UNPKG

qminer

Version:

A C++ based data analytics platform for processing large-scale real-time streams containing structured and unstructured data

406 lines (402 loc) 18.8 kB
<!doctype html> <html> <head> <meta name="generator" content="JSDoc 3"> <meta charset="utf-8"> <title>Class: OneVsAll</title> <link rel="stylesheet" href="https://brick.a.ssl.fastly.net/Karla:400,400i,700,700i" type="text/css"> <link rel="stylesheet" href="https://brick.a.ssl.fastly.net/Noto+Serif:400,400i,700,700i" type="text/css"> <link rel="stylesheet" href="https://brick.a.ssl.fastly.net/Inconsolata:500" type="text/css"> <link href="css/baseline.css" rel="stylesheet"> </head> <body onload="prettyPrint()"> <nav id="jsdoc-navbar" role="navigation" class="jsdoc-navbar"> <div id="jsdoc-navbar-container"> <div id="jsdoc-navbar-content"> <a href="index.html" class="jsdoc-navbar-package-name">QMiner JavaScript API v9.4.0</a> </div> </div> </nav> <div id="jsdoc-body-container"> <div id="jsdoc-content"> <div id="jsdoc-content-container"> <div id="jsdoc-main" role="main"> <header class="page-header"> <div class="symbol-detail-labels"><span class="label label-kind">class</span>&nbsp;<span class="label label-static">static</span></div> <h1><small><a href="module-analytics.html">analytics</a>.<wbr></small><span class="symbol-name">OneVsAll</span></h1> <p class="source-link">Source: <a href="analyticsdoc.js.html#source-line-3082">analyticsdoc.<wbr>js:3082</a></p> <div class="symbol-classdesc"> <p>One vs All model for multiclass prediction. Builds binary model for each category and predicts the one with the highest score. Binary model is provided as part of the constructor.</p> </div> <dl class="dl-compact"> </dl> </header> <section id="summary"> <div class="summary-callout"> <h2 class="summary-callout-heading">Methods</h2> <div class="summary-content"> <div class="summary-column"> <dl class="dl-summary-callout"> <dt><a href="module-analytics.OneVsAll.html#decisionFunction">decisionFunction(X)</a></dt> <dd> </dd> <dt><a href="module-analytics.OneVsAll.html#fit">fit(X, y)</a></dt> <dd> </dd> </dl> </div> <div class="summary-column"> <dl class="dl-summary-callout"> <dt><a href="module-analytics.OneVsAll.html#getParams">getParams()</a></dt> <dd> </dd> <dt><a href="module-analytics.OneVsAll.html#predict">predict(X)</a></dt> <dd> </dd> </dl> </div> <div class="summary-column"> <dl class="dl-summary-callout"> <dt><a href="module-analytics.OneVsAll.html#setParams">setParams(params)</a></dt> <dd> </dd> </dl> </div> </div> </div> </section> <section> <h2 id="OneVsAll">new&nbsp;<span class="symbol-name">OneVsAll</span><span class="signature"><span class="signature-params">([arg])</span></span></h2> <section> <h3> Example </h3> <div> <pre class="prettyprint"><code>// import analytics module var analytics &#x3D; require(&#x27;qminer&#x27;).analytics; // create a new OneVsAll object with the model analytics.SVC var onevsall &#x3D; new analytics.OneVsAll({ model: analytics.SVC, modelParam: { c: 10, maxTime: 1000 }, cats: 2 });</code></pre> </div> </section> <section> <h3>Parameter</h3> <table class="jsdoc-details-table"> <thead> <tr> <th>Name</th> <th>Type</th> <th>Optional</th> <th>Description</th> </tr> </thead> <tbody> <tr> <td> <p>arg</p> </td> <td> <p><a href="module-analytics.html#~oneVsAllParam">module:analytics~oneVsAllParam</a></p> </td> <td> <p>Yes</p> </td> <td> <p>Construction arguments.</p> </td> </tr> </tbody> </table> </section> <dl class="dl-compact"> </dl> </section> <section> <h2>Methods</h2> <section> <h3 id="decisionFunction"><span class="symbol-name">decisionFunction</span><span class="signature"><span class="signature-params">(X)</span>&nbsp;&rarr; <span class="signature-returns"> (<a href="module-la.Vector.html">module:la.Vector</a> or <a href="module-la.Matrix.html">module:la.Matrix</a>)</span></span></h3> <p>Apply all models to the given vector and returns a vector of scores, one for each category. Semantic of scores depend on the provided binary model.