UNPKG

prowler-sdk-poc

Version:
284 lines 348 kB
import {Request} from '../lib/request'; import {Response} from '../lib/response'; import {AWSError} from '../lib/error'; import {Service} from '../lib/service'; import {WaiterConfiguration} from '../lib/service'; import {ServiceConfigurationOptions} from '../lib/service'; import {ConfigBase as Config} from '../lib/config-base'; interface Blob {} declare class ECS extends Service { /** * Constructs a service object. This object has one method for each API operation. */ constructor(options?: ECS.Types.ClientConfiguration) config: Config & ECS.Types.ClientConfiguration; /** * Creates a new capacity provider. Capacity providers are associated with an Amazon ECS cluster and are used in capacity provider strategies to facilitate cluster auto scaling. Only capacity providers using an Auto Scaling group can be created. Amazon ECS tasks on Fargate use the FARGATE and FARGATE_SPOT capacity providers which are already created and available to all accounts in Regions supported by Fargate. */ createCapacityProvider(params: ECS.Types.CreateCapacityProviderRequest, callback?: (err: AWSError, data: ECS.Types.CreateCapacityProviderResponse) => void): Request<ECS.Types.CreateCapacityProviderResponse, AWSError>; /** * Creates a new capacity provider. Capacity providers are associated with an Amazon ECS cluster and are used in capacity provider strategies to facilitate cluster auto scaling. Only capacity providers using an Auto Scaling group can be created. Amazon ECS tasks on Fargate use the FARGATE and FARGATE_SPOT capacity providers which are already created and available to all accounts in Regions supported by Fargate. */ createCapacityProvider(callback?: (err: AWSError, data: ECS.Types.CreateCapacityProviderResponse) => void): Request<ECS.Types.CreateCapacityProviderResponse, AWSError>; /** * Creates a new Amazon ECS cluster. By default, your account receives a default cluster when you launch your first container instance. However, you can create your own cluster with a unique name with the CreateCluster action. When you call the CreateCluster API operation, Amazon ECS attempts to create the Amazon ECS service-linked role for your account so that required resources in other Amazon Web Services services can be managed on your behalf. However, if the IAM user that makes the call does not have permissions to create the service-linked role, it is not created. For more information, see Using Service-Linked Roles for Amazon ECS in the Amazon Elastic Container Service Developer Guide. */ createCluster(params: ECS.Types.CreateClusterRequest, callback?: (err: AWSError, data: ECS.Types.CreateClusterResponse) => void): Request<ECS.Types.CreateClusterResponse, AWSError>; /** * Creates a new Amazon ECS cluster. By default, your account receives a default cluster when you launch your first container instance. However, you can create your own cluster with a unique name with the CreateCluster action. When you call the CreateCluster API operation, Amazon ECS attempts to create the Amazon ECS service-linked role for your account so that required resources in other Amazon Web Services services can be managed on your behalf. However, if the IAM user that makes the call does not have permissions to create the service-linked role, it is not created. For more information, see Using Service-Linked Roles for Amazon ECS in the Amazon Elastic Container Service Developer Guide. */ createCluster(callback?: (err: AWSError, data: ECS.Types.CreateClusterResponse) => void): Request<ECS.Types.CreateClusterResponse, AWSError>; /** * Runs and maintains a desired number of tasks from a specified task definition. If the number of tasks running in a service drops below the desiredCount, Amazon ECS runs another copy of the task in the specified cluster. To update an existing service, see the UpdateService action. In addition to maintaining the desired count of tasks in your service, you can optionally run your service behind one or more load balancers. The load balancers distribute traffic across the tasks that are associated with the service. For more information, see Service Load Balancing in the Amazon Elastic Container Service Developer Guide. Tasks for services that do not use a load balancer are considered healthy if they're in the RUNNING state. Tasks for services that do use a load balancer are considered healthy if they're in the RUNNING state and the container instance that they're hosted on is reported as healthy by the load balancer. There are two service scheduler strategies available: REPLICA - The replica scheduling strategy places and maintains the desired number of tasks across your cluster. By default, the service scheduler spreads tasks across Availability Zones. You can use task placement strategies and constraints to customize task placement decisions. For more information, see Service Scheduler Concepts in the Amazon Elastic Container Service Developer Guide. DAEMON - The daemon scheduling strategy deploys exactly one task on each active container instance that meets all of the task placement constraints that you specify in your cluster. The service scheduler also evaluates the task placement constraints for running tasks and will stop tasks that do not meet the placement constraints. When using this strategy, you don't need to specify a desired number of tasks, a task placement strategy, or use Service Auto Scaling policies. For more information, see Service Scheduler Concepts in the Amazon Elastic Container Service Developer Guide. You can optionally specify a deployment configuration for your service. The deployment is triggered by changing properties, such as the task definition or the desired count of a service, with an UpdateService operation. The default value for a replica service for minimumHealthyPercent is 100%. The default value for a daemon service for minimumHealthyPercent is 0%. If a service is using the ECS deployment controller, the minimum healthy percent represents a lower limit on the number of tasks in a service that must remain in the RUNNING state during a deployment, as a percentage of the desired number