UNPKG

qminer

Version:

A C++ based data analytics platform for processing large-scale real-time streams containing structured and unstructured data

732 lines (728 loc) 31.1 kB
<!doctype html> <html> <head> <meta name="generator" content="JSDoc 3"> <meta charset="utf-8"> <title>Class: KMeans</title> <link rel="stylesheet" href="https://brick.a.ssl.fastly.net/Karla:400,400i,700,700i" type="text/css"> <link rel="stylesheet" href="https://brick.a.ssl.fastly.net/Noto+Serif:400,400i,700,700i" type="text/css"> <link rel="stylesheet" href="https://brick.a.ssl.fastly.net/Inconsolata:500" type="text/css"> <link href="css/baseline.css" rel="stylesheet"> </head> <body onload="prettyPrint()"> <nav id="jsdoc-navbar" role="navigation" class="jsdoc-navbar"> <div id="jsdoc-navbar-container"> <div id="jsdoc-navbar-content"> <a href="index.html" class="jsdoc-navbar-package-name">QMiner JavaScript API v9.4.0</a> </div> </div> </nav> <div id="jsdoc-body-container"> <div id="jsdoc-content"> <div id="jsdoc-content-container"> <div id="jsdoc-main" role="main"> <header class="page-header"> <div class="symbol-detail-labels"><span class="label label-kind">class</span>&nbsp;<span class="label label-static">static</span></div> <h1><small><a href="module-analytics.html">analytics</a>.<wbr></small><span class="symbol-name">KMeans</span></h1> <p class="source-link">Source: <a href="analyticsdoc.js.html#source-line-1705">analyticsdoc.<wbr>js:1705</a></p> <div class="symbol-classdesc"> <p>KMeans Clustering is an iterative, data-partitioning algorithm that assigns observations into K clusters.</p> </div> <dl class="dl-compact"> </dl> </header> <section id="summary"> <div class="summary-callout"> <h2 class="summary-callout-heading">Properties</h2> <div class="summary-content"> <div class="summary-column"> <dl class="dl-summary-callout"> <dt><a href="module-analytics.KMeans.html#centroids">centroids</a></dt> <dd> </dd> <dt><a href="module-analytics.KMeans.html#idxv">idxv</a></dt> <dd> </dd> </dl> </div> <div class="summary-column"> <dl class="dl-summary-callout"> <dt><a href="module-analytics.KMeans.html#medoids">medoids</a></dt> <dd> </dd> <dt><a href="module-analytics.KMeans.html#relMeanCentroidDist">relMeanCentroidDist</a></dt> <dd> </dd> </dl> </div> <div class="summary-column"> </div> </div> </div> <div class="summary-callout"> <h2 class="summary-callout-heading">Methods</h2> <div class="summary-content"> <div class="summary-column"> <dl class="dl-summary-callout"> <dt><a href="module-analytics.KMeans.html#explain">explain(X)</a></dt> <dd> </dd> <dt><a href="module-analytics.KMeans.html#fit">fit(X)</a></dt> <dd> </dd> <dt><a href="module-analytics.KMeans.html#getModel">getModel()</a></dt> <dd> </dd> </dl> </div> <div class="summary-column"> <dl class="dl-summary-callout"> <dt><a href="module-analytics.KMeans.html#getParams">getParams()</a></dt> <dd> </dd> <dt><a href="module-analytics.KMeans.html#permuteCentroids">permuteCentroids(mapping)</a></dt> <dd> </dd> <dt><a href="module-analytics.KMeans.html#predict">predict(A)</a></dt> <dd> </dd> </dl> </div> <div class="summary-column"> <dl class="dl-summary-callout"> <dt><a href="module-analytics.KMeans.html#save">save(fout)</a></dt> <dd> </dd> <dt><a href="module-analytics.KMeans.html#setParams">setParams(params)</a></dt> <dd> </dd> <dt><a href="module-analytics.KMeans.html#transform">transform(A)</a></dt> <dd> </dd> </dl> </div> </div> </div> </section> <section> <h2 id="KMeans">new&nbsp;<span class="symbol-name">KMeans</span><span class="signature"><span class="signature-params">([arg])</span></span></h2> <p>KMeans