + 2]
case ECLevel$1.H:
return EC_BLOCKS_TABLE[(version - 1) * 4 + 3]
default:
return undefined
}
};
/**
* Returns the number of error correction codewords to use for the specified
* version and error correction level.
*
* @param {Number} version QR Code version
* @param {Number} errorCorrectionLevel Error correction level
* @return {Number} Number of error correction codewords
*/
errorCorrectionCode.getTotalCodewordsCount = function getTotalCodewordsCount (version, errorCorrectionLevel) {
switch (errorCorrectionLevel) {
case ECLevel$1.L:
return EC_CODEWORDS_TABLE[(version - 1) * 4 + 0]
case ECLevel$1.M:
return EC_CODEWORDS_TABLE[(version - 1) * 4 + 1]
case ECLevel$1.Q:
return EC_CODEWORDS_TABLE[(version - 1) * 4 + 2]
case ECLevel$1.H:
return EC_CODEWORDS_TABLE[(version - 1) * 4 + 3]
default:
return undefined
}
};
var polynomial = {};
var galoisField = {};
const EXP_TABLE = new Uint8Array(512);
const LOG_TABLE = new Uint8Array(256)
/**
* Precompute the log and anti-log tables for faster computation later
*
* For each possible value in the galois field 2^8, we will pre-compute
* the logarithm and anti-logarithm (exponential) of this value
*
* ref {@link https://en.wikiversity.org/wiki/Reed%E2%80%93Solomon_codes_for_coders#Introduction_to_mathematical_fields}
*/
;(function initTables () {
let x = 1;
for (let i = 0; i < 255; i++) {
EXP_TABLE[i] = x;
LOG_TABLE[x] = i;
x <<= 1; // multiply by 2
// The QR code specification says to use byte-wise modulo 100011101 arithmetic.
// This means that when a number is 256 or larger, it should be XORed with 0x11D.
if (x & 0x100) { // similar to x >= 256, but a lot faster (because 0x100 == 256)
x ^= 0x11D;
}
}
// Optimization: double the size of the anti-log table so that we don't need to mod 255 to
// stay inside the bounds (because we will mainly use this table for the multiplication of
// two GF numbers, no more).
// @see {@link mul}
for (let i = 255; i < 512; i++) {
EXP_TABLE[i] = EXP_TABLE[i - 255];
}
}());
/**
* Returns log value of n inside Galois Field
*
* @param {Number} n
* @return {Number}
*/
galoisField.log = function log (n) {
if (n < 1) throw new Error('log(' + n + ')')
return LOG_TABLE[n]
};
/**
* Returns anti-log value of n inside Galois Field
*
* @param {Number} n
* @return {Number}
*/
galoisField.exp = function exp (n) {
return EXP_TABLE[n]
};
/**
* Multiplies two number inside Galois Field
*
* @param {Number} x
* @param {Number} y
* @return {Number}
*/
galoisField.mul = function mul (x, y) {
if (x === 0 || y === 0) return 0
// should be EXP_TABLE[(LOG_TABLE[x] + LOG_TABLE[y]) % 255] if EXP_TABLE wasn't oversized
// @see {@link initTables}
return EXP_TABLE[LOG_TABLE[x] + LOG_TABLE[y]]
};
(function (exports) {
const GF = galoisField;
/**
* Multiplies two polynomials inside Galois Field
*
* @param {Uint8Array} p1 Polynomial
* @param {Uint8Array} p2 Polynomial
* @return {Uint8Array} Product of p1 and p2
*/
exports.mul = function mul (p1, p2) {
const coeff = new Uint8Array(p1.length + p2.length - 1);
for (let i = 0; i < p1.length; i++) {
for (let j = 0; j < p2.length; j++) {
coeff[i + j] ^= GF.mul(p1[i], p2[j]);
}
}
return coeff
};
/**
* Calculate the remainder of polynomials division
*
* @param {Uint8Array} divident Polynomial
* @param {Uint8Array} divisor Polynomial
* @return {Uint8Array} Remainder
*/
exports.mod = function mod (divident, divisor) {
let result = new Uint8Array(divident);
while ((result.length - divisor.length) >= 0) {
const coeff = result[0];
for (let i = 0; i < divisor.length; i++) {
result[i] ^= GF.mul(divisor[i], coeff);
}
// remove all zeros from buffer head
let offset = 0;
while (offset < result.length && result[offset] === 0) offset++;
result = result.slice(offset);
}
return result
};
/**
* Generate an irreducible generator polynomial of specified degree
* (used by Reed-Solomon encoder)
*
* @param {Number} degree Degree of the generator polynomial
* @return {Uint8Array} Buffer containing polynomial coefficients
*/
exports.generateECPolynomial = function generateECPolynomial (degree) {
let poly = new Uint8Array([1]);
for (let i = 0; i < degree; i++) {
poly = exports.mul(poly, new Uint8Array([1, GF.exp(i)]));
}
return poly
};
} (polynomial));
const Polynomial = polynomial;
function ReedSolomonEncoder$1 (degree) {
this.genPoly = undefined;
this.degree = degree;
if (this.degree) this.initialize(this.degree);
}
/**
* Initialize the encoder.
