UNPKG

qminer

Version:

A C++ based data analytics platform for processing large-scale real-time streams containing structured and unstructured data

751 lines (690 loc) 33.3 kB
/** * Copyright (c) 2015, Jozef Stefan Institute, Quintelligence d.o.o. and contributors * All rights reserved. * * This source code is licensed under the FreeBSD license found in the * LICENSE file in the root directory of this source tree. */ // JavaScript source code var analytics = require('../../index.js').analytics; var la = require('../../index.js').la; var assert = require("../../src/nodejs/scripts/assert.js"); //Unit test for LIBSVM SVC describe("LIBSVM SVC test", function () { describe("Constructor test", function () { it("It should return a default constructor", function () { var SVC = new analytics.SVC({ algorithm: "LIBSVM" }); var SVCjSon = SVC.getParams(); assert.strictEqual(SVCjSon.kernel, "LINEAR"); assert.strictEqual(SVCjSon.svmType, "default"); assert.strictEqual(SVCjSon.c, 1); assert.strictEqual(SVCjSon.j, 1); assert.strictEqual(SVCjSon.eps, 0.001); assert.strictEqual(SVCjSon.gamma, 1); assert.strictEqual(SVCjSon.p, 0.1); assert.strictEqual(SVCjSon.degree, 1); assert.strictEqual(SVCjSon.nu, 0.01); assert.strictEqual(SVCjSon.coef0, 1); assert.strictEqual(SVCjSon.cacheSize, 100); assert.strictEqual(SVCjSon.verbose, false); }); it("It should return a SVC created by Json", function () { var SVC = new analytics.SVC({ algorithm: "LIBSVM", kernel: "RBF", svmType: "NU_SVC", c: 20, j: 0.4, eps: 0.15, gamma:1.5, p: 0.05, degree: 3, nu: 0.1, coef0: 0.5, cacheSize: 20, batchSize: 5, maxIterations: 5, maxTime: 1, minDiff: 1e-10, verbose: true }); var SVCjSon = SVC.getParams(); assert.strictEqual(SVCjSon.kernel, "RBF"); assert.strictEqual(SVCjSon.svmType, "NU_SVC"); assert.strictEqual(SVCjSon.c, 20); assert.strictEqual(SVCjSon.j, 0.4); assert.strictEqual(SVCjSon.eps, 0.15); assert.strictEqual(SVCjSon.gamma, 1.5); assert.strictEqual(SVCjSon.p, 0.05); assert.strictEqual(SVCjSon.degree, 3); assert.strictEqual(SVCjSon.nu, 0.1); assert.strictEqual(SVCjSon.coef0, 0.5); assert.strictEqual(SVCjSon.cacheSize, 20); assert.strictEqual(SVCjSon.verbose, true); }); it("It should return a SVC created by Json, not all key values are given", function () { var SVC = new analytics.SVC({ algorithm: "LIBSVM", c: 5, verbose: true }); var SVCjSon = SVC.getParams(); assert.strictEqual(SVCjSon.kernel, "LINEAR"); assert.strictEqual(SVCjSon.svmType, "default"); assert.strictEqual(SVCjSon.c, 5); assert.strictEqual(SVCjSon.j, 1); assert.strictEqual(SVCjSon.eps, 0.001); assert.strictEqual(SVCjSon.gamma, 1); assert.strictEqual(SVCjSon.p, 0.1); assert.strictEqual(SVCjSon.degree, 1); assert.strictEqual(SVCjSon.nu, 0.01); assert.strictEqual(SVCjSon.coef0, 1); assert.strictEqual(SVCjSon.cacheSize, 100); assert.strictEqual(SVCjSon.verbose, true); }); it("It should return a SVC created by an empty Json", function () { var SVC = new analytics.SVC({ algorithm: "LIBSVM" }); var SVCjSon = SVC.getParams(); assert.strictEqual(SVCjSon.kernel, "LINEAR"); assert.strictEqual(SVCjSon.svmType, "default"); assert.strictEqual(SVCjSon.c, 1); assert.strictEqual(SVCjSon.j, 1); assert.strictEqual(SVCjSon.eps, 