UNPKG

qminer

Version:

A C++ based data analytics platform for processing large-scale real-time streams containing structured and unstructured data

549 lines (545 loc) 23.7 kB
<!doctype html> <html> <head> <meta name="generator" content="JSDoc 3"> <meta charset="utf-8"> <title>Class: SVR</title> <link rel="stylesheet" href="https://brick.a.ssl.fastly.net/Karla:400,400i,700,700i" type="text/css"> <link rel="stylesheet" href="https://brick.a.ssl.fastly.net/Noto+Serif:400,400i,700,700i" type="text/css"> <link rel="stylesheet" href="https://brick.a.ssl.fastly.net/Inconsolata:500" type="text/css"> <link href="css/baseline.css" rel="stylesheet"> </head> <body onload="prettyPrint()"> <nav id="jsdoc-navbar" role="navigation" class="jsdoc-navbar"> <div id="jsdoc-navbar-container"> <div id="jsdoc-navbar-content"> <a href="index.html" class="jsdoc-navbar-package-name">QMiner JavaScript API v9.4.0</a> </div> </div> </nav> <div id="jsdoc-body-container"> <div id="jsdoc-content"> <div id="jsdoc-content-container"> <div id="jsdoc-main" role="main"> <header class="page-header"> <div class="symbol-detail-labels"><span class="label label-kind">class</span>&nbsp;<span class="label label-static">static</span></div> <h1><small><a href="module-analytics.html">analytics</a>.<wbr></small><span class="symbol-name">SVR</span></h1> <p class="source-link">Source: <a href="analyticsdoc.js.html#source-line-264">analyticsdoc.<wbr>js:264</a></p> <div class="symbol-classdesc"> <p>Support Vector Machine Regression. Implements a soft margin linear support vector regression using the PEGASOS algorithm with epsilon insensitive loss, see: <a href="http://ttic.uchicago.edu/~nati/Publications/PegasosMPB.pdf">Pegasos: Primal Estimated sub-GrAdient SOlver for SVM</a>.</p> </div> <dl class="dl-compact"> </dl> </header> <section id="summary"> <div class="summary-callout"> <h2 class="summary-callout-heading">Property</h2> <div class="summary-content"> <div class="summary-column"> <dl class="dl-summary-callout"> <dt><a href="module-analytics.SVR.html#weights">weights</a></dt> <dd> </dd> </dl> </div> <div class="summary-column"> </div> <div class="summary-column"> </div> </div> </div> <div class="summary-callout"> <h2 class="summary-callout-heading">Methods</h2> <div class="summary-content"> <div class="summary-column"> <dl class="dl-summary-callout"> <dt><a href="module-analytics.SVR.html#decisionFunction">decisionFunction(X)</a></dt> <dd> </dd> <dt><a href="module-analytics.SVR.html#fit">fit(X, y)</a></dt> <dd> </dd> <dt><a href="module-analytics.SVR.html#getModel">getModel()</a></dt> <dd> </dd> </dl> </div> <div class="summary-column"> <dl class="dl-summary-callout"> <dt><a href="module-analytics.SVR.html#getParams">getParams()</a></dt> <dd> </dd> <dt><a href="module-analytics.SVR.html#predict">predict(X)</a></dt> <dd> </dd> <dt><a href="module-analytics.SVR.html#save">save(fout)</a></dt> <dd> </dd> </dl> </div> <div class="summary-column"> <dl class="dl-summary-callout"> <dt><a href="module-analytics.SVR.html#setParams">setParams(param)</a></dt> <dd> </dd> </dl> </div> </div> </div> </section> <section> <h2 id="SVR">new&nbsp;<span class="symbol-name">SVR</span><span class="signature"><span class="signature-params">([arg])</span></span></h2> <p>SVR</p> <section> <h3> Example </h3> <div> <pre class="prettyprint"><code>// import module var analytics &#x3D; require(&#x27;qminer&#x27;).analytics; var la &#x3D; require(&#x27;qminer&#x27;).la; // REGRESSION WITH SVR // Set up fake train and test data. // Four training examples with, number of features &#x3D; 2 var featureMatrix &#x3D; new la.Matrix({ rows: 2, cols: 4, random: true }); // Regression targets for four examples var targets &#x3D; new la.Vector([1.1, -2, 3, 4.2]); // Set up the regression model var SVR &#x3D; new analytics.SVR({ verbose: false }); // Train regression SVR.fit(featureMatrix, targets); // Set up a fake test vector var test &#x3D; new la.Vector([1.1, -0.8]); // Predict the target value var prediction &#x3D; SVR.predict(test);</code></pre> </div> </section> <section> <h3>Parameter</h3> <table