* The input param should correspond to the number of error correction codewords.
*
* @param {Number} degree
*/
ReedSolomonEncoder$1.prototype.initialize = function initialize (degree) {
// create an irreducible generator polynomial
this.degree = degree;
this.genPoly = Polynomial.generateECPolynomial(this.degree);
};
/**
* Encodes a chunk of data
*
* @param {Uint8Array} data Buffer containing input data
* @return {Uint8Array} Buffer containing encoded data
*/
ReedSolomonEncoder$1.prototype.encode = function encode (data) {
if (!this.genPoly) {
throw new Error('Encoder not initialized')
}
// Calculate EC for this data block
// extends data size to data+genPoly size
const paddedData = new Uint8Array(data.length + this.degree);
paddedData.set(data);
// The error correction codewords are the remainder after dividing the data codewords
// by a generator polynomial
const remainder = Polynomial.mod(paddedData, this.genPoly);
// return EC data blocks (last n byte, where n is the degree of genPoly)
// If coefficients number in remainder are less than genPoly degree,
// pad with 0s to the left to reach the needed number of coefficients
const start = this.degree - remainder.length;
if (start > 0) {
const buff = new Uint8Array(this.degree);
buff.set(remainder, start);
return buff
}
return remainder
};
var reedSolomonEncoder = ReedSolomonEncoder$1;
var version = {};
var mode = {};
var versionCheck = {};
/**
* Check if QR Code version is valid
*
* @param {Number} version QR Code version
* @return {Boolean} true if valid version, false otherwise
*/
versionCheck.isValid = function isValid (version) {
return !isNaN(version) && version >= 1 && version <= 40
};
var regex = {};
const numeric = '[0-9]+';
const alphanumeric = '[A-Z $%*+\\-./:]+';
let kanji = '(?:[u3000-u303F]|[u3040-u309F]|[u30A0-u30FF]|' +
'[uFF00-uFFEF]|[u4E00-u9FAF]|[u2605-u2606]|[u2190-u2195]|u203B|' +
'[u2010u2015u2018u2019u2025u2026u201Cu201Du2225u2260]|' +
'[u0391-u0451]|[u00A7u00A8u00B1u00B4u00D7u00F7])+';
kanji = kanji.replace(/u/g, '\\u');
const byte = '(?:(?![A-Z0-9 $%*+\\-./:]|' + kanji + ')(?:.|[\r\n]))+';
regex.KANJI = new RegExp(kanji, 'g');
regex.BYTE_KANJI = new RegExp('[^A-Z0-9 $%*+\\-./:]+', 'g');
regex.BYTE = new RegExp(byte, 'g');
regex.NUMERIC = new RegExp(numeric, 'g');
regex.ALPHANUMERIC = new RegExp(alphanumeric, 'g');
const TEST_KANJI = new RegExp('^' + kanji + '$');
const TEST_NUMERIC = new RegExp('^' + numeric + '$');
const TEST_ALPHANUMERIC = new RegExp('^[A-Z0-9 $%*+\\-./:]+$');
regex.testKanji = function testKanji (str) {
return TEST_KANJI.test(str)
};
regex.testNumeric = function testNumeric (str) {
return TEST_NUMERIC.test(str)
};
regex.testAlphanumeric = function testAlphanumeric (str) {
return TEST_ALPHANUMERIC.test(str)
};
(function (exports) {
const VersionCheck = versionCheck;
const Regex = regex;
/**
* Numeric mode encodes data from the decimal digit set (0 - 9)
* (byte values 30HEX to 39HEX).