0.001); assert.strictEqual(SVCjSon.gamma, 1); assert.strictEqual(SVCjSon.p, 0.1); assert.strictEqual(SVCjSon.degree, 1); assert.strictEqual(SVCjSon.nu, 0.01); assert.strictEqual(SVCjSon.coef0, 1); assert.strictEqual(SVCjSon.cacheSize, 100); assert.strictEqual(SVCjSon.verbose, false); }); it("It should return a SVC created by Json, with added key values", function () { var SVC = new analytics.SVC({ algorithm: "LIBSVM", alpha: 5, beta: 10, s: 3, batchSize: 10000, verbose: true }); var SVCjSon = SVC.getParams(); assert.strictEqual(SVCjSon.kernel, "LINEAR"); assert.strictEqual(SVCjSon.svmType, "default"); assert.strictEqual(SVCjSon.c, 1); assert.strictEqual(SVCjSon.j, 1); assert.strictEqual(SVCjSon.eps, 0.001); assert.strictEqual(SVCjSon.gamma, 1); assert.strictEqual(SVCjSon.p, 0.1); assert.strictEqual(SVCjSon.degree, 1); assert.strictEqual(SVCjSon.nu, 0.01); assert.strictEqual(SVCjSon.coef0, 1); assert.strictEqual(SVCjSon.cacheSize, 100); assert.strictEqual(SVCjSon.verbose, true); }); }); describe("GetParams tests", function () { it("should return the parameters of the default SVC model as Json", function () { var SVC = new analytics.SVC({ algorithm: "LIBSVM" }); var SVCjSon = SVC.getParams(); assert.strictEqual(SVCjSon.kernel, "LINEAR"); assert.strictEqual(SVCjSon.svmType, "default"); assert.strictEqual(SVCjSon.c, 1); assert.strictEqual(SVCjSon.j, 1); assert.strictEqual(SVCjSon.eps, 0.001); assert.strictEqual(SVCjSon.gamma, 1); assert.strictEqual(SVCjSon.p, 0.1); assert.strictEqual(SVCjSon.degree, 1); assert.strictEqual(SVCjSon.nu, 0.01); assert.strictEqual(SVCjSon.coef0, 1); assert.strictEqual(SVCjSon.cacheSize, 100); assert.strictEqual(SVCjSon.verbose, false); }) it("should return the parameters of the default SVC model as Json, without some key values", function () { var SVC = new analytics.SVC({ algorithm:"LIBSVM", c: 3, j: 2, maxTime: 1 }); var SVCjSon = SVC.getParams(); assert.strictEqual(SVCjSon.kernel, "LINEAR"); assert.strictEqual(SVCjSon.svmType, "default"); assert.strictEqual(SVCjSon.c, 3); assert.strictEqual(SVCjSon.j, 2); assert.strictEqual(SVCjSon.eps, 0.001); assert.strictEqual(SVCjSon.gamma, 1); assert.strictEqual(SVCjSon.p, 0.1); assert.strictEqual(SVCjSon.degree, 1); assert.strictEqual(SVCjSon.nu, 0.01); assert.strictEqual(SVCjSon.coef0, 1); assert.strictEqual(SVCjSon.cacheSize, 100); assert.strictEqual(SVCjSon.verbose, false); }) it("should return the parameters of the default SVC model as Json, with added key values", function () { var SVC = new analytics.SVC({ algorithm: "LIBSVM", alpha: 3, beta: 3, z: 3 }); var SVCjSon = SVC.getParams(); assert.strictEqual(SVCjSon.kernel, "LINEAR"); assert.strictEqual(SVCjSon.svmType, "default"); assert.strictEqual(SVCjSon.c, 1); assert.strictEqual(SVCjSon.j, 1); assert.strictEqual(SVCjSon.eps, 0.001); assert.strictEqual(SVCjSon.gamma, 1); assert.strictEqual(SVCjSon.p, 0.1); assert.strictEqual(SVCjSon.degree, 1); assert.strictEqual(SVCjSon.nu, 0.01); assert.strictEqual(SVCjSon.coef0, 1); assert.strictEqual(SVCjSon.cacheSize, 100); assert.strictEqual(SVCjSon.verbose, false); }) }); describe("SetParams tests", function () { it("should return the existing SVC