UNPKG

qminer

Version:

A C++ based data analytics platform for processing large-scale real-time streams containing structured and unstructured data

386 lines (382 loc) 16 kB
<!doctype html> <html> <head> <meta name="generator" content="JSDoc 3"> <meta charset="utf-8"> <title>Class: NNet</title> <link rel="stylesheet" href="https://brick.a.ssl.fastly.net/Karla:400,400i,700,700i" type="text/css"> <link rel="stylesheet" href="https://brick.a.ssl.fastly.net/Noto+Serif:400,400i,700,700i" type="text/css"> <link rel="stylesheet" href="https://brick.a.ssl.fastly.net/Inconsolata:500" type="text/css"> <link href="css/baseline.css" rel="stylesheet"> </head> <body onload="prettyPrint()"> <nav id="jsdoc-navbar" role="navigation" class="jsdoc-navbar"> <div id="jsdoc-navbar-container"> <div id="jsdoc-navbar-content"> <a href="index.html" class="jsdoc-navbar-package-name">QMiner JavaScript API v9.4.0</a> </div> </div> </nav> <div id="jsdoc-body-container"> <div id="jsdoc-content"> <div id="jsdoc-content-container"> <div id="jsdoc-main" role="main"> <header class="page-header"> <div class="symbol-detail-labels"><span class="label label-kind">class</span>&nbsp;<span class="label label-static">static</span></div> <h1><small><a href="module-analytics.html">analytics</a>.<wbr></small><span class="symbol-name">NNet</span></h1> <p class="source-link">Source: <a href="analyticsdoc.js.html#source-line-1393">analyticsdoc.<wbr>js:1393</a></p> <div class="symbol-classdesc"> <p>Holds online/offline neural network model.</p> </div> <dl class="dl-compact"> </dl> </header> <section id="summary"> <div class="summary-callout"> <h2 class="summary-callout-heading">Methods</h2> <div class="summary-content"> <div class="summary-column"> <dl class="dl-summary-callout"> <dt><a href="module-analytics.NNet.html#fit">fit(X, Y)</a></dt> <dd> </dd> <dt><a href="module-analytics.NNet.html#getParams">getParams()</a></dt> <dd> </dd> </dl> </div> <div class="summary-column"> <dl class="dl-summary-callout"> <dt><a href="module-analytics.NNet.html#predict">predict(vec)</a></dt> <dd> </dd> <dt><a href="module-analytics.NNet.html#save">save(fout)</a></dt> <dd> </dd> </dl> </div> <div class="summary-column"> <dl class="dl-summary-callout"> <dt><a href="module-analytics.NNet.html#setParams">setParams()</a></dt> <dd> </dd> </dl> </div> </div> </div> </section> <section> <h2 id="NNet">new&nbsp;<span class="symbol-name">NNet</span><span class="signature"><span class="signature-params">([arg])</span></span></h2> <p>Neural Network Model.</p> <section> <h3> Example </h3> <div> <pre class="prettyprint"><code>// import module var analytics &#x3D; require(&#x27;qminer&#x27;).analytics; // create a new Neural Networks model var nnet &#x3D; new analytics.NNet({ layout: [3, 5, 2], learnRate: 0.2, momentum: 0.6 }); // create the matrices for the fitting of the model var matIn &#x3D; new la.Matrix([[1, 0], [0, 1], [1, 1]]); var matOut &#x3D; new la.Matrix([[-1, 8], [-3, -3]]); // fit the model nnet.fit(matIn, matOut); // create the vector for the prediction var test &#x3D; new la.Vector([1, 1, 2]); // predict the value of the vector var prediction &#x3D; nnet.predict(test);</code></pre> </div> </section> <section> <h3>Parameter</h3> <table class="jsdoc-details-table"> <thead> <tr> <th>Name</th> <th>Type</th> <th>Optional</th> <th>Description</th> </tr> </thead> <tbody> <tr> <td> <p>arg</p> </td> <td> <p>(<a href="module-analytics.html#~nnetParam">module:analytics~nnetParam</a> or <a href="module-fs.FIn.html">module:fs.FIn</a>)</p> </td> <td> <p>Yes</p> </td> <td> <p>Construction arguments. There are two ways of constructing: <br>1. Using the <a href="module-analytics.html#~nnetParam">module:analytics~nnetParam</a> object, <br>2. using the file input stream <a href="module-fs.FIn.html">module:fs.FIn</a>. </p> </td> </tr> </tbody> </table> </section> <dl class="dl-compact"> </dl> </section> <section> <h2>Methods</h2> <section> <h3 id="fit"><span class="symbol-name">fit</span><span class="signature"><span class="signature-params">(X, Y)</span>&nbsp;&rarr; <span class="signature-returns"> <a href="module-analytics.NNet.html">module:analytics.NNet</a></span></span></h3> <p>Fits the model.