* Normally, 3 data characters are represented by 10 bits.
*
* @type {Object}
*/
exports.NUMERIC = {
id: 'Numeric',
bit: 1 << 0,
ccBits: [10, 12, 14]
};
/**
* Alphanumeric mode encodes data from a set of 45 characters,
* i.e. 10 numeric digits (0 - 9),
* 26 alphabetic characters (A - Z),
* and 9 symbols (SP, $, %, *, +, -, ., /, :).
* Normally, two input characters are represented by 11 bits.
*
* @type {Object}
*/
exports.ALPHANUMERIC = {
id: 'Alphanumeric',
bit: 1 << 1,
ccBits: [9, 11, 13]
};
/**
* In byte mode, data is encoded at 8 bits per character.
*
* @type {Object}
*/
exports.BYTE = {
id: 'Byte',
bit: 1 << 2,
ccBits: [8, 16, 16]
};
/**
* The Kanji mode efficiently encodes Kanji characters in accordance with
* the Shift JIS system based on JIS X 0208.
* The Shift JIS values are shifted from the JIS X 0208 values.
* JIS X 0208 gives details of the shift coded representation.
* Each two-byte character value is compacted to a 13-bit binary codeword.
*
* @type {Object}
*/
exports.KANJI = {
id: 'Kanji',
bit: 1 << 3,
ccBits: [8, 10, 12]
};
/**
* Mixed mode will contain a sequences of data in a combination of any of
* the modes described above
*
* @type {Object}
*/
exports.MIXED = {
bit: -1
};
/**
* Returns the number of bits needed to store the data length
* according to QR Code specifications.
*
* @param {Mode} mode Data mode
* @param {Number} version QR Code version
* @return {Number} Number of bits
*/
exports.getCharCountIndicator = function getCharCountIndicator (mode, version) {
if (!mode.ccBits) throw new Error('Invalid mode: ' + mode)
if (!VersionCheck.isValid(version)) {
throw new Error('Invalid version: ' + version)
}
if (version >= 1 && version < 10) return mode.ccBits[0]
else if (version < 27) return mode.ccBits[1]
return mode.ccBits[2]
};
/**
* Returns the most efficient mode to store the specified data
*
* @param {String} dataStr Input data string
* @return {Mode} Best mode
*/
exports.getBestModeForData = function getBestModeForData (dataStr) {
if (Regex.testNumeric(dataStr)) return exports.NUMERIC
else if (Regex.testAlphanumeric(dataStr)) return exports.ALPHANUMERIC
else if (Regex.testKanji(dataStr)) return exports.KANJI
else return exports.BYTE
};
/**
* Return mode name as string
*
* @param {Mode} mode Mode object
* @returns {String} Mode name
*/
exports.toString = function toString (mode) {
if (mode && mode.id) return mode.id
throw new Error('Invalid mode')
};
/**
* Check if input param is a valid mode object
*
* @param {Mode} mode Mode object
* @returns {Boolean} True if valid mode, false otherwise
*/
exports.isValid = function isValid (mode) {
return mode && mode.bit && mode.ccBits
};
/**
* Get mode object from its name
*
* @param {String} string Mode name
* @returns {Mode} Mode object
*/
function fromString (string) {
if (typeof string !== 'string') {
throw new Error('Param is not a string')
}
const lcStr = string.toLowerCase();
switch (lcStr) {
case 'numeric':
return exports.NUMERIC
case 'alphanumeric':
return exports.ALPHANUMERIC
case 'kanji':
return exports.KANJI
case 'byte':
return exports.BYTE
default:
throw new Error('Unknown mode: ' + string)
}
}
/**
* Returns mode from a value.