class="jsdoc-details-table"> <thead> <tr> <th>Name</th> <th>Type</th> <th>Optional</th> <th>Description</th> </tr> </thead> <tbody> <tr> <td> <p>arg</p> </td> <td> <p>(<a href="module-analytics.html#~SVMParam">module:analytics~SVMParam</a> or <a href="module-fs.FIn.html">module:fs.FIn</a>)</p> </td> <td> <p>Yes</p> </td> <td> <p>Construction arguments. There are two ways of constructing: <br>1. Using the <a href="module-analytics.html#~SVMParam">module:analytics~SVMParam</a> object, <br>2. using the file input stream <a href="module-fs.FIn.html">module:fs.FIn</a>. </p> </td> </tr> </tbody> </table> </section> <dl class="dl-compact"> </dl> </section> <section> <h2>Property</h2> <section> <h3 id="weights"><span class="symbol-name">weights</span></h3> <p>The vector of coefficients of the linear model. Type <a href="module-la.Vector.html">module:la.Vector</a>.</p> <section> <h4> Example </h4> <div> <pre class="prettyprint"><code>// import the modules var analytics &#x3D; require(&#x27;qminer&#x27;).analytics; var la &#x3D; require(&#x27;qminer&#x27;).la; // create a new SVR object var SVR &#x3D; new analytics.SVR({ c: 10 }); // create a matrix and vector for the model var matrix &#x3D; new la.Matrix([[1, -1], [1, 1]]); var vector &#x3D; new la.Vector([1, 1]); // create the model by fitting the values SVR.fit(matrix, vector); // get the coeficients of the linear model var coef &#x3D; SVR.weights;</code></pre> </div> </section> <dl class="dl-compact"> </dl> </section> <h2>Methods</h2> <section> <h3 id="decisionFunction"><span class="symbol-name">decisionFunction</span><span class="signature"><span class="signature-params">(X)</span>&nbsp;&rarr; <span class="signature-returns"> (number or <a href="module-la.Vector.html">module:la.Vector</a>)</span></span></h3> <p>Sends vector through the model and returns the scalar product as a real number.</p> <section> <h4> Example </h4> <div> <pre class="prettyprint"><code>// import the modules var analytics &#x3D; require(&#x27;qminer&#x27;).analytics; var la &#x3D; require(&#x27;qminer&#x27;).la; // create a new SVR object var SVR &#x3D; new analytics.SVR({ c: 10 }); // create a matrix and vector for the model var matrix &#x3D; new la.Matrix([[1, -1], [1, 1]]); var vector &#x3D; new la.Vector([1, 1]); // create the model by fitting the values SVR.fit(matrix, vector); // get the distance between the model and the given vector var vec2 &#x3D; new la.Vector([-5, 1]); var distance &#x3D; SVR.decisionFunction(vec2);</code></pre> </div> </section> <section> <h4>Parameter</h4> <table class="jsdoc-details-table"> <thead> <tr> <th>Name</th> <th>Type</th> <th>Optional</th> <th>Description</th> </tr> </thead> <tbody> <tr> <td> <p>X</p> </td> <td> <p>(<a href="module-la.Vector.html">module:la.Vector</a>, <a href="module-la.SparseVector.html">module:la.SparseVector</a>, <a href="module-la.Matrix.html">module:la.Matrix</a>, or <a href="module-la.SparseMatrix.html">module:la.SparseMatrix</a>)</p> </td> <td> <p>&nbsp;</p> </td> <td> <p>Input feature vector or matrix with feature vectors as columns.</p> </td> </tr> </tbody> </table> </section> <dl class="dl-compact"> <dt>Returns</dt> <dd> <p><code>(number or <a href="module-la.Vector.html">module:la.Vector</a>)</code>B Distance: <br>1. Real number if <code>X</code> is <a href="module-la.Vector.html">module:la.Vector</a> or <a href="module-la.SparseVector.html">module:la.SparseVector</a>. <br>2. <a href="module-la.Vector.html">module:la.Vector</a>, if <code>X</code> is <a href="module-la.Matrix.html">module:la.Matrix</a> or <a href="module-la.SparseMatrix.html">module:la.SparseMatrix</a>. </p> </dd> </dl> <h3 id="fit"><span class="symbol-name">fit</span><span class="signature"><span class="signature-params">(X, y)</span>&nbsp;&rarr; <span class="signature-returns"> <a href="module-analytics.SVR.html">module:analytics.SVR</a></span></span></h3> <p>Fits a SVM regression model, given column examples in a matrix and vector of targets.