</p> <section> <h4> Example </h4> <div> <pre class="prettyprint"><code>// import modules var analytics &#x3D; require(&#x27;qminer&#x27;).analytics; var la &#x3D; require(&#x27;qminer&#x27;).la; // create a Neural Networks model var nnet &#x3D; new analytics.NNet({ layout: [2, 3, 4] }); // create the matrices for the fitting of the model var matIn &#x3D; new la.Matrix([[1, 0], [0, 1]]); var matOut &#x3D; new la.Matrix([[1, 1], [1, 2], [-1, 8], [-3, -3]]); // fit the model nnet.fit(matIn, matOut);</code></pre> </div> </section> <section> <h4>Parameters</h4> <table class="jsdoc-details-table"> <thead> <tr> <th>Name</th> <th>Type</th> <th>Optional</th> <th>Description</th> </tr> </thead> <tbody> <tr> <td> <p>X</p> </td> <td> <p>(<a href="module-la.Vector.html">module:la.Vector</a> or <a href="module-la.Matrix.html">module:la.Matrix</a>)</p> </td> <td> <p>&nbsp;</p> </td> <td> <p>The input data.</p> </td> </tr> <tr> <td> <p>Y</p> </td> <td> <p>(<a href="module-la.Vector.html">module:la.Vector</a> or <a href="module-la.Matrix.html">module:la.Matrix</a>)</p> </td> <td> <p>&nbsp;</p> </td> <td> <p>The output data. <br> If <code>X</code> and <code>Y</code> are both <a href="module-la.Vector.html">module:la.Vector</a>, then the fitting is in online mode. <br> If <code>X</code> and <code>Y</code> are both <a href="module-la.Matrix.html">module:la.Matrix</a>, then the fitting is in batch mode. </p> </td> </tr> </tbody> </table> </section> <dl class="dl-compact"> <dt>Returns</dt> <dd> <p><code><a href="module-analytics.NNet.html">module:analytics.NNet</a></code>B Self. The model has been updated.</p> </dd> </dl> <h3 id="getParams"><span class="symbol-name">getParams</span><span class="signature"><span class="signature-params">()</span>&nbsp;&rarr; <span class="signature-returns"> <a href="module-analytics.html#~nnetParam">module:analytics~nnetParam</a></span></span></h3> <p>Get the parameters of the model.</p> <section> <h4> Example </h4> <div> <pre class="prettyprint"><code>// import analytics module var analytics &#x3D; require(&#x27;qminer&#x27;).analytics; // create a Neural Networks model var nnet &#x3D; new analytics.NNet(); // get the parameters var params &#x3D; nnet.getParams();</code></pre> </div> </section> <dl class="dl-compact"> <dt>Returns</dt> <dd> <p><code><a href="module-analytics.html#~nnetParam">module:analytics~nnetParam</a></code>B The constructor parameters.</p> </dd> </dl> <h3 id="predict"><span class="symbol-name">predict</span><span class="signature"><span class="signature-params">(vec)</span>&nbsp;&rarr; <span class="signature-returns"> <a href="module-la.Vector.html">module:la.Vector</a></span></span></h3> <p>Gets the prediction of the vector.