* If value is not a valid mode, returns defaultValue
*
* @param {Mode|String} value Encoding mode
* @param {Mode} defaultValue Fallback value
* @return {Mode} Encoding mode
*/
exports.from = function from (value, defaultValue) {
if (exports.isValid(value)) {
return value
}
try {
return fromString(value)
} catch (e) {
return defaultValue
}
};
} (mode));
(function (exports) {
const Utils = utils$1;
const ECCode = errorCorrectionCode;
const ECLevel = errorCorrectionLevel;
const Mode = mode;
const VersionCheck = versionCheck;
// Generator polynomial used to encode version information
const G18 = (1 << 12) | (1 << 11) | (1 << 10) | (1 << 9) | (1 << 8) | (1 << 5) | (1 << 2) | (1 << 0);
const G18_BCH = Utils.getBCHDigit(G18);
function getBestVersionForDataLength (mode, length, errorCorrectionLevel) {
for (let currentVersion = 1; currentVersion <= 40; currentVersion++) {
if (length <= exports.getCapacity(currentVersion, errorCorrectionLevel, mode)) {
return currentVersion
}
}
return undefined
}
function getReservedBitsCount (mode, version) {
// Character count indicator + mode indicator bits
return Mode.getCharCountIndicator(mode, version) + 4
}
function getTotalBitsFromDataArray (segments, version) {
let totalBits = 0;
segments.forEach(function (data) {
const reservedBits = getReservedBitsCount(data.mode, version);
totalBits += reservedBits + data.getBitsLength();
});
return totalBits
}
function getBestVersionForMixedData (segments, errorCorrectionLevel) {
for (let currentVersion = 1; currentVersion <= 40; currentVersion++) {
const length = getTotalBitsFromDataArray(segments, currentVersion);
if (length <= exports.getCapacity(currentVersion, errorCorrectionLevel, Mode.MIXED)) {
return currentVersion
}
}
return undefined
}
/**
* Returns version number from a value.
* If value is not a valid version, returns defaultValue
*
* @param {Number|String} value QR Code version
* @param {Number} defaultValue Fallback value
* @return {Number} QR Code version number
*/
exports.from = function from (value, defaultValue) {
if (VersionCheck.isValid(value)) {
return parseInt(value, 10)
}
return defaultValue
};
/**
* Returns how much data can be stored with the specified QR code version
* and error correction level
*
* @param {Number} version QR Code version (1-40)
* @param {Number} errorCorrectionLevel Error correction level
* @param {Mode} mode Data mode
* @return {Number} Quantity of storable data
*/
exports.getCapacity = function getCapacity (version, errorCorrectionLevel, mode) {
if (!VersionCheck.isValid(version)) {
throw new Error('Invalid QR Code version')
}
// Use Byte mode as default
if (typeof mode === 'undefined') mode = Mode.BYTE;
// Total codewords for this QR code version (Data + Error correction)
const totalCodewords = Utils.getSymbolTotalCodewords(version);
// Total number of error correction codewords
const ecTotalCodewords = ECCode.getTotalCodewordsCount(version, errorCorrectionLevel);
// Total number of data codewords
const dataTotalCodewordsBits = (totalCodewords - ecTotalCodewords) * 8;
if (mode === Mode.MIXED) return dataTotalCodewordsBits
const usableBits = dataTotalCodewordsBits - getReservedBitsCount(mode, version);
// Return max number of storable codewords
switch (mode) {
case Mode.NUMERIC:
return Math.floor((usableBits / 10) * 3)
case Mode.ALPHANUMERIC:
return Math.floor((usableBits / 11) * 2)
case Mode.KANJI:
return Math.floor(usableBits / 13)
case Mode.BYTE:
default:
return Math.floor(usableBits / 8)
}
};
/**
* Returns the minimum version needed to contain the amount of data
*
* @param {Segment} data Segment of data
* @param {Number} [errorCorrectionLevel=H] Error correction level
* @param {Mode} mode Data mode
* @return {Number} QR Code version
*/
exports.getBestVersionForData = function getBestVersionForData (data, errorCorrectionLevel) {
let seg;
const ecl = ECLevel.from(errorCorrectionLevel, ECLevel.M);
if (Array.isArray(data)) {
if (data.length > 1) {
return getBestVersionForMixedData(data, ecl)
}
if (data.length === 0) {
return 1
}
seg = data[0];
} else {
seg = data;
}
return getBestVersionForDataLength(seg.mode, seg.getLength(), ecl)
};
/**
* Returns version information with relative error correction bits
*
* The version information is included in QR Code symbols of version 7 or larger.