</p> <section> <h4> Example </h4> <div> <pre class="prettyprint"><code>// import the modules var analytics &#x3D; require(&#x27;qminer&#x27;).analytics; var la &#x3D; require(&#x27;qminer&#x27;).la; // create a new SVR object var SVR &#x3D; new analytics.SVR({ c: 10 }); // create a matrix and vector for the model var matrix &#x3D; new la.Matrix([[1, -1], [1, 1]]); var vector &#x3D; new la.Vector([1, 1]); // create the model by fitting the values SVR.fit(matrix, vector);</code></pre> </div> </section> <section> <h4>Parameters</h4> <table class="jsdoc-details-table"> <thead> <tr> <th>Name</th> <th>Type</th> <th>Optional</th> <th>Description</th> </tr> </thead> <tbody> <tr> <td> <p>X</p> </td> <td> <p>(<a href="module-la.Matrix.html">module:la.Matrix</a> or <a href="module-la.SparseMatrix.html">module:la.SparseMatrix</a>)</p> </td> <td> <p>&nbsp;</p> </td> <td> <p>Input feature matrix where columns correspond to feature vectors.</p> </td> </tr> <tr> <td> <p>y</p> </td> <td> <p><a href="module-la.Vector.html">module:la.Vector</a></p> </td> <td> <p>&nbsp;</p> </td> <td> <p>Input vector of targets, one for each column of X.</p> </td> </tr> </tbody> </table> </section> <dl class="dl-compact"> <dt>Returns</dt> <dd> <p><code><a href="module-analytics.SVR.html">module:analytics.SVR</a></code>B Self. The model has been created.</p> </dd> </dl> <h3 id="getModel"><span class="symbol-name">getModel</span><span class="signature"><span class="signature-params">()</span>&nbsp;&rarr; <span class="signature-returns"> Object</span></span></h3> <p>Get the model.</p> <section> <h4> Example </h4> <div> <pre class="prettyprint"><code>// import analytics module var analytics &#x3D; require(&#x27;qminer&#x27;).analytics; // create a SVR model var SVR &#x3D; new analytics.SVR(); // get the properties of the model var model &#x3D; SVR.getModel();</code></pre> </div> </section> <dl class="dl-compact"> <dt>Returns</dt> <dd> <p><code>Object</code>B The <code>svmModel</code> object containing the property: <br> 1. <code>svmModel.weights</code> - The weights of the model. Type <a href="module-la.Vector.html">module:la.Vector</a>. </p> </dd> </dl> <h3 id="getParams"><span class="symbol-name">getParams</span><span class="signature"><span class="signature-params">()</span>&nbsp;&rarr; <span class="signature-returns"> <a href="module-analytics.html#~SVMParam">module:analytics~SVMParam</a></span></span></h3> <p>Gets the SVR parameters.</p> <section> <h4> Example </h4> <div> <pre class="prettyprint"><code>// import analytics module var analytics &#x3D; require(&#x27;qminer&#x27;).analytics; // create a new SVR object var SVR &#x3D; new analytics.SVR({ c: 10, eps: 1e-10, maxTime: 12000, verbose: true }); // get the parameters of SVR var params &#x3D; SVR.getParams();</code></pre> </div> </section> <dl class="dl-compact"> <dt>Returns</dt> <dd> <p><code><a href="module-analytics.html#~SVMParam">module:analytics~SVMParam</a></code>B Parameters of the regression model.</p> </dd> </dl> <h3 id="predict"><span class="symbol-name">predict</span><span class="signature"><span class="signature-params">(X)</span>&nbsp;&rarr; <span class="signature-returns"> (number or <a href="module-la.Vector.html">module:la.Vector</a>)</span></span></h3> <p>Sends vector through the model and returns the prediction as a real number.</p> <section> <h4> Example </h4> <div> <pre class="prettyprint"><code>// import the modules var analytics &#x3D; require(&#x27;qminer&#x27;).analytics; var la &#x3D; require(&#x27;qminer&#x27;).la; // create a new SVR object var SVR &#x3D; new analytics.SVR({ c: 10 }); // create a matrix and vector for the model var matrix &#x3D; new la.Matrix([[1, -1], [1, 1]]); var vector &#x3D; new la.Vector([1, 1]); // create the model by fitting the values SVR.fit(matrix, vector); // predict the value of the given vector var vec2 &#x3D; new la.Vector([-5, 1]); var prediction &#x3D; SVR.predict(vec2);</code></pre> </div> </section> <section> <h4>Parameter</h4> <table class="jsdoc-details-table"> <thead> <tr> <th>Name</th> <th>Type</th> <th>Optional</th> <th>Description</th> </tr> </thead> <tbody> <tr> <td> <p>X</p> </td> <td> <p>(<a href="module-la.Vector.html">module:la.Vector</a>, <a href="module-la.SparseVector.html">module:la.SparseVector</a>, <a href="module-la.Matrix.html">module:la.Matrix</a>, or <a href="module-la.SparseMatrix.html">module:la.SparseMatrix</a>)</p> </td> <td> <p>&nbsp;</p> </td> <td> <p>Input feature vector or matrix with feature vectors as columns.