Clustering</p> <section> <h3> Example </h3> <div> <pre class="prettyprint"><code>// import analytics and la modules var analytics &#x3D; require(&#x27;qminer&#x27;).analytics; var la &#x3D; require(&#x27;qminer&#x27;).la; // create a KMeans object var KMeans &#x3D; new analytics.KMeans(); // create the matrix to be fitted var X &#x3D; new la.Matrix([[1, -2, -1], [1, 1, -3]]); // create the model KMeans.fit(X); // predict where the columns of the matrix will be assigned var Y &#x3D; new la.Matrix([[1, 1, 0], [-2, 3, 1]]); var prediction &#x3D; KMeans.predict(Y);</code></pre> </div> </section> <section> <h3>Parameter</h3> <table class="jsdoc-details-table"> <thead> <tr> <th>Name</th> <th>Type</th> <th>Optional</th> <th>Description</th> </tr> </thead> <tbody> <tr> <td> <p>arg</p> </td> <td> <p>(<a href="module-analytics.html#~KMeansParam">module:analytics~KMeansParam</a> or <a href="module-fs.FIn.html">module:fs.FIn</a>)</p> </td> <td> <p>Yes</p> </td> <td> <p>Construction arguments. There are two ways of constructing: <br>1. Using the <a href="module-analytics.html#~KMeansParam">module:analytics~KMeansParam</a> object, <br>2. using the file input stream <a href="module-fs.FIn.html">module:fs.FIn</a>. </p> </td> </tr> </tbody> </table> </section> <dl class="dl-compact"> </dl> </section> <section> <h2>Properties</h2> <section> <h3 id="centroids"><span class="symbol-name">centroids</span></h3> <p>The centroids created with the fit method. Type <a href="module-la.Matrix.html">module:la.Matrix</a>.</p> <section> <h4> Example </h4> <div> <pre class="prettyprint"><code>// import the modules var analytics &#x3D; require(&#x27;qminer&#x27;).analytics; // create a new KMeans object var KMeans &#x3D; new analytics.KMeans({ iter: 1000, k: 3 }); // create a matrix to be fitted var X &#x3D; new la.Matrix([[1, -2, -1], [1, 1, -3]]); // create the model with the matrix X KMeans.fit(X); // get the centroids var centroids &#x3D; KMeans.centroids;</code></pre> </div> </section> <dl class="dl-compact"> </dl> <h3 id="idxv"><span class="symbol-name">idxv</span></h3> <p>The integer vector containing the cluster ids of the training set created with the fit method. Type <a href="module-la.IntVector.html">module:la.IntVector</a>.</p> <section> <h4> Example </h4> <div> <pre class="prettyprint"><code>// import the modules var analytics &#x3D; require(&#x27;qminer&#x27;).analytics; // create a new KMeans object var KMeans &#x3D; new analytics.KMeans({ iter: 1000, k: 3 }); // create a matrix to be fitted var X &#x3D; new la.Matrix([[1, -2, -1], [1, 1, -3]]); // create the model with the matrix X KMeans.fit(X); // get the idxv var idxv &#x3D; KMeans.idxv;</code></pre> </div> </section> <dl class="dl-compact"> </dl> <h3 id="medoids"><span class="symbol-name">medoids</span></h3> <p>The medoids created with the fit method. Type <a href="module-la.IntVector.html">module:la.IntVector</a>.</p> <section> <h4> Example </h4> <div> <pre class="prettyprint"><code>// import the modules var analytics &#x3D; require(&#x27;qminer&#x27;).analytics; // create a new KMeans object var KMeans &#x3D; new analytics.KMeans({ iter: 1000, k: 3 }); // create a matrix to be fitted var X &#x3D; new la.Matrix([[1, -2, -1], [1, 1, -3]]); // create the model with the matrix X KMeans.fit(X); // get the centroids var medoids &#x3D; KMeans.medoids;</code></pre> </div> </section> <dl class="dl-compact"> </dl> <h3 id="relMeanCentroidDist"><span class="symbol-name">relMeanCentroidDist</span></h3> <p>Returns the normalized weighted distance between the vectors and their centroids using the following