UNPKG

qminer

Version:

A C++ based data analytics platform for processing large-scale real-time streams containing structured and unstructured data

669 lines (665 loc) 28.5 kB
<!doctype html> <html> <head> <meta name="generator" content="JSDoc 3"> <meta charset="utf-8"> <title>Class: NearestNeighborAD</title> <link rel="stylesheet" href="https://brick.a.ssl.fastly.net/Karla:400,400i,700,700i" type="text/css"> <link rel="stylesheet" href="https://brick.a.ssl.fastly.net/Noto+Serif:400,400i,700,700i" type="text/css"> <link rel="stylesheet" href="https://brick.a.ssl.fastly.net/Inconsolata:500" type="text/css"> <link href="css/baseline.css" rel="stylesheet"> </head> <body onload="prettyPrint()"> <nav id="jsdoc-navbar" role="navigation" class="jsdoc-navbar"> <div id="jsdoc-navbar-container"> <div id="jsdoc-navbar-content"> <a href="index.html" class="jsdoc-navbar-package-name">QMiner JavaScript API v9.4.0</a> </div> </div> </nav> <div id="jsdoc-body-container"> <div id="jsdoc-content"> <div id="jsdoc-content-container"> <div id="jsdoc-main" role="main"> <header class="page-header"> <div class="symbol-detail-labels"><span class="label label-kind">class</span>&nbsp;<span class="label label-static">static</span></div> <h1><small><a href="module-analytics.html">analytics</a>.<wbr></small><span class="symbol-name">NearestNeighborAD</span></h1> <p class="source-link">Source: <a href="analyticsdoc.js.html#source-line-742">analyticsdoc.<wbr>js:742</a></p> <div class="symbol-classdesc"> <p>Anomaly detector that checks if the test point is too far from the nearest known point.</p> </div> <dl class="dl-compact"> </dl> </header> <section id="summary"> <div class="summary-callout"> <h2 class="summary-callout-heading">Property</h2> <div class="summary-content"> <div class="summary-column"> <dl class="dl-summary-callout"> <dt><a href="module-analytics.NearestNeighborAD.html#init">init</a></dt> <dd> </dd> </dl> </div> <div class="summary-column"> </div> <div class="summary-column"> </div> </div> </div> <div class="summary-callout"> <h2 class="summary-callout-heading">Methods</h2> <div class="summary-content"> <div class="summary-column"> <dl class="dl-summary-callout"> <dt><a href="module-analytics.NearestNeighborAD.html#decisionFunction">decisionFunction(x)</a></dt> <dd> </dd> <dt><a href="module-analytics.NearestNeighborAD.html#explain">explain(x)</a></dt> <dd> </dd> <dt><a href="module-analytics.NearestNeighborAD.html#fit">fit(A[, idVec])</a></dt> <dd> </dd> </dl> </div> <div class="summary-column"> <dl class="dl-summary-callout"> <dt><a href="module-analytics.NearestNeighborAD.html#getModel">getModel()</a></dt> <dd> </dd> <dt><a href="module-analytics.NearestNeighborAD.html#getParams">getParams()</a></dt> <dd> </dd> <dt><a href="module-analytics.NearestNeighborAD.html#partialFit">partialFit(X, recId)</a></dt> <dd> </dd> </dl> </div> <div class="summary-column"> <dl class="dl-summary-callout"> <dt><a href="module-analytics.NearestNeighborAD.html#predict">predict(x)</a></dt> <dd> </dd> <dt><a href="module-analytics.NearestNeighborAD.html#save">save(fout)</a></dt> <dd> </dd> <dt><a href="module-analytics.NearestNeighborAD.html#setParams">setParams(params)</a></dt> <dd> </dd> </dl> </div> </div> </div> </section> <section> <h2 id="NearestNeighborAD">new&nbsp;<span class="symbol-name">NearestNeighborAD</span><span class="signature"><span class="signature-params">([arg])</span></span></h2> <p>Nearest Neighbour Anomaly Detection</p> <section> <h3> Example </h3> <div> <pre class="prettyprint"><code>// import modules var analytics &#x3D; require(&#x27;qminer&#x27;).analytics; var la &#x3D; require(&#x27;qminer&#x27;).la; // create a new NearestNeighborAD object var neighbor &#x3D; new analytics.NearestNeighborAD({ rate: 0.1 }); // create a sparse matrix var matrix &#x3D; new la.SparseMatrix([[[0, 