of tasks (rounded up to the nearest integer), and while any container instances are in the DRAINING state if the service contains tasks using the EC2 launch type. This parameter enables you to deploy without using additional cluster capacity. For example, if your service has a desired number of four tasks and a minimum healthy percent of 50%, the scheduler might stop two existing tasks to free up cluster capacity before starting two new tasks. Tasks for services that do not use a load balancer are considered healthy if they're in the RUNNING state. Tasks for services that do use a load balancer are considered healthy if they're in the RUNNING state and they're reported as healthy by the load balancer. The default value for minimum healthy percent is 100%. If a service is using the ECS deployment controller, the maximum percent parameter represents an upper limit on the number of tasks in a service that are allowed in the RUNNING or PENDING state during a deployment, as a percentage of the desired number of tasks (rounded down to the nearest integer), and while any container instances are in the DRAINING state if the service contains tasks using the EC2 launch type. This parameter enables you to define the deployment batch size. For example, if your service has a desired number of four tasks and a maximum percent value of 200%, the scheduler may start four new tasks before stopping the four older tasks (provided that the cluster resources required to do this are available). The default value for maximum percent is 200%. If a service is using either the CODE_DEPLOY or EXTERNAL deployment controller types and tasks that use the EC2 launch type, the minimum healthy percent and maximum percent values are used only to define the lower and upper limit on the number of the tasks in the service that remain in the RUNNING state while the container instances are in the DRAINING state. If the tasks in the service use the Fargate launch type, the minimum healthy percent and maximum percent values aren't used, although they're currently visible when describing your service. When creating a service that uses the EXTERNAL deployment controller, you can specify only parameters that aren't controlled at the task set level. The only required parameter is the service name. You control your services using the CreateTaskSet operation. For more information, see Amazon ECS Deployment Types in the Amazon Elastic Container Service Developer Guide. When the service scheduler launches new tasks, it determines task placement in your cluster using the following logic: Determine which of the container instances in your cluster can support your service's task definition (for example, they have the required CPU, memory, ports, and container instance attributes). By default, the service scheduler attempts to balance tasks across Availability Zones in this manner (although you can choose a different placement strategy) with the placementStrategy parameter): Sort the valid container instances, giving priority to instances that have the fewest number of running tasks for this service in their respective Availability Zone. For example, if zone A has one running service task and zones B and C each have zero, valid container instances in either zone B or C are considered optimal for placement. Place the new service task on a valid container instance in an optimal Availability Zone (based on the previous steps), favoring container instances with the fewest number of running tasks for this service. */ createService(params: ECS.Types.CreateServiceRequest, callback?: (err: AWSError, data: ECS.Types.CreateServiceResponse) => void): Request<ECS.Types.CreateServiceResponse, AWSError>; /** * Runs and maintains a desired number of tasks from a specified task definition. If the number of tasks running in a service drops below the desiredCount, Amazon ECS runs another copy of the task in the specified cluster. To update an existing service, see the UpdateService action. In addition to maintaining the desired count of tasks in your service, you can optionally run your service behind one or more load balancers. The load balancers distribute traffic across the tasks that are associated with the service. For more information, see Service Load Balancing in the Amazon Elastic Container Service Developer Guide. Tasks for services that do not use a load balancer are considered healthy if they're in the RUNNING state. Tasks for services that do use a load balancer are considered healthy if they're in the RUNNING state and the container instance that they're hosted on is reported as healthy by the load balancer. There are two service scheduler strategies available: REPLICA - The replica scheduling strategy places and maintains the desired number of tasks across your cluster. By default, the service scheduler spreads tasks across Availability Zones. You can use task placement strategies and constraints to customize task placement decisions. For more information, see Service Scheduler Concepts in the Amazon Elastic Container Service Developer Guide. DAEMON - The daemon scheduling strategy deploys exactly one task on each active container instance that meets all of the task placement constraints that you specify in your cluster. The service scheduler also evaluates the task placement constraints for running tasks and will stop tasks that do not meet the placement constraints. When using this strategy, you don't need to specify a desired number of tasks, a task placement strategy, or use Service Auto Scaling policies. For more information, see Service Scheduler Concepts in the Amazon Elastic Container Service Developer Guide. You can optionally specify a deployment configuration for your service. The deployment is triggered by changing properties, such as the task definition or the desired count of a service, with an UpdateService operation. The default value for a replica service for minimumHealthyPercent is 100%. The default value for a daemon service for minimumHealthyPercent is 0%. If a service is using the ECS deployment controller, the minimum healthy percent represents a lower limit on the number of