</p> <section> <h4> Example </h4> <div> <pre class="prettyprint"><code>// import modules var analytics &#x3D; require(&#x27;qminer&#x27;).analytics; var la &#x3D; require(&#x27;qminer&#x27;).la; // create a new OneVsAll object with the model analytics.SVC var onevsall &#x3D; new analytics.OneVsAll({ model: analytics.SVC, modelParam: { c: 10, maxTime: 1000 }, cats: 2 }); // create the data (matrix and vector) used to fit the model var matrix &#x3D; new la.Matrix([[1, 2, 1, 1], [2, 1, -3, -4]]); var vector &#x3D; new la.Vector([0, 0, 1, 1]); // fit the model onevsall.fit(matrix, vector); // create the vector for the decisionFunction var test &#x3D; new la.Vector([1, 2]); // give the vector to the decision function var prediction &#x3D; onevsall.decisionFunction(test); // returns the vector of scores</code></pre> </div> </section> <section> <h4>Parameter</h4> <table class="jsdoc-details-table"> <thead> <tr> <th>Name</th> <th>Type</th> <th>Optional</th> <th>Description</th> </tr> </thead> <tbody> <tr> <td> <p>X</p> </td> <td> <p>(<a href="module-la.Vector.html">module:la.Vector</a>, <a href="module-la.SparseVector.html">module:la.SparseVector</a>, <a href="module-la.Matrix.html">module:la.Matrix</a>, or <a href="module-la.SparseMatrix.html">module:la.SparseMatrix</a>)</p> </td> <td> <p>&nbsp;</p> </td> <td> <p>Feature vector or matrix with feature vectors as columns.</p> </td> </tr> </tbody> </table> </section> <dl class="dl-compact"> <dt>Returns</dt> <dd> <p><code>(<a href="module-la.Vector.html">module:la.Vector</a> or <a href="module-la.Matrix.html">module:la.Matrix</a>)</code>B The score and label of the input <code>X</code>: <br>1. <a href="module-la.Vector.html">module:la.Vector</a> of scores, if <code>X</code> is of type <a href="module-la.Vector.html">module:la.Vector</a> or <a href="module-la.SparseVector.html">module:la.SparseVector</a>. <br>2. <a href="module-la.Matrix.html">module:la.Matrix</a> with columns corresponding to instances, and rows corresponding to labels, if <code>X</code> is of type <a href="module-la.Matrix.html">module:la.Matrix</a> or <a href="module-la.SparseMatrix.html">module:la.SparseMatrix</a>. </p> </dd> </dl> <h3 id="fit"><span class="symbol-name">fit</span><span class="signature"><span class="signature-params">(X, y)</span>&nbsp;&rarr; <span class="signature-returns"> <a href="module-analytics.OneVsAll.html">module:analytics.OneVsAll</a></span></span></h3> <p>Apply all models to the given vector and returns category with the highest score.</p> <section> <h4> Example </h4> <div> <pre class="prettyprint"><code>// import modules var analytics &#x3D; require(&#x27;qminer&#x27;).analytics; var la &#x3D; require(&#x27;qminer&#x27;).la; // create a new OneVsAll object with the model analytics.SVC var onevsall &#x3D; new analytics.OneVsAll({ model: analytics.SVC, modelParam: { c: 10, maxTime: 1000 }, cats: 2 }); // create the data (matrix and vector) used to fit the model var matrix &#x3D; new la.Matrix([[1, 2, 1, 1], [2, 1, -3, -4]]); var vector &#x3D; new la.Vector([0, 0, 1, 1]); // fit the model onevsall.fit(matrix, vector);</code></pre> </div> </section> <section> <h4>Parameters</h4> <table class="jsdoc-details-table"> <thead> <tr> <th>Name</th> <th>Type</th> <th>Optional</th> <th>Description</th> </tr> </thead> <tbody> <tr> <td> <p>X</p> </td> <td> <p>(<a href="module-la.Matrix.html">module:la.Matrix</a> or <a href="module-la.SparseMatrix.html">module:la.SparseMatrix</a>)</p> </td> <td> <p>&nbsp;</p> </td> <td> <p>training instance feature vectors.</p> </td> </tr> <tr> <td> <p>y</p> </td> <td> <p><a href="module-la.Vector.html">module:la.Vector</a></p> </td> <td> <p>&nbsp;</p> </td> <td> <p>target category for each training instance. Categories must be integer numbers between <code>0</code> and <code>oneVsAllParam.categories-1</code>.</p> </td> </tr> </tbody> </table> </section> <dl class="dl-compact"> <dt>Returns</dt> <dd> <p><code><a href="module-analytics.OneVsAll.html">module:analytics.OneVsAll</a></code>B Self. The models have been fitted.</p> </dd> </dl> <h3 id="getParams"><span class="symbol-name">getParams</span><span class="signature"><span class="signature-params">()</span>&nbsp;&rarr; <span class="signature-returns"> <a href="module-analytics.html#~oneVsAllParam">module:analytics~oneVsAllParam</a></span></span></h3> <p>Gets the parameters.</p> <section> <h4> Example </h4> <div> <pre class="prettyprint"><code>// import analytics module var analytics &#x3D; require(&#x27;qminer&#x27;).analytics; // create a new OneVsAll object with the model analytics.SVC var onevsall &#x3D; new analytics.OneVsAll({ model: analytics.SVC, modelParam: { c: 10, maxTime: 1000 }, cats: 2 }); // get the parameters // returns the JSon object // { model: analytics.SVC, modelParam: { c: 10, maxTime: 1000 }, cats: 2, models: [] } var params &#x3D; onevsall.getParams();</code></pre> </div> </section> <dl class="dl-compact"> <dt>Returns</dt> <dd> <p><code><a href="module-analytics.html#~oneVsAllParam">module:analytics~oneVsAllParam</a></code>B The constructor parameters.