with the changed values", function () { var SVC = new analytics.SVC({ algorithm: "LIBSVM" }); SVC.setParams({ j: 3, maxTime: 2 }); var SVCjSon = SVC.getParams(); assert.strictEqual(SVCjSon.kernel, "LINEAR"); assert.strictEqual(SVCjSon.svmType, "default"); assert.strictEqual(SVCjSon.c, 1); assert.strictEqual(SVCjSon.j, 3); assert.strictEqual(SVCjSon.eps, 0.001); assert.strictEqual(SVCjSon.gamma, 1); assert.strictEqual(SVCjSon.p, 0.1); assert.strictEqual(SVCjSon.degree, 1); assert.strictEqual(SVCjSon.nu, 0.01); assert.strictEqual(SVCjSon.coef0, 1); assert.strictEqual(SVCjSon.cacheSize, 100); assert.strictEqual(SVCjSon.verbose, false); }) it("should return the existing SVC with the changed, added values", function () { var SVC = new analytics.SVC({ algorithm: "LIBSVM" }); SVC.setParams({ j: 3, maxTime: 2, alpha: 5, z: 10 }); var SVCjSon = SVC.getParams(); assert.strictEqual(SVCjSon.kernel, "LINEAR"); assert.strictEqual(SVCjSon.svmType, "default"); assert.strictEqual(SVCjSon.c, 1); assert.strictEqual(SVCjSon.j, 3); assert.strictEqual(SVCjSon.eps, 0.001); assert.strictEqual(SVCjSon.gamma, 1); assert.strictEqual(SVCjSon.p, 0.1); assert.strictEqual(SVCjSon.degree, 1); assert.strictEqual(SVCjSon.nu, 0.01); assert.strictEqual(SVCjSon.coef0, 1); assert.strictEqual(SVCjSon.cacheSize, 100); assert.strictEqual(SVCjSon.verbose, false); }) it("should throw an exception if the argument is not Json", function () { var SVC = new analytics.SVC({ algorithm: "LIBSVM" }); assert.throws(function () { SVC.setParams(1); }); }) it("should throw an exception if there is no given argument", function () { var SVC = new analytics.SVC({ algorithm: "LIBSVM" }); assert.throws(function () { SVC.setParams(); }); }) }); describe("Weights tests", function () { it("should return an empty vector", function () { var SVC = new analytics.SVC({ algorithm: "LIBSVM" }); var Vec = SVC.weights; assert.strictEqual(Vec.length, 0); }) it("should return an empty vector even if the parameters have been changed", function () { var SVC = new analytics.SVC({ algorithm: "LIBSVM" }); SVC.setParams({ j: 3, maxTime: 2 }); var Vec = SVC.weights; assert.strictEqual(Vec.length, 0); }) }); describe("Bias tests", function () { it("should return zero", function () { var SVC = new analytics.SVC({ algorithm: "LIBSVM" }); var num = SVC.bias; assert.strictEqual(num, 0); }) it("should return zero even if the parameters have been changed", function () { var SVC = new analytics.SVC({ algorithm: "LIBSVM" }); SVC.setParams({ j: 3, maxTime: 2 }); var num = SVC.bias; assert.strictEqual(num, 0); }) }); describe("GetModel tests", function () { it("should return parameters of the model", function () { var SVC = new analytics.SVC({ algorithm: "LIBSVM" }); var Model = SVC.getModel(); assert.strictEqual(Model.weights.length, 0); assert.strictEqual(Model.bias, 0); }) it("should ignore extra parameters given to the function", function () { var SVC = new analytics.SVC({ algorithm: "LIBSVM" }); var Model = SVC.getModel(1); assert.strictEqual(Model.weights.length, 0); assert.strictEqual(Model.bias, 0); }) }); describe('Fit Tests', function () { it('should not throw an exception when given the matrix and