tasks in a service that must remain in the RUNNING state during a deployment, as a percentage of the desired number of tasks (rounded up to the nearest integer), and while any container instances are in the DRAINING state if the service contains tasks using the EC2 launch type. This parameter enables you to deploy without using additional cluster capacity. For example, if your service has a desired number of four tasks and a minimum healthy percent of 50%, the scheduler might stop two existing tasks to free up cluster capacity before starting two new tasks. Tasks for services that do not use a load balancer are considered healthy if they're in the RUNNING state. Tasks for services that do use a load balancer are considered healthy if they're in the RUNNING state and they're reported as healthy by the load balancer. The default value for minimum healthy percent is 100%. If a service is using the ECS deployment controller, the maximum percent parameter represents an upper limit on the number of tasks in a service that are allowed in the RUNNING or PENDING state during a deployment, as a percentage of the desired number of tasks (rounded down to the nearest integer), and while any container instances are in the DRAINING state if the service contains tasks using the EC2 launch type. This parameter enables you to define the deployment batch size. For example, if your service has a desired number of four tasks and a maximum percent value of 200%, the scheduler may start four new tasks before stopping the four older tasks (provided that the cluster resources required to do this are available). The default value for maximum percent is 200%. If a service is using either the CODE_DEPLOY or EXTERNAL deployment controller types and tasks that use the EC2 launch type, the minimum healthy percent and maximum percent values are used only to define the lower and upper limit on the number of the tasks in the service that remain in the RUNNING state while the container instances are in the DRAINING state. If the tasks in the service use the Fargate launch type, the minimum healthy percent and maximum percent values aren't used, although they're currently visible when describing your service. When creating a service that uses the EXTERNAL deployment controller, you can specify only parameters that aren't controlled at the task set level. The only required parameter is the service name. You control your services using the CreateTaskSet operation. For more information, see Amazon ECS Deployment Types in the Amazon Elastic Container Service Developer Guide. When the service scheduler launches new tasks, it determines task placement in your cluster using the following logic: Determine which of the container instances in your cluster can support your service's task definition (for example, they have the required CPU, memory, ports, and container instance attributes). By default, the service scheduler attempts to balance tasks across Availability Zones in this manner (although you can choose a different placement strategy) with the placementStrategy parameter): Sort the valid container instances, giving priority to instances that have the fewest number of running tasks for this service in their respective Availability Zone. For example, if zone A has one running service task and zones B and C each have zero, valid container instances in either zone B or C are considered optimal for placement. Place the new service task on a valid container instance in an optimal Availability Zone (based on the previous steps), favoring container instances with the fewest number of running tasks for this service. */ createService(callback?: (err: AWSError, data: ECS.Types.CreateServiceResponse) => void): Request<ECS.Types.CreateServiceResponse, AWSError>; /** * Create a task set in the specified cluster and service. This is used when a service uses the EXTERNAL deployment controller type. For more information, see Amazon ECS Deployment Types in the Amazon Elastic Container Service Developer Guide. */ createTaskSet(params: ECS.Types.CreateTaskSetRequest, callback?: (err: AWSError, data: ECS.Types.CreateTaskSetResponse) => void): Request<ECS.Types.CreateTaskSetResponse, AWSError>; /** * Create a task set in the specified cluster and service. This is used when a service uses the EXTERNAL deployment controller type. For more information, see Amazon ECS Deployment Types in the Amazon Elastic Container Service Developer Guide. */ createTaskSet(callback?: (err: AWSError, data: ECS.Types.CreateTaskSetResponse) => void): Request<ECS.Types.CreateTaskSetResponse, AWSError>; /** * Disables an account setting for a specified IAM user, IAM role, or the root user for an account. */ deleteAccountSetting(params: ECS.Types.DeleteAccountSettingRequest, callback?: (err: AWSError, data: ECS.Types.DeleteAccountSettingResponse) => void): Request<ECS.Types.DeleteAccountSettingResponse, AWSError>; /** * Disables an account setting for a specified IAM user, IAM role, or the root user for an account. */ deleteAccountSetting(callback?: (err: AWSError, data: ECS.Types.DeleteAccountSettingResponse) => void): Request<ECS.Types.DeleteAccountSettingResponse, AWSError>; /** * Deletes one or more custom attributes from an Amazon ECS resource. */ deleteAttributes(params: ECS.Types.DeleteAttributesRequest, callback?: (err: AWSError, data: ECS.Types.DeleteAttributesResponse) => void): Request<ECS.Types.DeleteAttributesResponse, AWSError>; /** * Deletes one or more custom attributes from an Amazon ECS resource. */ deleteAttributes(callback?: (err: AWSError, data: ECS.Types.DeleteAttributesResponse) => void): Request<ECS.Types.DeleteAttributesResponse, AWSError>; /** * Deletes the specified capacity provider. The FARGATE and FARGATE_SPOT capacity providers are reserved and cannot be deleted. You can disassociate them from a cluster using either the PutClusterCapacityProviders API or by deleting the cluster. Prior to a capacity provider being deleted, the capacity provider must be removed from the capacity provider strategy from all services. The UpdateService API can be used to remove a capacity provider from a service's capacity