* It consists of an 18-bit sequence containing 6 data bits,
* with 12 error correction bits calculated using the (18, 6) Golay code.
*
* @param {Number} version QR Code version
* @return {Number} Encoded version info bits
*/
exports.getEncodedBits = function getEncodedBits (version) {
if (!VersionCheck.isValid(version) || version < 7) {
throw new Error('Invalid QR Code version')
}
let d = version << 12;
while (Utils.getBCHDigit(d) - G18_BCH >= 0) {
d ^= (G18 << (Utils.getBCHDigit(d) - G18_BCH));
}
return (version << 12) | d
};
} (version));
var formatInfo = {};
const Utils$3 = utils$1;
const G15 = (1 << 10) | (1 << 8) | (1 << 5) | (1 << 4) | (1 << 2) | (1 << 1) | (1 << 0);
const G15_MASK = (1 << 14) | (1 << 12) | (1 << 10) | (1 << 4) | (1 << 1);
const G15_BCH = Utils$3.getBCHDigit(G15);
/**
* Returns format information with relative error correction bits
*
* The format information is a 15-bit sequence containing 5 data bits,
* with 10 error correction bits calculated using the (15, 5) BCH code.
*
* @param {Number} errorCorrectionLevel Error correction level
* @param {Number} mask Mask pattern
* @return {Number} Encoded format information bits
*/
formatInfo.getEncodedBits = function getEncodedBits (errorCorrectionLevel, mask) {
const data = ((errorCorrectionLevel.bit << 3) | mask);
let d = data << 10;
while (Utils$3.getBCHDigit(d) - G15_BCH >= 0) {
d ^= (G15 << (Utils$3.getBCHDigit(d) - G15_BCH));
}
// xor final data with mask pattern in order to ensure that
// no combination of Error Correction Level and data mask pattern
// will result in an all-zero data string
return ((data << 10) | d) ^ G15_MASK
};
var segments = {};
const Mode$4 = mode;
function NumericData (data) {
this.mode = Mode$4.NUMERIC;
this.data = data.toString();
}
NumericData.getBitsLength = function getBitsLength (length) {
return 10 * Math.floor(length / 3) + ((length % 3) ? ((length % 3) * 3 + 1) : 0)
};
NumericData.prototype.getLength = function getLength () {
return this.data.length
};
NumericData.prototype.getBitsLength = function getBitsLength () {
return NumericData.getBitsLength(this.data.length)
};
NumericData.prototype.write = function write (bitBuffer) {
let i, group, value;
// The input data string is divided into groups of three digits,
// and each group is converted to its 10-bit binary equivalent.
for (i = 0; i + 3 <= this.data.length; i += 3) {
group = this.data.substr(i, 3);
value = parseInt(group, 10);
bitBuffer.put(value, 10);
}
// If the number of input digits is not an exact multiple of three,
// the final one or two digits are converted to 4 or 7 bits respectively.