vector', function () { var matrix = new la.Matrix([[0, 1, -1, 0], [1, 0, 0, -1]]); var vec = new la.Vector([1, 1, -1, -1]); var SVC = new analytics.SVC({ algorithm: "LIBSVM" }); assert.doesNotThrow(function () { SVC.fit(matrix, vec); }); }) it('should create a model out of the matrix and vector', function () { var matrix = new la.Matrix([[0, 1, -1, 0], [1, 0, 0, -1]]); var vec = new la.Vector([1, 1, -1, -1]); var SVC = new analytics.SVC({ algorithm: "LIBSVM" }); SVC.fit(matrix, vec); var model = SVC.getModel(); assert.eqtol(model.weights[0], 1, 1e-3); assert.eqtol(model.weights[1], 1, 1e-3); }) it('should throw an exception if the number of matrix columns and vector length are not equal', function () { var matrix = new la.Matrix([[0, 1, -1, 0], [1, 0, 0, -1]]); var vec = new la.Vector([1, 1, -1]); var SVC = new analytics.SVC({ algorithm: "LIBSVM" }); assert.throws(function () { SVC.fit(matrix, vec); }); }) it('should return a close-zero model and print a WARNING (class label 1 not found)', function () { var matrix = new la.Matrix([[1, -1], [0, 0]]); var vec = new la.Vector([-1, -1]); var SVC = new analytics.SVC({ algorithm: "LIBSVM" }); SVC.fit(matrix, vec); var model = SVC.getModel(); assert.eqtol(model.weights[0], 0, 1e-2); assert.eqtol(model.weights[1], 0, 1e-2); }) it('should forget the previous model', function () { var matrix = new la.Matrix([[0, 1, -1, 0], [1, 0, 0, -1]]); var vec = new la.Vector([1, 1, -1, -1]); var SVC = new analytics.SVC({ algorithm: "LIBSVM" }); // first model SVC.fit(matrix, vec); var model = SVC.getModel(); assert.eqtol(model.weights[0], 1, 1e-3); assert.eqtol(model.weights[1], 1, 1e-3); var matrix2 = new la.Matrix([[1, -1], [0, 0]]); var vec2 = new la.Vector([1, -1]); //second model SVC.fit(matrix2, vec2); var model = SVC.getModel(); assert.eqtol(model.weights[0], 1, 1e-3); assert.eqtol(model.weights[1], 0, 1e-3); }) // testing getModel with fit it('should return the fitted model', function () { var matrix = new la.Matrix([[1, -1], [0, 0]]); var vec = new la.Vector([1, -1]); var SVC = new analytics.SVC({ algorithm: "LIBSVM" }); SVC.fit(matrix, vec); var model = SVC.getModel(); assert.eqtol(model.weights[0], 1, 1e-3); assert.eqtol(model.weights[1], 0, 1e-3); }) // testing setParams it('shouldn\'t change the model, when setting new parameters', function () { // creating the model var matrix = new la.Matrix([[1, -1], [0, 0]]); var vec = new la.Vector([1, -1]); var SVC = new analytics.SVC({ algorithm: "LIBSVM" }); SVC.fit(matrix, vec); // setting the parameters SVC.setParams({ c: 10, j: 5, maxTime: 2 }); // seeing if the model is unchanged var model = SVC.getModel(); assert.eqtol(model.weights[0], 1, 1e-3); assert.eqtol(model.weights[1], 0, 1e-3); }) }); describe('Predict Tests', function () { it('should not throw an exception', function () { var matrix = new la.Matrix([[1, -1], [0, 0]]); var vec = new la.Vector([1, -1]); var SVC = new analytics.SVC({ algorithm: "LIBSVM" }); SVC.fit(matrix, vec); var vec2 = new la.Vector([3, 0]); assert.doesNotThrow(function () { SVC.predict(vec2); }); }) it('should return 1 for the given vector', function () { var matrix = new la.Matrix([[1, -1], [0, 0]]); var vec = new la.Vector([1, -1]); var SVC = new analytics.SVC({ algorithm: "LIBSVM" }); SVC.fit(matrix, vec); var vec2 = new la.Vector([3, 0]); assert.strictEqual(SVC.predict(vec2), 1); }) it('should throw an exception if the vector is longer', function () { var matrix = new la.Matrix([[1, -1], [0, 0]]); var vec = new la.Vector([1, -1]); var SVC = new analytics.SVC({ algorithm: "LIBSVM" }); SVC.fit(matrix, vec); var vec2 = new la.Vector([3, 0, 1]); assert.throws(function () { SVC.predict(vec2); }); }) it('should throw an exception if the vector is shorter', function () { var matrix = new la.Matrix([[1, -1], [0, 0]]); var vec = new la.Vector([1, -1]); var SVC = new analytics.SVC({ algorithm: "LIBSVM" }); SVC.fit(matrix, vec); var vec2 = new la.Vector([3]); assert.throws(function () { SVC.predict(vec2); }); }) it('should return the vector [1, 1, -1] for the given matrix', function () { var matrix = new la.Matrix([[0, 1, -1, 0], [1, 0, 0, -1]]); var vec = new la.Vector([1, 1, -1, -1]); var SVC = new analytics.SVC({ algorithm: "LIBSVM" }); SVC.fit(matrix, vec); var matrix2 = new la.Matrix([[1, 3, -1], [0, 3, -2]]); var predicted = SVC.predict(matrix2); assert.strictEqual(predicted[0], 1); assert.strictEqual(predicted[1], 1); assert.strictEqual(predicted[2], -1); }) it('should throw an exception if the matrix has too many rows', function () { var matrix = new la.Matrix([[1, -1], [0, 0]]); var vec = new la.Vector([1, -1]); var SVC = new analytics.SVC({ algorithm: "LIBSVM" }); SVC.fit(matrix, vec); var matrix2 = new la.Matrix([[1, 3, -1], [0, 3, -2], [1, 1, 2]]); assert.throws(function () { SVC.predict(matrix2); }); }) it('should throw an exception if the matrix has too lesser rows', function () { var matrix = new la.Matrix([[1, -1], [0, 0]]); var vec = new la.Vector([1, -1]); var SVC = new analytics.SVC({ algorithm: "LIBSVM" }); SVC.fit(matrix, vec); var matrix2 = new la.Matrix([[1, 3, -1]]); assert.throws(function () { SVC.predict(matrix2); }); }) it('should throw an exception if the parameters are wrong', function () { var matrix = new la.Matrix([[1, -1], [0, 0]]); var vec = new la.Vector([1, -1]); var SVC = new analytics.SVC({ algorithm: "LIBSVM" }); SVC.fit(matrix, vec); var matrix2 = new la.Matrix([[1, 3, -1]]); assert.throws(function () { SVC.predict(matrix2); }); }) }); describe('DecisionFunction Tests', function () { it('should not throw an exception', function () { var matrix = new la.Matrix([[1, -1], [0, 0]]); var vec = new la.Vector([1, -1]); var SVC = new analytics.SVC({ algorithm: "LIBSVM" }); SVC.fit(matrix, vec); var vec2 = new la.Vector([3, 0]); assert.doesNotThrow(function () { SVC.decisionFunction(vec2); }); }) it('should return the distance of the vector from the hyperplane', function () { var matrix = new la.Matrix([[1, -1], [0, 0]]); var vec = new la.Vector([1, -1]); var SVC = new analytics.SVC({ algorithm: "LIBSVM" }); SVC.fit(matrix, vec); var vec2 = new la.Vector([1, 1]); var distance = SVC.decisionFunction(vec2); assert.eqtol(distance, 1, 1e-3); }) it('should throw an exception if the vector is too long', function () { var matrix = new la.Matrix([[1, -1], [0, 0]]); var vec = new la.Vector([1, -1]); var SVC = new