provider strategy. When updating a service, the forceNewDeployment option can be used to ensure that any tasks using the Amazon EC2 instance capacity provided by the capacity provider are transitioned to use the capacity from the remaining capacity providers. Only capacity providers that are not associated with a cluster can be deleted. To remove a capacity provider from a cluster, you can either use PutClusterCapacityProviders or delete the cluster. */ deleteCapacityProvider(params: ECS.Types.DeleteCapacityProviderRequest, callback?: (err: AWSError, data: ECS.Types.DeleteCapacityProviderResponse) => void): Request<ECS.Types.DeleteCapacityProviderResponse, AWSError>; /** * Deletes the specified capacity provider. The FARGATE and FARGATE_SPOT capacity providers are reserved and cannot be deleted. You can disassociate them from a cluster using either the PutClusterCapacityProviders API or by deleting the cluster. Prior to a capacity provider being deleted, the capacity provider must be removed from the capacity provider strategy from all services. The UpdateService API can be used to remove a capacity provider from a service's capacity provider strategy. When updating a service, the forceNewDeployment option can be used to ensure that any tasks using the Amazon EC2 instance capacity provided by the capacity provider are transitioned to use the capacity from the remaining capacity providers. Only capacity providers that are not associated with a cluster can be deleted. To remove a capacity provider from a cluster, you can either use PutClusterCapacityProviders or delete the cluster. */ deleteCapacityProvider(callback?: (err: AWSError, data: ECS.Types.DeleteCapacityProviderResponse) => void): Request<ECS.Types.DeleteCapacityProviderResponse, AWSError>; /** * Deletes the specified cluster. The cluster will transition to the INACTIVE state. Clusters with an INACTIVE status may remain discoverable in your account for a period of time. However, this behavior is subject to change in the future, so you should not rely on INACTIVE clusters persisting. You must deregister all container instances from this cluster before you may delete it. You can list the container instances in a cluster with ListContainerInstances and deregister them with DeregisterContainerInstance. */ deleteCluster(params: ECS.Types.DeleteClusterRequest, callback?: (err: AWSError, data: ECS.Types.DeleteClusterResponse) => void): Request<ECS.Types.DeleteClusterResponse, AWSError>; /** * Deletes the specified cluster. The cluster will transition to the INACTIVE state. Clusters with an INACTIVE status may remain discoverable in your account for a period of time. However, this behavior is subject to change in the future, so you should not rely on INACTIVE clusters persisting. You must deregister all container instances from this cluster before you may delete it. You can list the container instances in a cluster with ListContainerInstances and deregister them with DeregisterContainerInstance. */ deleteCluster(callback?: (err: AWSError, data: ECS.Types.DeleteClusterResponse) => void): Request<ECS.Types.DeleteClusterResponse, AWSError>; /** * Deletes a specified service within a cluster. You can delete a service if you have no running tasks in it and the desired task count is zero. If the service is actively maintaining tasks, you cannot delete it, and you must update the service to a desired task count of zero. For more information, see UpdateService. When you delete a service, if there are still running tasks that require cleanup, the service status moves from ACTIVE to DRAINING, and the service is no longer visible in the console or in the ListServices API operation. After all tasks have transitioned to either STOPPING or STOPPED status, the service status moves from DRAINING to INACTIVE. Services in the DRAINING or INACTIVE status can still be viewed with the DescribeServices API operation. However, in the future, INACTIVE services may be cleaned up and purged from Amazon ECS record keeping, and DescribeServices calls on those services return a ServiceNotFoundException error. If you attempt to create a new service with the same name as an existing service in either ACTIVE or DRAINING status, you receive an error. */ deleteService(params: ECS.Types.DeleteServiceRequest, callback?: (err: AWSError, data: ECS.Types.DeleteServiceResponse) => void): Request<ECS.Types.DeleteServiceResponse, AWSError>; /** * Deletes a specified service within a cluster. You can delete a service if you have no running tasks in it and the desired task count is zero. If the service is actively maintaining tasks, you cannot delete it, and you must update the service to a desired task count of zero. For more information, see UpdateService. When you delete a service, if there are still running tasks that require cleanup, the service status moves from ACTIVE to DRAINING, and the service is no longer visible in the console or in the ListServices API operation. After all tasks have transitioned to either STOPPING or STOPPED status, the service status moves from DRAINING to INACTIVE. Services in the DRAINING or INACTIVE status can still be viewed with the DescribeServices API operation. However, in the future, INACTIVE services may be cleaned up and purged from Amazon ECS record keeping, and DescribeServices calls on those services return a ServiceNotFoundException error. If you attempt to create a new service with the same name as an existing service in either ACTIVE or DRAINING status, you receive an error. */ deleteService(callback?: (err: AWSError, data: ECS.Types.DeleteServiceResponse) => void): Request<ECS.Types.DeleteServiceResponse, AWSError>; /** * Deletes a specified task set within a service. This is used when a service uses the EXTERNAL deployment controller type. For more information, see Amazon ECS Deployment Types in the Amazon Elastic Container Service Developer Guide. */ deleteTaskSet(params: ECS.Types.DeleteTaskSetRequest, callback?: (err: AWSError, data: ECS.Types.DeleteTaskSetResponse) => void): Request<ECS.Types.DeleteTaskSetResponse, AWSError>; /** * Deletes a specified task set within a service. This