1], [1, 2]], [[0, -2], [1, 3]], [[0, 0], [1, 1]]]); // fit the model with the matrix neighbor.fit(matrix); // create a new sparse vector var vector &#x3D; new la.SparseVector([[0, 4], [1, 0]]); // predict if the vector is an anomaly or not var prediction &#x3D; neighbor.predict(vector);</code></pre> </div> </section> <section> <h3>Parameter</h3> <table class="jsdoc-details-table"> <thead> <tr> <th>Name</th> <th>Type</th> <th>Optional</th> <th>Description</th> </tr> </thead> <tbody> <tr> <td> <p>arg</p> </td> <td> <p>(<a href="module-analytics.html#~detectorParam">module:analytics~detectorParam</a> or <a href="module-fs.FIn.html">module:fs.FIn</a>)</p> </td> <td> <p>Yes</p> </td> <td> <p>Construction arguments. There are two ways of constructing: <br>1. Using the <a href="module-analytics.html#~detectorParam">module:analytics~detectorParam</a> object, <br>2. using the file input stream <a href="module-fs.FIn.html">module:fs.FIn</a>. </p> </td> </tr> </tbody> </table> </section> <dl class="dl-compact"> </dl> </section> <section> <h2>Property</h2> <section> <h3 id="init"><span class="symbol-name">init</span></h3> <p>Returns true when the model has enough data to initialize. Type <code>boolean</code>.</p> <section> <h4> Example </h4> <div> <pre class="prettyprint"><code>// import modules var analytics &#x3D; require(&#x27;qminer&#x27;).analytics; var la &#x3D; require(&#x27;qminer&#x27;).la; // create a new NearestNeighborAD object var neighbor &#x3D; new analytics.NearestNeighborAD({ rate:0.05, windowSize:3 }); // check if the model has enough data neighbor.init;</code></pre> </div> </section> <dl class="dl-compact"> </dl> </section> <h2>Methods</h2> <section> <h3 id="decisionFunction"><span class="symbol-name">decisionFunction</span><span class="signature"><span class="signature-params">(x)</span>&nbsp;&rarr; <span class="signature-returns"> number</span></span></h3> <p>Compares the point to the known points and returns distance to the nearest one.</p> <section> <h4> Example </h4> <div> <pre class="prettyprint"><code>// import modules var analytics &#x3D; require(&#x27;qminer&#x27;).analytics; var la &#x3D; require(&#x27;qminer&#x27;).la; // create a new NearestNeighborAD object var neighbor &#x3D; new analytics.NearestNeighborAD(); // create a new sparse matrix var matrix &#x3D; new la.SparseMatrix([[[0, 1], [1, 2]], [[0, -2], [1, 3]], [[0, 0], [1, 1]]]); // fit the model with the matrix neighbor.fit(matrix); // create a new sparse vector var vector &#x3D; new la.SparseVector([[0, 4], [1, 0]]); // get the distance of the vector from the model var prediction &#x3D; neighbor.decisionFunction(vector); // returns 1</code></pre> </div> </section> <section> <h4>Parameter</h4> <table class="jsdoc-details-table"> <thead> <tr> <th>Name</th> <th>Type</th> <th>Optional</th> <th>Description</th> </tr> </thead> <tbody> <tr> <td> <p>x</p> </td> <td> <p><a href="module-la.Vector.html">module:la.Vector</a></p> </td> <td> <p>&nbsp;</p> </td> <td> <p>Test vector.</p> </td> </tr> </tbody> </table> </section> <dl class="dl-compact"> <dt>Returns</dt> <dd> <p><code>number</code>B Distance to the nearest point.</p> </dd> </dl> <h3 id="explain"><span class="symbol-name">explain</span><span class="signature"><span class="signature-params">(x)</span>&nbsp;&rarr; <span class="signature-returns"> <a href="module-analytics.html#~NearestNeighborADExplain">module:analytics~NearestNeighborADExplain</a></span></span></h3> <p>Returns an object that encodes the ID of the nearest neighbor and the features that contributed to the distance.