analytics.SVC({ algorithm: "LIBSVM" }); SVC.fit(matrix, vec); var vec2 = new la.Vector([1, 1, -1]); assert.throws(function () { SVC.decisionFunction(vec2); }); }) it('should throw an exception if the vector is too short', function () { var matrix = new la.Matrix([[1, -1], [0, 0]]); var vec = new la.Vector([1, -1]); var SVC = new analytics.SVC({ algorithm: "LIBSVM" }); SVC.fit(matrix, vec); var vec2 = new la.Vector([1]); assert.throws(function () { SVC.decisionFunction(vec2); }); }) it('should return a vector of distances if the given parameter is a matrix', function () { var matrix = new la.Matrix([[1, -1], [0, 0]]); var vec = new la.Vector([1, -1]); var SVC = new analytics.SVC({ algorithm: "LIBSVM" }); SVC.fit(matrix, vec); var matrix2 = new la.Matrix([[1, -1, 0], [2, 1, -3]]); var distance = SVC.decisionFunction(matrix2); assert.eqtol(distance[0], 1, 1e-3); assert.eqtol(distance[1], -1, 1e-3); assert.eqtol(distance[2], 0, 1e-2); }) it('should throw an exception if the matrix has too many rows', function () { var matrix = new la.Matrix([[1, -1], [0, 0]]); var vec = new la.Vector([1, -1]); var SVC = new analytics.SVC({ algorithm: "LIBSVM" }); SVC.fit(matrix, vec); var matrix2 = new la.Matrix([[1, -1, 0], [2, 1, -3], [1, -2, 0]]); assert.throws(function () { SVC.decisionFunction(matrix2); }); }) it('should throw an exception if the matrix has too lesser or rows', function () { var matrix = new la.Matrix([[1, -1], [0, 0]]); var vec = new la.Vector([1, -1]); var SVC = new analytics.SVC({ algorithm: "LIBSVM" }); SVC.fit(matrix, vec); var matrix2 = new la.Matrix([[1, -1, 0]]); assert.throws(function () { SVC.decisionFunction(matrix2); }); }) }); describe('Serialization Tests', function () { it('should serialize and deserialize', function () { var matrix = new la.Matrix([[1, -1], [0, 0]]); var vec = new la.Vector([1, -1]); var SVC = new analytics.SVC({ algorithm: "LIBSVM" }); SVC.fit(matrix, vec); SVC.save(require('../../index.js').fs.openWrite('svr_test.bin')).close(); var SVC2 = new analytics.SVC(require('../../index.js').fs.openRead('svr_test.bin')); assert.deepEqual(SVC.getParams(), SVC2.getParams()); assert.eqtol(SVC.weights.minus(SVC2.weights).norm(), 0, 1e-8); assert.eqtol(Math.abs(SVC.bias - SVC2.bias), 0, 1e-8); }) }); describe('Fitting tests', function () { it('should fit a model on iris dataset (dense), class=setosa, features:sepal length, sepal width', function () { var X = require('./irisX.json'); var y = require('./irisY.json'); var matrix = new la.Matrix(X); matrix = matrix.transpose(); var vec = new la.Vector(y); var SVC = new analytics.SVC({ algorithm: "LIBSVM", c: 10000 }); SVC.fit(matrix, vec); // based on matlab //load fisheriris //X = [meas(:,1), meas(:,2)]; //Y = nominal(ismember(species,'setosa')); //y = 2*(double(Y)-1.5); //s=fitcsvm(X,y,'Standardize',false, 'BoxConstraint',10000); // weights = s.SupportVectors'* (s.Alpha.