</p> </td> </tr> </tbody> </table> </section> <dl class="dl-compact"> <dt>Returns</dt> <dd> <p><code>(number or <a href="module-la.Vector.html">module:la.Vector</a>)</code>B Prediction: <br>1. Real number, if <code>X</code> is <a href="module-la.Vector.html">module:la.Vector</a> or <a href="module-la.SparseVector.html">module:la.SparseVector</a>. <br>2. <a href="module-la.Vector.html">module:la.Vector</a>, if <code>X</code> is <a href="module-la.Matrix.html">module:la.Matrix</a> or <a href="module-la.SparseMatrix.html">module:la.SparseMatrix</a>. </p> </dd> </dl> <h3 id="save"><span class="symbol-name">save</span><span class="signature"><span class="signature-params">(fout)</span>&nbsp;&rarr; <span class="signature-returns"> <a href="module-fs.FOut.html">module:fs.FOut</a></span></span></h3> <p>Saves model to output file stream.</p> <section> <h4> Example </h4> <div> <pre class="prettyprint"><code>// import the modules var analytics &#x3D; require(&#x27;qminer&#x27;).analytics; var la &#x3D; require(&#x27;qminer&#x27;).la; var fs &#x3D; require(&#x27;qminer&#x27;).fs; // create a new SVR object var SVR &#x3D; new analytics.SVR({ c: 10 }); // create a matrix and vector for the model var matrix &#x3D; new la.Matrix([[1, -1], [1, 1]]); var vector &#x3D; new la.Vector([1, 1]); // create the model by fitting the values SVR.fit(matrix, vector); // save the model in a binary file var fout &#x3D; fs.openWrite(&#x27;svr_example.bin&#x27;); SVR.save(fout); fout.close(); // construct a SVR model by loading from the binary file var fin &#x3D; fs.openRead(&#x27;svr_example.bin&#x27;); var SVR2 &#x3D; new analytics.SVR(fin);</code></pre> </div> </section> <section> <h4>Parameter</h4> <table class="jsdoc-details-table"> <thead> <tr> <th>Name</th> <th>Type</th> <th>Optional</th> <th>Description</th> </tr> </thead> <tbody> <tr> <td> <p>fout</p> </td> <td> <p><a href="module-fs.FOut.html">module:fs.FOut</a></p> </td> <td> <p>&nbsp;</p> </td> <td> <p>Output stream.</p> </td> </tr> </tbody> </table> </section> <dl class="dl-compact"> <dt>Returns</dt> <dd> <p><code><a href="module-fs.FOut.html">module:fs.FOut</a></code>B The output stream <code>fout</code>.</p> </dd> </dl> <h3 id="setParams"><span class="symbol-name">setParams</span><span class="signature"><span class="signature-params">(param)</span>&nbsp;&rarr; <span class="signature-returns"> <a href="module-analytics.SVR.html">module:analytics.SVR</a></span></span></h3> <p>Sets the SVR parameters.</p> <section> <h4> Example </h4> <div> <pre class="prettyprint"><code>// import analytics module var analytics &#x3D; require(&#x27;qminer&#x27;).analytics; // create a new SVR object var SVR &#x3D; new analytics.SVR(); // set the parameters of the SVR object SVR.setParams({ c: 10, maxTime: 12000 });</code></pre> </div> </section> <section> <h4>Parameter</h4> <table class="jsdoc-details-table"> <thead> <tr> <th>Name</th> <th>Type</th> <th>Optional</th> <th>Description</th> </tr> </thead> <tbody> <tr> <td> <p>param</p> </td> <td> <p><a href="module-analytics.html#~SVMParam">module:analytics~SVMParam</a></p> </td> <td> <p>&nbsp;</p> </td> <td> <p>Regression training parameters.</p> </td> </tr> </tbody> </table> </section> <dl class="dl-compact"> <dt>Returns</dt> <dd> <p><code><a href="module-analytics.SVR.html">module:analytics.SVR</a></code>B Self. Updated the training parameters.</p> </dd> </dl> </section> </section> </div> </div> <nav id="jsdoc-toc-nav" role="navigation"></nav> </div> </div> <footer id="jsdoc-footer" class="jsdoc-footer"> <div id="jsdoc-footer-container"> <p> </p> </div> </footer> <script src="scripts/jquery.min.js"></script> <script src="scripts/tree.jquery.js"></script> <script src="scripts/prettify.js"></script> <script src="scripts/jsdoc-toc.js"></script> <script src="scripts/linenumber.js"></script> <script src="scripts/scrollanchor.js"></script> </body> </html>