</p> <section> <h4> Example </h4> <div> <pre class="prettyprint"><code>// import modules var analytics &#x3D; require(&#x27;qminer&#x27;).analytics; var la &#x3D; require(&#x27;qminer&#x27;).la; // create a new NearestNeighborAD object var neighbor &#x3D; new analytics.NearestNeighborAD({ rate:0.05, windowSize:3 }); // create a new sparse matrix var matrix &#x3D; new la.SparseMatrix([[[0, 1], [1, 2]], [[0, -2], [1, 3]], [[0, 0], [1, 1]]]); // fit the model with the matrix and provide a vector record IDs neighbor.fit(matrix, new la.IntVector([3541, 1112, 4244])); // create a new sparse vector var vector &#x3D; new la.SparseVector([[0, 4], [1, 0]]); // check if the vector is an anomaly var explanation &#x3D; neighbor.explain(vector); // returns an explanation</code></pre> </div> </section> <section> <h4>Parameter</h4> <table class="jsdoc-details-table"> <thead> <tr> <th>Name</th> <th>Type</th> <th>Optional</th> <th>Description</th> </tr> </thead> <tbody> <tr> <td> <p>x</p> </td> <td> <p><a href="module-la.SparseVector.html">module:la.SparseVector</a></p> </td> <td> <p>&nbsp;</p> </td> <td> <p>Test vector.</p> </td> </tr> </tbody> </table> </section> <dl class="dl-compact"> <dt>Returns</dt> <dd> <p><code><a href="module-analytics.html#~NearestNeighborADExplain">module:analytics~NearestNeighborADExplain</a></code>B The explanation object.</p> </dd> </dl> <h3 id="fit"><span class="symbol-name">fit</span><span class="signature"><span class="signature-params">(A[, idVec])</span>&nbsp;&rarr; <span class="signature-returns"> <a href="module-analytics.NearestNeighborAD.html">module:analytics.NearestNeighborAD</a></span></span></h3> <p>Analyzes the nearest neighbor distances and calculates the detector threshold based on the rate parameter.</p> <section> <h4> Example </h4> <div> <pre class="prettyprint"><code>// import modules var analytics &#x3D; require(&#x27;qminer&#x27;).analytics; var la &#x3D; require(&#x27;qminer&#x27;).la; // create a new NearestNeighborAD object var neighbor &#x3D; new analytics.NearestNeighborAD(); // create a new sparse matrix var matrix &#x3D; new la.SparseMatrix([[[0, 1], [1, 2]], [[0, -2], [1, 3]], [[0, 0], [1, 1]]]); // fit the model with the matrix neighbor.fit(matrix);</code></pre> </div> </section> <section> <h4>Parameters</h4> <table class="jsdoc-details-table"> <thead> <tr> <th>Name</th> <th>Type</th> <th>Optional</th> <th>Description</th> </tr> </thead> <tbody> <tr> <td> <p>A</p> </td> <td> <p><a href="module-la.SparseMatrix.html">module:la.SparseMatrix</a></p> </td> <td> <p>&nbsp;</p> </td> <td> <p>Matrix whose columns correspond to known examples. Gets saved as it is part of the model.</p> </td> </tr> <tr> <td> <p>idVec</p> </td> <td> <p><a href="module-la.IntVector.html">module:la.IntVector</a></p> </td> <td> <p>Yes</p> </td> <td> <p>An integer vector of IDs.</p> </td> </tr> </tbody> </table> </section> <dl class="dl-compact"> <dt>Returns</dt> <dd> <p><code><a href="module-analytics.NearestNeighborAD.html">module:analytics.NearestNeighborAD</a></code>B Self. The model is set by the matrix <code>A</code>.</p> </dd> </dl> <h3 id="getModel"><span class="symbol-name">getModel</span><span class="signature"><span class="signature-params">()</span>&nbsp;&rarr; <span class="signature-returns"> Object</span></span></h3> <p>Returns the model.</p> <section> <h4> Example </h4> <div> <pre class="prettyprint"><code>// import analytics module var analytics &#x3D; require(&#x27;qminer&#x27;).analytics; // create a new NearestNeighborAD object var neighbor &#x3D; new analytics.NearestNeighborAD({ rate: 0.1 }); // get the model of the object // returns a json object { rate: 0.1, window: 0 } var model &#x3D; neighbor.getModel();</code></pre> </div> </section> <dl class="dl-compact"> <dt>Returns</dt> <dd> <p><code>Object</code>B The object <code>neighbourModel</code> containing the properties: <br> 1. <code>neighbourModel.rate</code> - The expected fraction of emmited anomalies. <br> 2. <code>neighbourModel.thresh</code> - Maximal squared distance to the nearest neighbor that is not anomalous. </p> </dd> </dl> <h3 id="getParams"><span class="symbol-name">getParams</span><span class="signature"><span class="signature-params">()</span>&nbsp;&rarr; <span class="signature-returns"> <a href="module-analytics.html#~detectorParam">module:analytics~detectorParam</a></span></span></h3> <p>Gets parameters.