*(y(s.IsSupportVector))) // bias = s.Bias assert.eqtol(SVC.weights.minus(new la.Vector([-8.5680, 7.1408])).norm(), 0, 1e-3); assert.eqtol(Math.abs(SVC.bias - 23.1314), 0, 1e-3); }); it('should fit a model on iris dataset (sparse), class=setosa, features:sepal length, sepal width', function () { var X = require('./irisX.json'); var y = require('./irisY.json'); var matrix = new la.Matrix(X); matrix = matrix.transpose(); var spMatrix = matrix.sparse(); var vec = new la.Vector(y); var SVC = new analytics.SVC({ algorithm: "LIBSVM", c: 10000 }); SVC.fit(spMatrix, vec); // based on matlab //load fisheriris //X = [meas(:,1), meas(:,2)]; //Y = nominal(ismember(species,'setosa')); //y = 2*(double(Y)-1.5); //s=fitcsvm(X,y,'Standardize',false, 'BoxConstraint',10000); // weights = s.SupportVectors'* (s.Alpha.*(y(s.IsSupportVector))) // bias = s.Bias assert.eqtol(SVC.weights.minus(new la.Vector([-8.5680, 7.1408])).norm(), 0, 1e-3); assert.eqtol(Math.abs(SVC.bias - 23.1314), 0, 1e-3); }); it('should fit a model on high-dimensional (embedded) iris dataset (dense), class=setosa, features:sepal length, sepal width', function () { var X = require('./irisX.json'); var y = require('./irisY.json'); var matrix0 = new la.Matrix(X); var zeros = la.zeros(matrix0.rows, 1000); matrix = la.cat([[matrix0, zeros]]); matrix = matrix.transpose(); var vec = new la.Vector(y); var SVC = new analytics.SVC({ algorithm: "LIBSVM", c: 10000 }); SVC.fit(matrix, vec); // based on matlab //load fisheriris //X = [meas(:,1), meas(:,2)]; //Y = nominal(ismember(species,'setosa')); //y = 2*(double(Y)-1.5); //s=fitcsvm(X,y,'Standardize',false, 'BoxConstraint',10000); // weights = s.SupportVectors'* (s.Alpha.*(y(s.IsSupportVector))) // bias = s.Bias assert.eqtol(SVC.weights.subVec([0, 1]).minus(new la.Vector([-8.5680, 7.1408])).norm(), 0, 1e-3); assert.eqtol(Math.abs(SVC.bias - 23.1314), 0, 1e-3); }); it('should fit a model on high-dimensional (embedded) iris dataset (sparse), class=setosa, features:sepal length, sepal width', function () { var X = require('./irisX.json'); var y = require('./irisY.json'); var matrix0 = new la.Matrix(X); var zeros = la.zeros(matrix0.rows, 1000); matrix = la.cat([[matrix0, zeros]]); matrix = matrix.transpose(); var spMatrix = matrix.sparse(); var vec = new la.Vector(y); var SVC = new analytics.SVC({ algorithm: "LIBSVM", c: 10000 }); SVC.fit(spMatrix, vec); // based on matlab //load fisheriris //X = [meas(:,1), meas(:,2)]; //Y = nominal(ismember(species,'setosa')); //y = 2*(double(Y)-1.5); //s=fitcsvm(X,y,'Standardize',false, 'BoxConstraint',10000); // weights = s.SupportVectors'* (s.Alpha.*(y(s.IsSupportVector))) // bias = s.Bias assert.eqtol(SVC.weights.subVec([0, 1]).minus(new la.Vector([-8.5680, 7.1408])).norm(), 0, 1e-3); assert.eqtol(Math.abs(SVC.bias - 23.1314), 0, 1e-3); }); it('should fit a model on high-dimensional (embedded) iris dataset (dense), class=setosa, features:sepal length, sepal width', function () { var X = require('./irisX.json'); var y = require('./irisY.json'); var matrix0 = new la.Matrix(X); var seed = 1; var nextSeed = (x) => (x * 16807) % 2147483647; var D = la.zeros(matrix0.rows, 1000); for (var i = 0; i < 150; i++) { for (var j = 0; j < 1000; j++) { D.put(i, j, 1 / 1000 * (seed - 1) / 2147483646); seed = nextSeed(seed); } } matrix = la.cat([[matrix0, D]]); matrix = matrix.transpose(); var vec = new la.Vector(y); var SVC = new analytics.SVC({ algorithm: "LIBSVM", c: 10000 }); SVC.fit(matrix, vec); // based