const remainingNum = this.data.length - i;
if (remainingNum > 0) {
group = this.data.substr(i);
value = parseInt(group, 10);
bitBuffer.put(value, remainingNum * 3 + 1);
}
};
var numericData = NumericData;
const Mode$3 = mode;
/**
* Array of characters available in alphanumeric mode
*
* As per QR Code specification, to each character
* is assigned a value from 0 to 44 which in this case coincides
* with the array index
*
* @type {Array}
*/
const ALPHA_NUM_CHARS = [
'0', '1', '2', '3', '4', '5', '6', '7', '8', '9',
'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K', 'L', 'M',
'N', 'O', 'P', 'Q', 'R', 'S', 'T', 'U', 'V', 'W', 'X', 'Y', 'Z',
' ', '$', '%', '*', '+', '-', '.', '/', ':'
];
function AlphanumericData (data) {
this.mode = Mode$3.ALPHANUMERIC;
this.data = data;
}
AlphanumericData.getBitsLength = function getBitsLength (length) {
return 11 * Math.floor(length / 2) + 6 * (length % 2)
};
AlphanumericData.prototype.getLength = function getLength () {
return this.data.length
};
AlphanumericData.prototype.getBitsLength = function getBitsLength () {
return AlphanumericData.getBitsLength(this.data.length)
};
AlphanumericData.prototype.write = function write (bitBuffer) {
let i;
// Input data characters are divided into groups of two characters
// and encoded as 11-bit binary codes.
for (i = 0; i + 2 <= this.data.length; i += 2) {
// The character value of the first character is multiplied by 45
let value = ALPHA_NUM_CHARS.indexOf(this.data[i]) * 45;
// The character value of the second digit is added to the product
value += ALPHA_NUM_CHARS.indexOf(this.data[i + 1]);
// The sum is then stored as 11-bit binary number
bitBuffer.put(value, 11);
}
// If the number of input data characters is not a multiple of two,
// the character value of the final character is encoded as a 6-bit binary number.
if (this.data.length % 2) {
bitBuffer.put(ALPHA_NUM_CHARS.indexOf(this.data[i]), 6);
}
};
var alphanumericData = AlphanumericData;
const Mode$2 = mode;
function ByteData (data) {
this.mode = Mode$2.BYTE;
if (typeof (data) === 'string') {
this.data = new TextEncoder().encode(data);
} else {
this.data = new Uint8Array(data);
}
}
ByteData.getBitsLength = function getBitsLength (length) {
return length * 8
};
ByteData.prototype.getLength = function getLength () {
return this.data.length
};
ByteData.prototype.getBitsLength = function getBitsLength () {
return ByteData.getBitsLength(this.data.length)
};
ByteData.prototype.write = function (bitBuffer) {
for (let i = 0, l = this.data.length; i < l; i++) {
bitBuffer.put(this.data[i], 8);
}
};
var byteData = ByteData;
const Mode$1 = mode;
const Utils$2 = utils$1;
function KanjiData (data) {
this.mode = Mode$1.KANJI;
this.data = data;
}
KanjiData.getBitsLength = function getBitsLength (length) {
return length * 13
};
KanjiData.prototype.getLength = function getLength () {
return this.data.length
};
KanjiData.prototype.getBitsLength = function getBitsLength () {
return KanjiData.getBitsLength(this.data.length)
};
KanjiData.prototype.write = function (bitBuffer) {
let i;
// In the Shift JIS system, Kanji characters are represented by a two byte combination.
// These byte values are shifted from the JIS X 0208 values.
// JIS X 0208 gives details of the shift coded representation.
for (i = 0; i < this.data.length; i++) {
let value = Utils$2.toSJIS(this.data[i]);
// For characters with Shift JIS values from 0x8140 to 0x9FFC:
if (value >= 0x8140 && value <= 0x9FFC) {
// Subtract 0x8140 from Shift JIS value
value -= 0x8140;
// For characters with Shift JIS values from 0xE040 to 0xEBBF
} else if (value >= 0xE040 && value <= 0xEBBF) {
// Subtract 0xC140 from Shift JIS value
value -= 0xC140;
} else {
throw new Error(
'Invalid SJIS character: ' + this.data[i] + '\n' +
'Make sure your charset is UTF-8')
}
// Multiply most significant byte of result by 0xC0
// and add least significant byte to product
value = (((value >>> 8) & 0xff) * 0xC0) + (value & 0xff);
// Convert result to a 13-bit binary string
bitBuffer.put(value, 13);
}
};
var kanjiData = KanjiData;
var dijkstra = {exports: {}};
(function (module) {
/******************************************************************************
* Created 2008-08-19.