</p> <section> <h4> Example </h4> <div> <pre class="prettyprint"><code>// import analytics module var analytics &#x3D; require(&#x27;qminer&#x27;).analytics; // create a new NearestNeighborAD object var neighbor &#x3D; new analytics.NearestNeighborAD(); // get the parameters of the object // returns a json object { rate: 0.05 } var params &#x3D; neighbor.getParams();</code></pre> </div> </section> <dl class="dl-compact"> <dt>Returns</dt> <dd> <p><code><a href="module-analytics.html#~detectorParam">module:analytics~detectorParam</a></code>B The object containing the parameters.</p> </dd> </dl> <h3 id="partialFit"><span class="symbol-name">partialFit</span><span class="signature"><span class="signature-params">(X, recId)</span>&nbsp;&rarr; <span class="signature-returns"> <a href="module-analytics.NearestNeighborAD.html">module:analytics.NearestNeighborAD</a></span></span></h3> <p>Adds a new point to the known points and recalculates the threshold.</p> <section> <h4> Example </h4> <div> <pre class="prettyprint"><code>// import modules var analytics &#x3D; require(&#x27;qminer&#x27;).analytics; var la &#x3D; require(&#x27;qminer&#x27;).la; // create a new NearestNeighborAD object var neighbor &#x3D; new analytics.NearestNeighborAD(); // create a new sparse matrix var matrix &#x3D; new la.SparseMatrix([[[0, 1], [1, 2]], [[0, -2], [1, 3]], [[0, 0], [1, 1]]]); // fit the model with the matrix neighbor.fit(matrix); // create a new sparse vector var vector &#x3D; new la.SparseVector([[0, 2], [1, 5]]); // update the model with the vector neighbor.partialFit(vector);</code></pre> </div> </section> <section> <h4>Parameters</h4> <table class="jsdoc-details-table"> <thead> <tr> <th>Name</th> <th>Type</th> <th>Optional</th> <th>Description</th> </tr> </thead> <tbody> <tr> <td> <p>X</p> </td> <td> <p><a href="module-la.SparseVector.html">module:la.SparseVector</a></p> </td> <td> <p>&nbsp;</p> </td> <td> <p>Test example.</p> </td> </tr> <tr> <td> <p>recId</p> </td> <td> <p>number</p> </td> <td> <p>&nbsp;</p> </td> <td> <p>Integer record ID, used in module:analytics.NearestNeighborAD.prototype.explain.</p> </td> </tr> </tbody> </table> </section> <dl class="dl-compact"> <dt>Returns</dt> <dd> <p><code><a href="module-analytics.NearestNeighborAD.html">module:analytics.NearestNeighborAD</a></code>B Self. The model is updated.</p> </dd> </dl> <h3 id="predict"><span class="symbol-name">predict</span><span class="signature"><span class="signature-params">(x)</span>&nbsp;&rarr; <span class="signature-returns"> number</span></span></h3> <p>Compares the point to the known points and returns 1 if it's too far away (based on the precalculated threshold).</p> <section> <h4> Example </h4> <div> <pre class="prettyprint"><code>// import modules var analytics &#x3D; require(&#x27;qminer&#x27;).analytics; var la &#x3D; require(&#x27;qminer&#x27;).la; // create a new NearestNeighborAD object var neighbor &#x3D; new analytics.NearestNeighborAD(); // create a new sparse matrix var matrix &#x3D; new la.SparseMatrix([[[0, 1], [1, 2]], [[0, -2], [1, 3]], [[0, 0], [1, 1]]]); // fit the model with the matrix neighbor.fit(matrix); // create a new sparse vector var vector &#x3D; new la.SparseVector([[0, 4], [1, 0]]); // check if the vector is an anomaly var prediction &#x3D; neighbor.predict(vector); // returns 1</code></pre> </div> </section> <section> <h4>Parameter</h4> <table class="jsdoc-details-table"> <thead> <tr> <th>Name</th> <th>Type</th> <th>Optional</th> <th>Description</th> </tr> </thead> <tbody> <tr> <td> <p>x</p> </td> <td> <p><a href="module-la.SparseVector.html">module:la.SparseVector</a></p> </td> <td> <p>&nbsp;</p> </td> <td> <p>Test vector.