UNPKG

priority-queue-typed

Version:
254 lines (207 loc) 8.81 kB
![NPM](https://img.shields.io/npm/l/priority-queue-typed) ![GitHub top language](https://img.shields.io/github/languages/top/zrwusa/data-structure-typed) ![npm](https://img.shields.io/npm/dw/priority-queue-typed) ![eslint](https://aleen42.github.io/badges/src/eslint.svg) ![npm bundle size](https://img.shields.io/bundlephobia/minzip/priority-queue-typed) ![npm bundle size](https://img.shields.io/bundlephobia/min/priority-queue-typed) ![npm](https://img.shields.io/npm/v/priority-queue-typed) # What ## Brief This is a standalone Priority Queue data structure from the data-structure-typed collection. If you wish to access more data structures or advanced features, you can transition to directly installing the complete [data-structure-typed](https://www.npmjs.com/package/data-structure-typed) package # How ## install ### npm ```bash npm i priority-queue-typed --save ``` ### yarn ```bash yarn add priority-queue-typed ``` ### snippet #### TS ```typescript import {PriorityQueue, MinPriorityQueue} from 'data-structure-typed'; // /* or if you prefer */ import {PriorityQueue, MinPriorityQueue} from 'priority-queue-typed'; const minPQ = new PriorityQueue<number>({nodes: [5, 2, 3, 4, 6, 1], comparator: (a, b) => a - b}); minPQ.toArray() // [1, 2, 3, 4, 6, 5] minPQ.poll(); minPQ.poll(); minPQ.poll(); minPQ.toArray() // [4, 5, 6] minPQ.peek() // 4 PriorityQueue.heapify({ nodes: [3, 2, 1, 5, 6, 7, 8, 9, 10], comparator: (a, b) => a - b }).toArray() // [1, 2, 3, 5, 6, 7, 8, 9, 10] const priorityQueue = new MinPriorityQueue<number>(); priorityQueue.add(5); priorityQueue.add(3); priorityQueue.add(7); priorityQueue.add(1); const sortedArray = priorityQueue.sort(); // [1, 3, 5, 7]); const minPQ1 = new PriorityQueue<number>({nodes: [2, 5, 8, 3, 1, 6, 7, 4], comparator: (a, b) => a - b}); const clonedPriorityQueue = minPQ1.clone(); clonedPriorityQueue.getNodes() // minPQ1.getNodes() clonedPriorityQueue.sort() // [1, 2, 3, 4, 5, 6, 7, 8] minPQ1.DFS('in') // [4, 3, 2, 5, 1, 8, 6, 7] minPQ1.DFS('post') // [4, 3, 5, 2, 8, 7, 6, 1] minPQ1.DFS('pre') // [1, 2, 3, 4, 5, 6, 8, 7] ``` #### JS ```javascript const {PriorityQueue, MinPriorityQueue} = require('data-structure-typed'); // /* or if you prefer */ const {PriorityQueue, MinPriorityQueue} = require('priority-queue-typed'); const minPQ = new PriorityQueue({nodes: [5, 2, 3, 4, 6, 1], comparator: (a, b) => a - b}); minPQ.toArray() // [1, 2, 3, 4, 6, 5] minPQ.poll(); minPQ.poll(); minPQ.poll(); minPQ.toArray() // [4, 5, 6] minPQ.peek() // 4 PriorityQueue.heapify({ nodes: [3, 2, 1, 5, 6, 7, 8, 9, 10], comparator: (a, b) => a - b }).toArray() // [1, 2, 3, 5, 6, 7, 8, 9, 10] const priorityQueue = new MinPriorityQueue(); priorityQueue.add(5); priorityQueue.add(3); priorityQueue.add(7); priorityQueue.add(1); const sortedArray = priorityQueue.sort(); // [1, 3, 5, 7]); const minPQ1 = new PriorityQueue<number>({nodes: [2, 5, 8, 3, 1, 6, 7, 4], comparator: (a, b) => a - b}); const clonedPriorityQueue = minPQ1.clone(); clonedPriorityQueue.getNodes() // minPQ1.getNodes() clonedPriorityQueue.sort() // [1, 2, 3, 4, 5, 6, 7, 8] minPQ1.DFS('in') // [4, 3, 2, 5, 1, 8, 6, 7] minPQ1.DFS('post') // [4, 3, 5, 2, 8, 7, 6, 1] minPQ1.DFS('pre') // [1, 2, 3, 4, 5, 6, 8, 7] ``` [//]: # (No deletion!!! Start of Example Replace Section) [//]: # (No deletion!!! End of Example Replace Section) ## API docs & Examples [API Docs](https://data-structure-typed-docs.vercel.app) [Live Examples](https://vivid-algorithm.vercel.app) <a href="https://github.com/zrwusa/vivid-algorithm" target="_blank">Examples Repository</a> ## Data Structures <table> <thead> <tr> <th>Data Structure</th> <th>Unit Test</th> <th>Performance Test</th> <th>API Docs</th> </tr> </thead> <tbody> <tr> <td>Priority Queue</td> <td><img src="https://raw.githubusercontent.com/zrwusa/assets/master/images/data-structure-typed/assets/tick.svg" alt=""></td> <td><img