is used when a service uses the EXTERNAL deployment controller type. For more information, see Amazon ECS Deployment Types in the Amazon Elastic Container Service Developer Guide. */ deleteTaskSet(callback?: (err: AWSError, data: ECS.Types.DeleteTaskSetResponse) => void): Request<ECS.Types.DeleteTaskSetResponse, AWSError>; /** * Deregisters an Amazon ECS container instance from the specified cluster. This instance is no longer available to run tasks. If you intend to use the container instance for some other purpose after deregistration, you should stop all of the tasks running on the container instance before deregistration. That prevents any orphaned tasks from consuming resources. Deregistering a container instance removes the instance from a cluster, but it does not terminate the EC2 instance. If you are finished using the instance, be sure to terminate it in the Amazon EC2 console to stop billing. If you terminate a running container instance, Amazon ECS automatically deregisters the instance from your cluster (stopped container instances or instances with disconnected agents are not automatically deregistered when terminated). */ deregisterContainerInstance(params: ECS.Types.DeregisterContainerInstanceRequest, callback?: (err: AWSError, data: ECS.Types.DeregisterContainerInstanceResponse) => void): Request<ECS.Types.DeregisterContainerInstanceResponse, AWSError>; /** * Deregisters an Amazon ECS container instance from the specified cluster. This instance is no longer available to run tasks. If you intend to use the container instance for some other purpose after deregistration, you should stop all of the tasks running on the container instance before deregistration. That prevents any orphaned tasks from consuming resources. Deregistering a container instance removes the instance from a cluster, but it does not terminate the EC2 instance. If you are finished using the instance, be sure to terminate it in the Amazon EC2 console to stop billing. If you terminate a running container instance, Amazon ECS automatically deregisters the instance from your cluster (stopped container instances or instances with disconnected agents are not automatically deregistered when terminated). */ deregisterContainerInstance(callback?: (err: AWSError, data: ECS.Types.DeregisterContainerInstanceResponse) => void): Request<ECS.Types.DeregisterContainerInstanceResponse, AWSError>; /** * Deregisters the specified task definition by family and revision. Upon deregistration, the task definition is marked as INACTIVE. Existing tasks and services that reference an INACTIVE task definition continue to run without disruption. Existing services that reference an INACTIVE task definition can still scale up or down by modifying the service's desired count. You cannot use an INACTIVE task definition to run new tasks or create new services, and you cannot update an existing service to reference an INACTIVE task definition. However, there may be up to a 10-minute window following deregistration where these restrictions have not yet taken effect. At this time, INACTIVE task definitions remain discoverable in your account indefinitely. However, this behavior is subject to change in the future, so you should not rely on INACTIVE task definitions persisting beyond the lifecycle of any associated tasks and services. */ deregisterTaskDefinition(params: ECS.Types.DeregisterTaskDefinitionRequest, callback?: (err: AWSError, data: ECS.Types.DeregisterTaskDefinitionResponse) => void): Request<ECS.Types.DeregisterTaskDefinitionResponse, AWSError>; /** * Deregisters the specified task definition by family and revision. Upon deregistration, the task definition is marked as INACTIVE. Existing tasks and services that reference an INACTIVE task definition continue to run without disruption. Existing services that reference an INACTIVE task definition can still scale up or down by modifying the service's desired count. You cannot use an INACTIVE task definition to run new tasks or create new services, and you cannot update an existing service to reference an INACTIVE task definition. However, there may be up to a 10-minute window following deregistration where these restrictions have not yet taken effect. At this time, INACTIVE task definitions remain discoverable in your account indefinitely. However, this behavior is subject to change in the future, so you should not rely on INACTIVE task definitions persisting beyond the lifecycle of any associated tasks and services. */ deregisterTaskDefinition(callback?: (err: AWSError, data: ECS.Types.DeregisterTaskDefinitionResponse) => void): Request<ECS.Types.DeregisterTaskDefinitionResponse, AWSError>; /** * Describes one or more of your capacity providers. */ describeCapacityProviders(params: ECS.Types.DescribeCapacityProvidersRequest, callback?: (err: AWSError, data: ECS.Types.DescribeCapacityProvidersResponse) => void): Request<ECS.Types.DescribeCapacityProvidersResponse, AWSError>; /** * Describes one or more of your capacity providers. */ describeCapacityProviders(callback?: (err: AWSError, data: ECS.Types.DescribeCapacityProvidersResponse) => void): Request<ECS.Types.DescribeCapacityProvidersResponse, AWSError>; /** * Describes one or more of your clusters. */ describeClusters(params: ECS.Types.DescribeClustersRequest, callback?: (err: AWSError, data: ECS.Types.DescribeClustersResponse) => void): Request<ECS.Types.DescribeClustersResponse, AWSError>; /** * Describes one or more of your clusters. */ describeClusters(callback?: (err: AWSError, data: ECS.Types.DescribeClustersResponse) => void): Request<ECS.Types.DescribeClustersResponse, AWSError>; /** * Describes one or more container instances. Returns metadata about each container instance requested. */ describeContainerInstances(params: ECS.Types.DescribeContainerInstancesRequest, callback?: (err: AWSError, data: ECS.Types.DescribeContainerInstancesResponse) => void): Request<ECS.Types.DescribeContainerInstancesResponse, AWSError>; /** * Describes one or more container instances. Returns metadata about each container instance requested. */ describeContainerInstances(callback?: (err: AWSError, data: ECS.Types.DescribeContainerInstancesResponse) => void): Request<ECS.Types.DescribeContainerInstancesResponse, AWSError>; /** * Describes the specified services running in your cluster. */ describeServices(params: ECS.Types.DescribeServicesRequest, callback?: (err: AWSError, data: ECS.Types.DescribeServicesResponse) => void): Request<ECS.Types.DescribeServicesResponse, AWSError>; /** * Describes the specified services running in your cluster. */ describeServices(callback?: (err: AWSError, data: ECS.Types.DescribeServicesResponse) => void): Request<ECS.Types.DescribeServicesResponse, AWSError>; /** * Describes a task definition. You can specify a family and revision to find information about a specific task definition, or you can simply specify the family to find the latest ACTIVE revision in that family. You can only describe INACTIVE task definitions while an active task or service references them. */ describeTaskDefinition(params: ECS.Types.DescribeTaskDefinitionRequest, callback?: (err: AWSError, data: ECS.Types.DescribeTaskDefinitionResponse) => void): Request<ECS.Types.DescribeTaskDefinitionResponse, AWSError>; /** * Describes a task definition. You can specify a family and revision to find information about a specific task definition, or you can simply specify the family to find the latest ACTIVE revision in that family. You can only describe INACTIVE task definitions while an active task or service references them. */ describeTaskDefinition(callback?: (err: AWSError, data: ECS.Types.DescribeTaskDefinitionResponse) => void): Request<ECS.Types.DescribeTaskDefinitionResponse, AWSError>; /** * Describes the task sets in the specified cluster and service. This is used when a service uses the EXTERNAL deployment controller type. For more information, see Amazon ECS Deployment Types in the Amazon Elastic Container Service Developer Guide. */ describeTaskSets(params: ECS.Types.DescribeTaskSetsRequest, callback?: (err: AWSError, data: ECS.Types.DescribeTaskSetsResponse) => void): Request<ECS.Types.DescribeTaskSetsResponse, AWSError>; /** * Describes the task sets in the specified cluster and service. This is used when a service uses the EXTERNAL deployment controller type. For more information, see Amazon ECS Deployment Types in the Amazon Elastic Container Service Developer Guide. */ describeTaskSets(callback?: (err: AWSError, data: ECS.Types.DescribeTaskSetsResponse) => void): Request<ECS.Types.DescribeTaskSetsResponse, AWSError>; /** * Describes a specified task or tasks. */ describeTasks(params: ECS.Types.DescribeTasksRequest, callback?: (err: AWSError, data: ECS.Types.DescribeTasksResponse) => void): Request<ECS.Types.DescribeTasksResponse, AWSError>; /** * Describes a specified task or tasks. */ describeTasks(callback?: (err: AWSError, data: ECS.Types.DescribeTasksResponse) => void): Request<ECS.Types.DescribeTasksResponse, AWSError>; /** * This action is only used by the Amazon ECS agent, and it is not intended for use outside of the agent. Returns an endpoint for the Amazon ECS agent to poll for updates. */ discoverPollEndpoint(params: ECS.Types.DiscoverPollEndpointRequest, callback?: (err: AWSError, data: ECS.Types.DiscoverPollEndpointResponse) => void): Request<ECS.Types.DiscoverPollEndpointResponse, AWSError>; /** * This action is only used by the Amazon ECS agent, and it is not intended for use outside of the agent. Returns an endpoint for the Amazon ECS agent to poll for updates. */ discoverPollEndpoint(callback?: (err: AWSError, data: ECS.Types.DiscoverPollEndpointResponse) => void): Request<ECS.Types.DiscoverPollEndpointResponse, AWSError>; /** * Runs a command remotely on a container within a task. */ executeCommand(params: ECS.Types.ExecuteCommandRequest, callback?: (err: AWSError, data: ECS.Types.ExecuteCommandResponse) => void): Request<ECS.Types.ExecuteCommandResponse, AWSError>; /** * Runs a command remotely on a container within a task. */ executeCommand(callback?: (err: AWSError, data: ECS.Types.ExecuteCommandResponse) => void): Request<ECS.Types.ExecuteCommandResponse, AWSError>; /** * Lists the account settings for a specified principal. */ listAccountSettings(params: ECS.Types.ListAccountSettingsRequest, callback?: (err: AWSError, data: ECS.Types.ListAccountSettingsResponse) => void): Request<ECS.Types.ListAccountSettingsResponse, AWSError>; /** * Lists the account settings for a specified principal. */ listAccountSettings(callback?: (err: AWSError, data: ECS.Types.ListAccountSettingsResponse) => void): Request<ECS.Types.ListAccountSettingsResponse, AWSError>; /** * Lists the attributes for Amazon ECS resources within a specified target type and cluster. When you specify a target type and cluster, ListAttributes returns a list of attribute objects, one for each attribute on each resource. You can filter the list of results to a single attribute name to only return results that have that name. You can also filter the results by attribute name and value, for example, to see which container instances in a cluster are running a Linux AMI (ecs.os-type=linux). */ listAttributes(params: ECS.Types.ListAttributesRequest, callback?: (err: AWSError, data: ECS.Types.ListAttributesResponse) => void): Request<ECS.Types.ListAttributesResponse, AWSError>; /** * Lists the attributes for Amazon ECS resources within a specified target type and cluster. When you specify a target type and cluster, ListAttributes returns a list of attribute objects, one for each attribute on each resource. You can filter the list of results to a single attribute name to only return results that have that name. You can also filter the results by attribute name and value, for example, to see which container instances in a cluster are running a Linux AMI (ecs.os-type=linux). */ listAttributes(callback?: (err: AWSError, data: ECS.Types.ListAttributesResponse) => void): Request<ECS.Types.ListAttributesResponse, AWSError>; /** * Returns a list of existing clusters. */ listClusters(params: ECS.Types.ListClustersRequest, callback?: (err: AWSError, data: ECS.Types.ListClustersResponse) => void): Request<ECS.Types.ListClustersResponse, AWSError>; /** * Returns a