</p> </dd> </dl> <h3 id="predict"><span class="symbol-name">predict</span><span class="signature"><span class="signature-params">(X)</span>&nbsp;&rarr; <span class="signature-returns"> (number or <a href="module-la.IntVector.html">module:la.IntVector</a>)</span></span></h3> <p>Apply all models to the given vector and returns category with the highest score.</p> <section> <h4> Example </h4> <div> <pre class="prettyprint"><code>// import modules var analytics &#x3D; require(&#x27;qminer&#x27;).analytics; var la &#x3D; require(&#x27;qminer&#x27;).la; // create a new OneVsAll object with the model analytics.SVC var onevsall &#x3D; new analytics.OneVsAll({ model: analytics.SVC, modelParam: { c: 10, maxTime: 1000 }, cats: 2 }); // create the data (matrix and vector) used to fit the model var matrix &#x3D; new la.Matrix([[1, 2, 1, 1], [2, 1, -3, -4]]); var vector &#x3D; new la.Vector([0, 0, 1, 1]); // fit the model onevsall.fit(matrix, vector); // create the vector for the prediction var test &#x3D; new la.Vector([1, 2]); // get the prediction of the vector var prediction &#x3D; onevsall.predict(test); // returns 0</code></pre> </div> </section> <section> <h4>Parameter</h4> <table class="jsdoc-details-table"> <thead> <tr> <th>Name</th> <th>Type</th> <th>Optional</th> <th>Description</th> </tr> </thead> <tbody> <tr> <td> <p>X</p> </td> <td> <p>(<a href="module-la.Vector.html">module:la.Vector</a>, <a href="module-la.SparseVector.html">module:la.SparseVector</a>, <a href="module-la.Matrix.html">module:la.Matrix</a>, or <a href="module-la.SparseMatrix.html">module:la.SparseMatrix</a>)</p> </td> <td> <p>&nbsp;</p> </td> <td> <p>Feature vector or matrix with feature vectors as columns.</p> </td> </tr> </tbody> </table> </section> <dl class="dl-compact"> <dt>Returns</dt> <dd> <p><code>(number or <a href="module-la.IntVector.html">module:la.IntVector</a>)</code>B <br>1. number of the category with the higher score, if <code>X</code> is <a href="module-la.Vector.html">module:la.Vector</a> or <a href="module-la.SparseVector.html">module:la.SparseVector</a>. <br>2. <a href="module-la.IntVector.html">module:la.IntVector</a> of categories with the higher score for each column of <code>X</code>, if <code>X</code> is <a href="module-la.Matrix.html">module:la.Matrix</a> or <a href="module-la.SparseMatrix.html">module:la.SparseMatrix</a>. </p> </dd> </dl> <h3 id="setParams"><span class="symbol-name">setParams</span><span class="signature"><span class="signature-params">(params)</span>&nbsp;&rarr; <span class="signature-returns"> <a href="module-analytics.OneVsAll.html">module:analytics.OneVsAll</a></span></span></h3> <p>Sets the parameters.</p> <section> <h4> Example </h4> <div> <pre class="prettyprint"><code>// import analytics module var analytics &#x3D; require(&#x27;qminer&#x27;).analytics; // create a new OneVsAll object with the model analytics.SVC var onevsall &#x3D; new analytics.OneVsAll({ model: analytics.SVC, modelParam: { c: 10, maxTime: 1000 }, cats: 2 }); // set the parameters var params &#x3D; onevsall.setParams({ model: analytics.SVR, modelParam: { c: 12, maxTime: 10000}, cats: 3, verbose: true });</code></pre> </div> </section> <section> <h4>Parameter</h4> <table class="jsdoc-details-table"> <thead> <tr> <th>Name</th> <th>Type</th> <th>Optional</th> <th>Description</th> </tr> </thead> <tbody> <tr> <td> <p>params</p> </td> <td> <p>module:analytics~OneVsAllParam</p> </td> <td> <p>&nbsp;</p> </td> <td> <p>The constructor parameters.</p> </td> </tr> </tbody> </table> </section> <dl class="dl-compact"> <dt>Returns</dt> <dd> <p><code><a href="module-analytics.OneVsAll.html">module:analytics.OneVsAll</a></code>B Self. The parameters are changed.</p> </dd> </dl> </section> </section> </div> </div> <nav id="jsdoc-toc-nav" role="navigation"></nav> </div> </div> <footer id="jsdoc-footer" class="jsdoc-footer"> <div id="jsdoc-footer-container"> <p> </p> </div> </footer> <script src="scripts/jquery.min.js"></script> <script src="scripts/tree.jquery.js"></script> <script src="scripts/prettify.js"></script> <script src="scripts/jsdoc-toc.js"></script> <script src="scripts/linenumber.js"></script> <script src="scripts/scrollanchor.js"></script> </body> </html>