formula: d = \frac{sum_i p_i*sum_j d(x_j,c_i) / n_i}{sum_{k=1}^n d(x_k, mu) / n} = \frac{sum_{i,j} d(c_i,x_j)}{sum_k d(x_k, mu)}</p> <dl class="dl-compact"> <dt>Returns</dt> <dd> <p><code>number</code>B relMeanDist</p> </dd> </dl> </section> <h2>Methods</h2> <section> <h3 id="explain"><span class="symbol-name">explain</span><span class="signature"><span class="signature-params">(X)</span>&nbsp;&rarr; <span class="signature-returns"> Array of <a href="module-analytics.html#~KMeansExplain">module:analytics~KMeansExplain</a></span></span></h3> <p>Returns the IDs of the nearest medoid for each example.</p> <section> <h4> Example </h4> <div> <pre class="prettyprint"><code>// import analytics module var analytics &#x3D; require(&#x27;qminer&#x27;).analytics; // import linear algebra module var la &#x3D; require(&#x27;qminer&#x27;).la; // create a new KMeans object var KMeans &#x3D; new analytics.KMeans({ iter: 1000, k: 3 }); // create a matrix to be fitted var X &#x3D; new la.Matrix([[1, -2, -1], [1, 1, -3]]); // create the model with the matrix X using the column IDs [0,1,2] KMeans.fit(X, [1234,1142,2355]); // create the matrix of the prediction vectors var test &#x3D; new la.Matrix([[2, -1, 1], [1, 0, -3]]); // predict/explain - return the closest medoids var explanation &#x3D; KMeans.explain(test);</code></pre> </div> </section> <section> <h4>Parameter</h4> <table class="jsdoc-details-table"> <thead> <tr> <th>Name</th> <th>Type</th> <th>Optional</th> <th>Description</th> </tr> </thead> <tbody> <tr> <td> <p>X</p> </td> <td> <p>(<a href="module-la.Matrix.html">module:la.Matrix</a> or <a href="module-la.SparseMatrix.html">module:la.SparseMatrix</a>)</p> </td> <td> <p>&nbsp;</p> </td> <td> <p>Matrix whose columns correspond to examples.</p> </td> </tr> </tbody> </table> </section> <dl class="dl-compact"> <dt>Returns</dt> <dd> <p><code>Array of <a href="module-analytics.html#~KMeansExplain">module:analytics~KMeansExplain</a></code>B Array containing the KMeans explanantions.</p> </dd> </dl> <h3 id="fit"><span class="symbol-name">fit</span><span class="signature"><span class="signature-params">(X)</span>&nbsp;&rarr; <span class="signature-returns"> <a href="module-analytics.KMeans.html">module:analytics.KMeans</a></span></span></h3> <p>Calculates the centroids.</p> <section> <h4> Examples </h4> <div> <p> Asynchronous function </p> <pre class="prettyprint"><code>// import analytics module var analytics &#x3D; require(&#x27;qminer&#x27;).analytics; var la &#x3D; require(&#x27;qminer&#x27;).la; // create a new KMeans object var KMeans &#x3D; new analytics.KMeans({ iter: 1000, k: 3 }); // create a matrix to be fitted var X &#x3D; new la.Matrix([[1, -2, -1], [1, 1, -3]]); // create the model with the matrix X KMeans.fitAsync(X, function (err) { if (err) console.log(err); // successful calculation });</code></pre> </div> <div> <p> Synchronous function </p> <pre class="prettyprint"><code>var analytics &#x3D; require(&#x27;qminer&#x27;).analytics; var la &#x3D; require(&#x27;qminer&#x27;).la; // create a new KMeans object var KMeans &#x3D; new analytics.KMeans({ iter: 1000, k: 3 }); // create a matrix to be fitted var X &#x3D; new la.Matrix([[1, -2, -1], [1, 1, -3]]); // create the model with the matrix X KMeans.fit(X);</code></pre> </div> </section> <section> <h4>Parameter</h4> <table class="jsdoc-details-table"> <thead> <tr> <th>Name</th> <th>Type</th> <th>Optional</th> <th>Description</th> </tr> </thead> <tbody> <tr> <td> <p>X</p> </td> <td> <p>(<a href="module-la.Matrix.html">module:la.Matrix</a> or <a href="module-la.SparseMatrix.html">module:la.SparseMatrix</a>)</p> </td> <td> <p>&nbsp;</p> </td> <td> <p>Matrix whose columns correspond to examples.