*
* Dijkstra path-finding functions. Adapted from the Dijkstar Python project.
*
* Copyright (C) 2008
* Wyatt Baldwin <self@wyattbaldwin.com>
* All rights reserved
*
* Licensed under the MIT license.
*
* http://www.opensource.org/licenses/mit-license.php
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*****************************************************************************/
var dijkstra = {
single_source_shortest_paths: function(graph, s, d) {
// Predecessor map for each node that has been encountered.
// node ID => predecessor node ID
var predecessors = {};
// Costs of shortest paths from s to all nodes encountered.
// node ID => cost
var costs = {};
costs[s] = 0;
// Costs of shortest paths from s to all nodes encountered; differs from
// `costs` in that it provides easy access to the node that currently has
// the known shortest path from s.
// XXX: Do we actually need both `costs` and `open`?
var open = dijkstra.PriorityQueue.make();
open.push(s, 0);
var closest,
u, v,
cost_of_s_to_u,
adjacent_nodes,
cost_of_e,
cost_of_s_to_u_plus_cost_of_e,
cost_of_s_to_v,
first_visit;
while (!open.empty()) {
// In the nodes remaining in graph that have a known cost from s,
// find the node, u, that currently has the shortest path from s.
closest = open.pop();
u = closest.value;
cost_of_s_to_u = closest.cost;
// Get nodes adjacent to u...
adjacent_nodes = graph[u] || {};
// ...and explore the edges that connect u to those nodes, updating
// the cost of the shortest paths to any or all of those nodes as
// necessary. v is the node across the current edge from u.
for (v in adjacent_nodes) {
if (adjacent_nodes.hasOwnProperty(v)) {
// Get the cost of the edge running from u to v.
cost_of_e = adjacent_nodes[v];
// Cost of s to u plus the cost of u to v across e--this is *a*
// cost from s to v that may or may not be less than the current
// known cost to v.
cost_of_s_to_u_plus_cost_of_e = cost_of_s_to_u + cost_of_e;
// If we haven't visited v yet OR if the current known cost from s to
// v is greater than the new cost we just found (cost of s to u plus
// cost of u to v across e), update v's cost in the cost list and
// update v's predecessor in the predecessor list (it's now u).
cost_of_s_to_v = costs[v];
first_visit = (typeof costs[v] === 'undefined');
if (first_visit || cost_of_s_to_v > cost_of_s_to_u_plus_cost_of_e) {
costs[v] = cost_of_s_to_u_plus_cost_of_e;
open.push(v, cost_of_s_to_u_plus_cost_of_e);
predecessors[v] = u;
}
}
}
}
if (typeof d !== 'undefined' && typeof costs[d] === 'undefined') {
var msg = ['Could not find a path from ', s, ' to ', d, '.'].join('');
throw new Error(msg);
}
return predecessors;
},
extract_shortest_path_from_predecessor_list: function(predecessors, d) {
var nodes = [];
var u = d;
while (u) {
nodes.push(u);
predecessors[u];
u = predecessors[u];
}
nodes.reverse();
return nodes;
},
find_path: function(graph, s, d) {
var predecessors = dijkstra.single_source_shortest_paths(graph, s, d);
return dijkstra.extract_shortest_path_from_predecessor_list(
predecessors, d);
},
/**
* A very naive priority queue implementation.
*/
PriorityQueue: {
make: function (opts) {
var T = dijkstra.PriorityQueue,
t = {},
key;
opts = opts || {};
for (key in T) {
if (T.hasOwnProperty(key)) {
t[key] = T[key];
}
}
t.queue = [];
t.sorter = opts.sorter || T.default_sorter;
return t;
},
default_sorter: function (a, b) {
return a.cost - b.cost;
},
/**
* Add a new item to the queue and ensure the highest priority element
* is at the front of the queue.
*/
push: function (