list of existing clusters. */ listClusters(callback?: (err: AWSError, data: ECS.Types.ListClustersResponse) => void): Request<ECS.Types.ListClustersResponse, AWSError>; /** * Returns a list of container instances in a specified cluster. You can filter the results of a ListContainerInstances operation with cluster query language statements inside the filter parameter. For more information, see Cluster Query Language in the Amazon Elastic Container Service Developer Guide. */ listContainerInstances(params: ECS.Types.ListContainerInstancesRequest, callback?: (err: AWSError, data: ECS.Types.ListContainerInstancesResponse) => void): Request<ECS.Types.ListContainerInstancesResponse, AWSError>; /** * Returns a list of container instances in a specified cluster. You can filter the results of a ListContainerInstances operation with cluster query language statements inside the filter parameter. For more information, see Cluster Query Language in the Amazon Elastic Container Service Developer Guide. */ listContainerInstances(callback?: (err: AWSError, data: ECS.Types.ListContainerInstancesResponse) => void): Request<ECS.Types.ListContainerInstancesResponse, AWSError>; /** * Returns a list of services. You can filter the results by cluster, launch type, and scheduling strategy. */ listServices(params: ECS.Types.ListServicesRequest, callback?: (err: AWSError, data: ECS.Types.ListServicesResponse) => void): Request<ECS.Types.ListServicesResponse, AWSError>; /** * Returns a list of services. You can filter the results by cluster, launch type, and scheduling strategy. */ listServices(callback?: (err: AWSError, data: ECS.Types.ListServicesResponse) => void): Request<ECS.Types.ListServicesResponse, AWSError>; /** * List the tags for an Amazon ECS resource. */ listTagsForResource(params: ECS.Types.ListTagsForResourceRequest, callback?: (err: AWSError, data: ECS.Types.ListTagsForResourceResponse) => void): Request<ECS.Types.ListTagsForResourceResponse, AWSError>; /** * List the tags for an Amazon ECS resource. */ listTagsForResource(callback?: (err: AWSError, data: ECS.Types.ListTagsForResourceResponse) => void): Request<ECS.Types.ListTagsForResourceResponse, AWSError>; /** * Returns a list of task definition families that are registered to your account (which may include task definition families that no longer have any ACTIVE task definition revisions). You can filter out task definition families that do not contain any ACTIVE task definition revisions by setting the status parameter to ACTIVE. You can also filter the results with the familyPrefix parameter. */ listTaskDefinitionFamilies(params: ECS.Types.ListTaskDefinitionFamiliesRequest, callback?: (err: AWSError, data: ECS.Types.ListTaskDefinitionFamiliesResponse) => void): Request<ECS.Types.ListTaskDefinitionFamiliesResponse, AWSError>; /** * Returns a list of task definition families that are registered to your account (which may include task definition families that no longer have any ACTIVE task definition revisions). You can filter out task definition families that do not contain any ACTIVE task definition revisions by setting the status parameter to ACTIVE. You can also filter the results with the familyPrefix parameter. */ listTaskDefinitionFamilies(callback?: (err: AWSError, data: ECS.Types.ListTaskDefinitionFamiliesResponse) => void): Request<ECS.Types.ListTaskDefinitionFamiliesResponse, AWSError>; /** * Returns a list of task definitions that are registered to your account. You can filter the results by family name with the familyPrefix parameter or by status with the status parameter. */ listTaskDefinitions(params: ECS.Types.ListTaskDefinitionsRequest, callback?: (err: AWSError, data: ECS.Types.ListTaskDefinitionsResponse) => void): Request<ECS.Types.ListTaskDefinitionsResponse, AWSError>; /** * Returns a list of task definitions that are registered to your account. You can filter the results by family name with the familyPrefix parameter or by status with the status parameter. */ listTaskDefinitions(callback?: (err: AWSError, data: ECS.Types.ListTaskDefinitionsResponse) => void): Request<ECS.Types.ListTaskDefinitionsResponse, AWSError>; /** * Returns a list of tasks. You can filter the results by cluster, task definition family, container instance, launch type, what IAM principal started the task, or by the desired status of the task. Recently stopped tasks might appear in the returned results. Currently, stopped tasks appear in the returned results for at least one hour. */ listTasks(params: ECS.Types.ListTasksRequest, callback?: (err: AWSError, data: ECS.Types.ListTasksResponse) => void): Request<ECS.Types.ListTasksResponse, AWSError>; /** * Returns a list of tasks. You can filter the results by cluster, task definition family, container instance, launch type, what IAM principal started the task, or by the desired status of the task. Recently stopped tasks might appear in the returned results. Currently, stopped tasks appear in the returned results for at least one hour. */ listTasks(callback?: (err: AWSError, data: ECS.Types.ListTasksResponse) => void): Request<ECS.Types.ListTasksResponse, AWSError>; /** * Modifies an account setting. Account settings are set on a per-Region basis. If you change the account setting for the root user, the default settings for all of the IAM users and roles for which no individual account setting has been specified are reset. For more information, see Account Settings in the Amazon Elastic Container Service Developer Guide. When serviceLongArnFormat, taskLongArnFormat, or containerInstanceLongArnFormat are specified, the Amazon Resource Name (ARN) and resource ID format of the resource type for a specified IAM user, IAM role, or the root user for an account is affected. The opt-in and opt-out account setting must be set for each Amazon ECS resource separately. The ARN and resource ID format of a resource will be defined by the opt-in status of the IAM user or role that created the resource. You must enable this setting to use Amazon ECS features such as resource tagging. When awsvpcTrunking is specified, the elastic network interface (ENI) limit for any new container