</p> </td> </tr> </tbody> </table> </section> <dl class="dl-compact"> <dt>Returns</dt> <dd> <p><code><a href="module-analytics.KMeans.html">module:analytics.KMeans</a></code>B Self. The model has been updated.</p> </dd> </dl> <h3 id="getModel"><span class="symbol-name">getModel</span><span class="signature"><span class="signature-params">()</span>&nbsp;&rarr; <span class="signature-returns"> Object</span></span></h3> <p>Returns the model.</p> <section> <h4> Example </h4> <div> <pre class="prettyprint"><code>// import modules var analytics &#x3D; require(&#x27;qminer&#x27;).analytics; var la &#x3D; require(&#x27;qminer&#x27;).la; // create the KMeans object var KMeans &#x3D; new analytics.KMeans({ iter: 1000 }); // create a matrix to be fitted var X &#x3D; new la.Matrix([[1, -2, -1], [1, 1, -3]]); // create the model KMeans.fit(X); // get the model var model &#x3D; KMeans.getModel();</code></pre> </div> </section> <dl class="dl-compact"> <dt>Returns</dt> <dd> <p><code>Object</code>B The <code>KMeansModel</code> object containing the properites: <br> 1. <code>KMeansModel.C</code> - The <a href="module-la.Matrix.html">module:la.Matrix</a> or <a href="module-la.SparseMatrix.html">module:la.SparseMatrix</a> containing the centroids, <br> 2. <code>KMeansModel.medoids</code> - The <a href="module-la.IntVector.html">module:la.IntVector</a> of cluster medoids of the training data, <br> 3. <code>KMeansModel.idxv</code> - The <a href="module-la.IntVector.html">module:la.IntVector</a> of cluster IDs of the training data. </p> </dd> </dl> <h3 id="getParams"><span class="symbol-name">getParams</span><span class="signature"><span class="signature-params">()</span>&nbsp;&rarr; <span class="signature-returns"> <a href="module-analytics.html#~KMeansParam">module:analytics~KMeansParam</a></span></span></h3> <p>Returns the parameters.</p> <section> <h4> Example </h4> <div> <pre class="prettyprint"><code>// import analytics module var analytics &#x3D; require(&#x27;qminer&#x27;).analytics; // create a new KMeans object var KMeans &#x3D; new analytics.KMeans({ iter: 1000, k: 5 }); // get the parameters var json &#x3D; KMeans.getParams();</code></pre> </div> </section> <dl class="dl-compact"> <dt>Returns</dt> <dd> <p><code><a href="module-analytics.html#~KMeansParam">module:analytics~KMeansParam</a></code>B The construction parameters.</p> </dd> </dl> <h3 id="permuteCentroids"><span class="symbol-name">permuteCentroids</span><span class="signature"><span class="signature-params">(mapping)</span>&nbsp;&rarr; <span class="signature-returns"> <a href="module-analytics.KMeans.html">module:analytics.KMeans</a></span></span></h3> <p>Permutates the clusters, and with it <a href="module-analytics.KMeans.html#centroids">module:analytics.KMeans#centroids</a>, <a href="module-analytics.KMeans.html#medoids">module:analytics.KMeans#medoids</a> and <a href="module-analytics.KMeans.html#idxv">module:analytics.KMeans#idxv</a>.</p> <section> <h4> Example </h4> <div> <pre class="prettyprint"><code>// import the modules var analytics &#x3D; require(&#x27;qminer&#x27;).analytics; var la &#x3D; require(&#x27;qminer&#x27;).la; // create a new KMeans object var KMeans &#x3D; new analytics.KMeans({ iter: 1000, k: 3 }); // create a matrix to be fitted var X &#x3D; new la.Matrix([[1, -2, -1], [1, 1, -3]]); // create the model with the matrix X KMeans.fit(X); // create the mapping vector var Mapping &#x3D; new la.IntVector([1, 0, 2]); // permutate the clusters. KMeans.permuteCentroids(Mapping);</code></pre> </div> </section> <section> <h4>Parameter</h4> <table class="jsdoc-details-table"> <thead> <tr> <th>Name</th> <th>Type</th> <th>Optional</th> <th>Description</th> </tr> </thead> <tbody> <tr> <td> <p>mapping</p> </td> <td> <p><a href="module-la.IntVector.html">module:la.IntVector</a></p> </td> <td> <p>&nbsp;</p> </td> <td> <p>The mapping, where <code>mapping[4] = 2</code> means &quot;map cluster 4 into cluster 2&quot;.