on matlab /* seed = 1; nextSeed = @(seed) mod(seed * 16807, 2147483647) D = zeros(150,1000); tic for i = 1:150 for j = 1:1000 D(i,j) = 1/1000 * (seed-1) / 2147483646; seed = nextSeed(seed); end end toc - load fisheriris %X = [meas(:,1), meas(:,2) zeros(size(meas,1), 1000)]; X = [meas(:,1), meas(:,2) D]; Y = nominal(ismember(species,'setosa')); y = 2*(double(Y)-1.5); s=fitcsvm(X,y,'Standardize',false, 'BoxConstraint',10000); // weights = s.SupportVectors'* (s.Alpha.*(y(s.IsSupportVector))) // bias = s.Bias */ assert.eqtol(SVC.weights.subVec([0, 1]).minus(new la.Vector([-8.5341, 7.1144])).norm(), 0, 1e-3); assert.eqtol(Math.abs(SVC.bias - 23.0358), 0, 1e-3); }); it('should find a soft margin', function () { X = [[-10, 1], [-3, 0], [-20, -1], [20, 1], [3, 0], [10, -1]]; var y = [1, -1, 1, -1, 1, -1]; var matrix = new la.Matrix(X); matrix = matrix.transpose(); var vec = new la.Vector(y); var SVC = new analytics.SVC({ algorithm: "LIBSVM", c: 1e-3 }); SVC.fit(matrix, vec); assert.eqtol(SVC.predict(matrix).minus(new la.Vector([1, 1, 1, -1, -1, -1])).norm(), 0, 1e-6); }); it('should find a soft margin and be biased towards negative examples', function () { X = [[-10, 1], [-3, 0], [-20, -1], [20, 1], [3, 0], [10, -1]]; var y = [1, -1, 1, -1, 1, -1]; var matrix = new la.Matrix(X); matrix = matrix.transpose(); var vec = new la.Vector(y); // unbalance: positive examples are 1000 times less important var SVC = new analytics.SVC({ algorithm: "LIBSVM", c: 1e-3, j: 1e-3}); SVC.fit(matrix, vec); assert.eqtol(SVC.predict(matrix).minus(new la.Vector([-1, -1, -1, -1, -1, -1])).norm(), 0, 1e-6); }); it('should find a soft margin and be biased towards positive examples', function () { X = [[-10, 1], [-3, 0], [-20, -1], [20, 1], [3, 0], [10, -1]]; var y = [1, -1, 1, -1, 1, -1]; var matrix = new la.Matrix(X); matrix = matrix.transpose(); var vec = new la.Vector(y); // unbalance: positive examples are 1000 times more important var SVC = new analytics.SVC({ algorithm: "LIBSVM", c: 1e-3, j: 1e+3 }); SVC.fit(matrix, vec); assert.eqtol(SVC.predict(matrix).minus(new la.Vector([1, 1, 1, 1, 1, 1])).norm(), 0, 1e-6); }); }); describe('Kernel tests', function () { it('should find a fit with polynomial kernel', function () { X = [[-3, 5], [-1, 0.5], [0, -0.5], [1, 0.5], [3, 5], [-2, 5], [-0.5, 1], [0, 0.5], [0.5, 1], [2, 5]]; var y = [1, 1, 1, 1, 1, -1, -1, -1, -1, -1]; var matrix = new la.Matrix(X); matrix = matrix.transpose(); var vec = new la.Vector(y); var SVC = new analytics.SVC({ algorithm: "LIBSVM", kernel: "POLY", degree: 2, p:10e-6, eps:10e-6 }); SVC.fit(matrix, vec); assert.eqtol(SVC.predict(matrix).minus(new la.Vector([1, 1, 1, 1, 1, -1, -1, -1, -1, -1])).norm(), 0, 1e-6); }); it('should find a fit with RBF kernel', function () { X = [[1, 0], [0, 1], [-1, 0], [0, -1], [2, 0], [0, 2], [-2, 0], [0, -2]]; var y = [1, 1, 1, 1, -1, -1, -1, -1]; var matrix = new la.Matrix(X); matrix = matrix.transpose(); var vec = new la.Vector(y); var SVC = new analytics.SVC({ algorithm: "LIBSVM", kernel: "RBF", p:10e-6 }); SVC.fit(matrix, vec); assert.eqtol(SVC.predict(matrix).minus(new la.Vector([1, 1, 1, 1, -1, -1, -1, -1])).norm(), 0, 1e-6); }); }); });