</p> </td> </tr> </tbody> </table> </section> <dl class="dl-compact"> <dt>Returns</dt> <dd> <p><code>number</code>B Returns 1.0 if the vector <code>x</code> is an anomaly and 0.0 otherwise.</p> </dd> </dl> <h3 id="save"><span class="symbol-name">save</span><span class="signature"><span class="signature-params">(fout)</span>&nbsp;&rarr; <span class="signature-returns"> <a href="module-fs.FOut.html">module:fs.FOut</a></span></span></h3> <p>Saves model to provided output stream.</p> <section> <h4> Example </h4> <div> <pre class="prettyprint"><code>// import modules var analytics &#x3D; require(&#x27;qminer&#x27;).analytics; var la &#x3D; require(&#x27;qminer&#x27;).la; var fs &#x3D; require(&#x27;qminer&#x27;).fs; // create a new NearestNeighborAD object var neighbor &#x3D; new analytics.NearestNeighborAD(); // create a new sparse matrix var matrix &#x3D; new la.SparseMatrix([[[0, 1], [1, 2]], [[0, -2], [1, 3]], [[0, 0], [1, 1]]]); // fit the model with the matrix neighbor.fit(matrix); // create an output stream object and save the model var fout &#x3D; fs.openWrite(&#x27;neighbor_example.bin&#x27;); neighbor.save(fout); fout.close(); // create a new Nearest Neighbor Anomaly model by loading the model var fin &#x3D; fs.openRead(&#x27;neighbor_example.bin&#x27;); var neighbor2 &#x3D; new analytics.NearestNeighborAD(fin);</code></pre> </div> </section> <section> <h4>Parameter</h4> <table class="jsdoc-details-table"> <thead> <tr> <th>Name</th> <th>Type</th> <th>Optional</th> <th>Description</th> </tr> </thead> <tbody> <tr> <td> <p>fout</p> </td> <td> <p><a href="module-fs.FOut.html">module:fs.FOut</a></p> </td> <td> <p>&nbsp;</p> </td> <td> <p>The output stream.</p> </td> </tr> </tbody> </table> </section> <dl class="dl-compact"> <dt>Returns</dt> <dd> <p><code><a href="module-fs.FOut.html">module:fs.FOut</a></code>B The output stream <code>fout</code>.</p> </dd> </dl> <h3 id="setParams"><span class="symbol-name">setParams</span><span class="signature"><span class="signature-params">(params)</span>&nbsp;&rarr; <span class="signature-returns"> <a href="module-analytics.NearestNeighborAD.html">module:analytics.NearestNeighborAD</a></span></span></h3> <p>Sets parameters.</p> <section> <h4> Example </h4> <div> <pre class="prettyprint"><code>// import analytics module var analytics &#x3D; require(&#x27;qminer&#x27;).analytics; // create a new NearestNeighborAD object var neighbor &#x3D; new analytics.NearestNeighborAD(); // set it&#x27;s parameters to rate: 0.1 neighbor.setParams({ rate: 0.1 });</code></pre> </div> </section> <section> <h4>Parameter</h4> <table class="jsdoc-details-table"> <thead> <tr> <th>Name</th> <th>Type</th> <th>Optional</th> <th>Description</th> </tr> </thead> <tbody> <tr> <td> <p>params</p> </td> <td> <p><a href="module-analytics.html#~detectorParam">module:analytics~detectorParam</a></p> </td> <td> <p>&nbsp;</p> </td> <td> <p>The object containing the parameters.</p> </td> </tr> </tbody> </table> </section> <dl class="dl-compact"> <dt>Returns</dt> <dd> <p><code><a href="module-analytics.NearestNeighborAD.html">module:analytics.NearestNeighborAD</a></code>B Self. The parameters are updated with <code>params</code>.</p> </dd> </dl> </section> </section> </div> </div> <nav id="jsdoc-toc-nav" role="navigation"></nav> </div> </div> <footer id="jsdoc-footer" class="jsdoc-footer"> <div id="jsdoc-footer-container"> <p> </p> </div> </footer> <script src="scripts/jquery.min.js"></script> <script src="scripts/tree.jquery.js"></script> <script src="scripts/prettify.js"></script> <script src="scripts/jsdoc-toc.js"></script> <script src="scripts/linenumber.js"></script> <script src="scripts/scrollanchor.js"></script> </body> </html>