</p> </td> </tr> </tbody> </table> </section> <dl class="dl-compact"> <dt>Returns</dt> <dd> <p><code><a href="module-analytics.KMeans.html">module:analytics.KMeans</a></code>B Self. The clusters has been permutated.</p> </dd> </dl> <h3 id="predict"><span class="symbol-name">predict</span><span class="signature"><span class="signature-params">(A)</span>&nbsp;&rarr; <span class="signature-returns"> <a href="module-la.IntVector.html">module:la.IntVector</a></span></span></h3> <p>Returns an vector of cluster id assignments.</p> <section> <h4> Example </h4> <div> <pre class="prettyprint"><code>// import analytics module var analytics &#x3D; require(&#x27;qminer&#x27;).analytics; var la &#x3D; require(&#x27;qminer&#x27;).la; // create a new KMeans object var KMeans &#x3D; new analytics.KMeans({ iter: 1000, k: 3 }); // create a matrix to be fitted var X &#x3D; new la.Matrix([[1, -2, -1], [1, 1, -3]]); // create the model with the matrix X KMeans.fit(X); // create the matrix of the prediction vectors var pred &#x3D; new la.Matrix([[2, -1, 1], [1, 0, -3]]); // predict the values var prediction &#x3D; KMeans.predict(pred);</code></pre> </div> </section> <section> <h4>Parameter</h4> <table class="jsdoc-details-table"> <thead> <tr> <th>Name</th> <th>Type</th> <th>Optional</th> <th>Description</th> </tr> </thead> <tbody> <tr> <td> <p>A</p> </td> <td> <p>(<a href="module-la.Matrix.html">module:la.Matrix</a> or <a href="module-la.SparseMatrix.html">module:la.SparseMatrix</a>)</p> </td> <td> <p>&nbsp;</p> </td> <td> <p>Matrix whose columns correspond to examples.</p> </td> </tr> </tbody> </table> </section> <dl class="dl-compact"> <dt>Returns</dt> <dd> <p><code><a href="module-la.IntVector.html">module:la.IntVector</a></code>B Vector of cluster assignments.</p> </dd> </dl> <h3 id="save"><span class="symbol-name">save</span><span class="signature"><span class="signature-params">(fout)</span>&nbsp;&rarr; <span class="signature-returns"> <a href="module-fs.FOut.html">module:fs.FOut</a></span></span></h3> <p>Saves KMeans internal state into (binary) file.</p> <section> <h4> Example </h4> <div> <pre class="prettyprint"><code>// import the modules var analytics &#x3D; require(&#x27;qminer&#x27;).analytics; var la &#x3D; require(&#x27;qminer&#x27;).la; var fs &#x3D; require(&#x27;qminer&#x27;).fs; // create a new KMeans object var KMeans &#x3D; new analytics.KMeans({ iter: 1000, k: 3 }); // create a matrix to be fitted var X &#x3D; new la.Matrix([[1, -2, -1], [1, 1, -3]]); // create the model with the matrix X KMeans.fit(X); // create the file output stream var fout &#x3D; new fs.openWrite(&#x27;KMeans.bin&#x27;); // save the KMeans instance KMeans.save(fout); fout.close(); // load the KMeans instance var fin &#x3D; fs.openRead(&#x27;KMeans.bin&#x27;); var KMeans2 &#x3D; new analytics.KMeans(fin);</code></pre> </div> </section> <section> <h4>Parameter</h4> <table class="jsdoc-details-table"> <thead> <tr> <th>Name</th> <th>Type</th> <th>Optional</th> <th>Description</th> </tr> </thead> <tbody> <tr> <td> <p>fout</p> </td> <td> <p><a href="module-fs.FOut.html">module:fs.FOut</a></p> </td> <td> <p>&nbsp;</p> </td> <td> <p>The output stream.