</p> <section> <h4> Example </h4> <div> <pre class="prettyprint"><code>// import modules var analytics &#x3D; require(&#x27;qminer&#x27;).analytics; var la &#x3D; require(&#x27;qminer&#x27;).la; // create a Neural Networks model var nnet &#x3D; new analytics.NNet({ layout: [2, 3, 4] }); // create the matrices for the fitting of the model var matIn &#x3D; new la.Matrix([[1, 0], [0, 1]]); var matOut &#x3D; new la.Matrix([[1, 1], [1, 2], [-1, 8], [-3, -3]]); // fit the model nnet.fit(matIn, matOut); // create the vector for the prediction var test &#x3D; new la.Vector([1, 1]); // predict the value of the vector var prediction &#x3D; nnet.predict(test);</code></pre> </div> </section> <section> <h4>Parameter</h4> <table class="jsdoc-details-table"> <thead> <tr> <th>Name</th> <th>Type</th> <th>Optional</th> <th>Description</th> </tr> </thead> <tbody> <tr> <td> <p>vec</p> </td> <td> <p><a href="module-la.Vector.html">module:la.Vector</a></p> </td> <td> <p>&nbsp;</p> </td> <td> <p>The prediction vector.</p> </td> </tr> </tbody> </table> </section> <dl class="dl-compact"> <dt>Returns</dt> <dd> <p><code><a href="module-la.Vector.html">module:la.Vector</a></code>B The prediction of vector <code>vec</code>.</p> </dd> </dl> <h3 id="save"><span class="symbol-name">save</span><span class="signature"><span class="signature-params">(fout)</span>&nbsp;&rarr; <span class="signature-returns"> <a href="module-fs.FOut.html">module:fs.FOut</a></span></span></h3> <p>Saves the model.</p> <section> <h4> Example </h4> <div> <pre class="prettyprint"><code>// import modules var analytics &#x3D; require(&#x27;qminer&#x27;).analytics; var la &#x3D; require(&#x27;qminer&#x27;).la; var fs &#x3D; require(&#x27;qminer&#x27;).fs; // create a Neural Networks model var nnet &#x3D; new analytics.NNet({ layout: [2, 3, 4] }); // create the matrices for the fitting of the model var matIn &#x3D; new la.Matrix([[1, 0], [0, 1]]); var matOut &#x3D; new la.Matrix([[1, 1], [1, 2], [-1, 8], [-3, -3]]); // fit the model nnet.fit(matIn, matOut); // create an output stream object and save the model var fout &#x3D; fs.openWrite(&#x27;nnet_example.bin&#x27;); nnet.save(fout); fout.close(); // load the Neural Network model from the binary var fin &#x3D; fs.openRead(&#x27;nnet_example.bin&#x27;); var nnet2 &#x3D; new analytics.NNet(fin);</code></pre> </div> </section> <section> <h4>Parameter</h4> <table class="jsdoc-details-table"> <thead> <tr> <th>Name</th> <th>Type</th> <th>Optional</th> <th>Description</th> </tr> </thead> <tbody> <tr> <td> <p>fout</p> </td> <td> <p><a href="module-fs.FOut.html">module:fs.FOut</a></p> </td> <td> <p>&nbsp;</p> </td> <td> <p>The output stream.</p> </td> </tr> </tbody> </table> </section> <dl class="dl-compact"> <dt>Returns</dt> <dd> <p><code><a href="module-fs.FOut.html">module:fs.FOut</a></code>B The output stream <code>fout</code>.</p> </dd> </dl> <h3 id="setParams"><span class="symbol-name">setParams</span><span class="signature"><span class="signature-params">()</span>&nbsp;&rarr; <span class="signature-returns"> <a href="module-analytics.NNet.html">module:analytics.NNet</a></span></span></h3> <p>Sets the parameters of the model.</p> <section> <h4> Example </h4> <div> <pre class="prettyprint"><code>// import analytics module var analytics &#x3D; require(&#x27;qminer&#x27;).analytics; // create a Neural Networks model var nnet &#x3D; new analytics.NNet(); // set the parameters nnet.setParams({ learnRate: 1, momentum: 10, layout: [1, 4, 3] });</code></pre> </div> </section> <dl class="dl-compact"> <dt>Returns</dt> <dd> <p><code><a href="module-analytics.NNet.html">module:analytics.NNet</a></code>B Self. The model parameters have been updated.</p> </dd> </dl> </section> </section> </div> </div> <nav id="jsdoc-toc-nav" role="navigation"></nav> </div> </div> <footer id="jsdoc-footer" class="jsdoc-footer"> <div id="jsdoc-footer-container"> <p> </p> </div> </footer> <script src="scripts/jquery.min.js"></script> <script src="scripts/tree.jquery.js"></script> <script src="scripts/prettify.js"></script> <script src="scripts/jsdoc-toc.js"></script> <script src="scripts/linenumber.js"></script> <script src="scripts/scrollanchor.js"></script> </body> </html>