instances that support the feature is changed. If awsvpcTrunking is enabled, any new container instances that support the feature are launched have the increased ENI limits available to them. For more information, see Elastic Network Interface Trunking in the Amazon Elastic Container Service Developer Guide. When containerInsights is specified, the default setting indicating whether CloudWatch Container Insights is enabled for your clusters is changed. If containerInsights is enabled, any new clusters that are created will have Container Insights enabled unless you disable it during cluster creation. For more information, see CloudWatch Container Insights in the Amazon Elastic Container Service Developer Guide. */ putAccountSetting(params: ECS.Types.PutAccountSettingRequest, callback?: (err: AWSError, data: ECS.Types.PutAccountSettingResponse) => void): Request<ECS.Types.PutAccountSettingResponse, AWSError>; /** * Modifies an account setting. Account settings are set on a per-Region basis. If you change the account setting for the root user, the default settings for all of the IAM users and roles for which no individual account setting has been specified are reset. For more information, see Account Settings in the Amazon Elastic Container Service Developer Guide. When serviceLongArnFormat, taskLongArnFormat, or containerInstanceLongArnFormat are specified, the Amazon Resource Name (ARN) and resource ID format of the resource type for a specified IAM user, IAM role, or the root user for an account is affected. The opt-in and opt-out account setting must be set for each Amazon ECS resource separately. The ARN and resource ID format of a resource will be defined by the opt-in status of the IAM user or role that created the resource. You must enable this setting to use Amazon ECS features such as resource tagging. When awsvpcTrunking is specified, the elastic network interface (ENI) limit for any new container instances that support the feature is changed. If awsvpcTrunking is enabled, any new container instances that support the feature are launched have the increased ENI limits available to them. For more information, see Elastic Network Interface Trunking in the Amazon Elastic Container Service Developer Guide. When containerInsights is specified, the default setting indicating whether CloudWatch Container Insights is enabled for your clusters is changed. If containerInsights is enabled, any new clusters that are created will have Container Insights enabled unless you disable it during cluster creation. For more information, see CloudWatch Container Insights in the Amazon Elastic Container Service Developer Guide. */ putAccountSetting(callback?: (err: AWSError, data: ECS.Types.PutAccountSettingResponse) => void): Request<ECS.Types.PutAccountSettingResponse, AWSError>; /** * Modifies an account setting for all IAM users on an account for whom no individual account setting has been specified. Account settings are set on a per-Region basis. */ putAccountSettingDefault(params: ECS.Types.PutAccountSettingDefaultRequest, callback?: (err: AWSError, data: ECS.Types.PutAccountSettingDefaultResponse) => void): Request<ECS.Types.PutAccountSettingDefaultResponse, AWSError>; /** * Modifies an account setting for all IAM users on an account for whom no individual account setting has been specified. Account settings are set on a per-Region basis. */ putAccountSettingDefault(callback?: (err: AWSError, data: ECS.Types.PutAccountSettingDefaultResponse) => void): Request<ECS.Types.PutAccountSettingDefaultResponse, AWSError>; /** * Create or update an attribute on an Amazon ECS resource. If the attribute does not exist, it is created. If the attribute exists, its value is replaced with the specified value. To delete an attribute, use DeleteAttributes. For more information, see Attributes in the Amazon Elastic Container Service Developer Guide. */ putAttributes(params: ECS.Types.PutAttributesRequest, callback?: (err: AWSError, data: ECS.Types.PutAttributesResponse) => void): Request<ECS.Types.PutAttributesResponse, AWSError>; /** * Create or update an attribute on an Amazon ECS resource. If the attribute does not exist, it is created. If the attribute exists, its value is replaced with the specified value. To delete an attribute, use DeleteAttributes. For more information, see Attributes in the Amazon Elastic Container Service Developer Guide. */ putAttributes(callback?: (err: AWSError, data: ECS.Types.PutAttributesResponse) => void): Request<ECS.Types.PutAttributesResponse, AWSError>; /** * Modifies the available capacity providers and the default capacity provider strategy for a cluster. You must specify both the available capacity providers and a default capacity provider strategy for the cluster. If the specified cluster has existing capacity providers associated with it, you must specify all existing capacity providers in addition to any new ones you want to add. Any existing capacity providers associated with a cluster that are omitted from a PutClusterCapacityProviders API call will be disassociated with the cluster. You can only disassociate an existing capacity provider from a cluster if it's not being used by any existing tasks. When creating a service or running a task on a cluster, if no capacity provider or launch type is specified, then the cluster's default capacity provider strategy is used. It is recommended to define a default capacity provider strategy for your cluster, however you may specify an empty array ([]) to bypass defining a default strategy. */ putClusterCapacityProviders(params: ECS.Types.PutClusterCapacityProvidersRequest, callback?: (err: AWSError, data: ECS.Types.PutClusterCapacityProvidersResponse) => void): Request<ECS.Types.PutClusterCapacityProvidersResponse, AWSError>; /** * Modifies the available capacity providers and the default capacity provider strategy for a cluster. You must specify both the available capacity providers and a default capacity provider strategy for the cluster. If the specified cluster has existing capacity providers associated with it, you must specify all existing capacity providers in addition to any ne