</p> </td> </tr> </tbody> </table> </section> <dl class="dl-compact"> <dt>Returns</dt> <dd> <p><code><a href="module-fs.FOut.html">module:fs.FOut</a></code>B The output stream <code>fout</code>.</p> </dd> </dl> <h3 id="setParams"><span class="symbol-name">setParams</span><span class="signature"><span class="signature-params">(params)</span>&nbsp;&rarr; <span class="signature-returns"> <a href="module-analytics.KMeans.html">module:analytics.KMeans</a></span></span></h3> <p>Sets the parameters.</p> <section> <h4> Example </h4> <div> <pre class="prettyprint"><code>// import analytics module var analytics &#x3D; require(&#x27;qminer&#x27;).analytics; // create a new KMeans object var KMeans &#x3D; new analytics.KMeans(); // change the parameters of the KMeans object KMeans.setParams({ iter: 1000, k: 5 });</code></pre> </div> </section> <section> <h4>Parameter</h4> <table class="jsdoc-details-table"> <thead> <tr> <th>Name</th> <th>Type</th> <th>Optional</th> <th>Description</th> </tr> </thead> <tbody> <tr> <td> <p>params</p> </td> <td> <p><a href="module-analytics.html#~KMeansParam">module:analytics~KMeansParam</a></p> </td> <td> <p>&nbsp;</p> </td> <td> <p>The construction parameters.</p> </td> </tr> </tbody> </table> </section> <dl class="dl-compact"> <dt>Returns</dt> <dd> <p><code><a href="module-analytics.KMeans.html">module:analytics.KMeans</a></code>B Self. The model parameters have been updated.</p> </dd> </dl> <h3 id="transform"><span class="symbol-name">transform</span><span class="signature"><span class="signature-params">(A)</span>&nbsp;&rarr; <span class="signature-returns"> <a href="module-la.Matrix.html">module:la.Matrix</a></span></span></h3> <p>Transforms the points to vectors of distances to centroids.</p> <section> <h4> Example </h4> <div> <pre class="prettyprint"><code>// import modules var analytics &#x3D; require(&#x27;qminer&#x27;).analytics; var la &#x3D; require(&#x27;qminer&#x27;).la; // create a new KMeans object var KMeans &#x3D; new analytics.KMeans({ iter: 1000, k: 3 }); // create a matrix to be fitted var X &#x3D; new la.Matrix([[1, -2, -1], [1, 1, -3]]); // create the model with the matrix X KMeans.fit(X); // create the matrix of the transform vectors var matrix &#x3D; new la.Matrix([[-2, 0], [0, -3]]); // get the transform values of matrix // returns the matrix // 10 17 // 1 20 // 10 1 KMeans.transform(matrix);</code></pre> </div> </section> <section> <h4>Parameter</h4> <table class="jsdoc-details-table"> <thead> <tr> <th>Name</th> <th>Type</th> <th>Optional</th> <th>Description</th> </tr> </thead> <tbody> <tr> <td> <p>A</p> </td> <td> <p>(<a href="module-la.Matrix.html">module:la.Matrix</a> or <a href="module-la.SparseMatrix.html">module:la.SparseMatrix</a>)</p> </td> <td> <p>&nbsp;</p> </td> <td> <p>Matrix whose columns correspond to examples.</p> </td> </tr> </tbody> </table> </section> <dl class="dl-compact"> <dt>Returns</dt> <dd> <p><code><a href="module-la.Matrix.html">module:la.Matrix</a></code>B Matrix where each column represents the squared distances to the centroid vectors.</p> </dd> </dl> </section> </section> </div> </div> <nav id="jsdoc-toc-nav" role="navigation"></nav> </div> </div> <footer id="jsdoc-footer" class="jsdoc-footer"> <div id="jsdoc-footer-container"> <p> </p> </div> </footer> <script src="scripts/jquery.min.js"></script> <script src="scripts/tree.jquery.js"></script> <script src="scripts/prettify.js"></script> <script src="scripts/jsdoc-toc.js"></script> <script src="scripts/linenumber.js"></script> <script src="scripts/scrollanchor.js"></script> </body> </html>