src="https://raw.githubusercontent.com/zrwusa/assets/master/images/data-structure-typed/assets/tick.svg" alt=""></td> <td><a href="https://data-structure-typed-docs.vercel.app/classes/PriorityQueue.html"><span>PriorityQueue</span></a></td> </tr> <tr> <td>Max Priority Queue</td> <td><img src="https://raw.githubusercontent.com/zrwusa/assets/master/images/data-structure-typed/assets/tick.svg" alt=""></td> <td><img src="https://raw.githubusercontent.com/zrwusa/assets/master/images/data-structure-typed/assets/tick.svg" alt=""></td> <td><a href="https://data-structure-typed-docs.vercel.app/classes/MaxPriorityQueue.html"><span>MaxPriorityQueue</span></a></td> </tr> <tr> <td>Min Priority Queue</td> <td><img src="https://raw.githubusercontent.com/zrwusa/assets/master/images/data-structure-typed/assets/tick.svg" alt=""></td> <td><img src="https://raw.githubusercontent.com/zrwusa/assets/master/images/data-structure-typed/assets/tick.svg" alt=""></td> <td><a href="https://data-structure-typed-docs.vercel.app/classes/MinPriorityQueue.html"><span>MinPriorityQueue</span></a></td> </tr> </tbody> </table> ## Standard library data structure comparison <table> <thead> <tr> <th>Data Structure Typed</th> <th>C++ STL</th> <th>java.util</th> <th>Python collections</th> </tr> </thead> <tbody> <tr> <td>PriorityQueue&lt;E&gt;</td> <td>priority_queue&lt;T&gt;</td> <td>PriorityQueue&lt;E&gt;</td> <td>-</td> </tr> </tbody> </table> ## Benchmark [//]: # (No deletion!!! Start of Replace Section) <div class="json-to-html-collapse clearfix 0"> <div class='collapsible level0' ><span class='json-to-html-label'>max-priority-queue</span></div> <div class="content"><table style="display: table; width:100%; table-layout: fixed;"><tr><th>test name</th><th>time taken (ms)</th><th>executions per sec</th><th>sample deviation</th></tr><tr><td>10,000 refill & poll</td><td>8.91</td><td>112.29</td><td>2.26e-4</td></tr></table></div> </div> <div class="json-to-html-collapse clearfix 0"> <div class='collapsible level0' ><span class='json-to-html-label'>priority-queue</span></div> <div class="content"><table style="display: table; width:100%; table-layout: fixed;"><tr><th>test name</th><th>time taken (ms)</th><th>executions per sec</th><th>sample deviation</th></tr><tr><td>100,000 add & pop</td><td>103.59</td><td>9.65</td><td>0.00</td></tr></table></div> </div> [//]: # (No deletion!!! End of Replace Section) ## Built-in classic algorithms <table> <thead> <tr> <th>Algorithm</th> <th>Function Description</th> <th>Iteration Type</th> </tr> </thead> <tbody> </tbody> </table> ## Software Engineering Design Standards <table> <tr> <th>Principle</th> <th>Description</th> </tr> <tr> <td>Practicality</td> <td>Follows ES6 and ESNext standards, offering unified and considerate optional parameters, and simplifies method names.</td> </tr> <tr> <td>Extensibility</td> <td>Adheres to OOP (Object-Oriented Programming) principles, allowing inheritance for all data structures.</td> </tr> <tr> <td>Modularization</td> <td>Includes data structure modularization and independent NPM packages.</td> </tr> <tr> <td>Efficiency</td> <td>All methods provide time and space complexity, comparable to native JS performance.</td> </tr> <tr> <td>Maintainability</td> <td>Follows open-source community development standards, complete documentation, continuous integration, and adheres to TDD (Test-Driven Development) patterns.</td> </tr> <tr> <td>Testability</td> <td>Automated and customized unit testing, performance testing, and integration testing.</td> </tr> <tr> <td>Portability</td> <td>Plans for porting to Java, Python, and C++, currently achieved to 80%.</td> </tr> <tr> <td>Reusability</td> <td>Fully decoupled, minimized side effects, and adheres to OOP.</td> </tr> <tr> <td>Security</td> <td>Carefully designed security for member variables and methods. Read-write separation. Data structure software does not need to consider other security aspects.</td> </tr> <tr> <td>Scalability</td> <td>Data structure software does not involve load issues.</td> </tr> </table>