UNPKG

pqc

Version:

JS Implementation of NIST PQC FIPS Standards

138 lines 5.12 kB
/** * Internal methods for lattice-based ML-KEM and ML-DSA. */ import { shake128, shake256 } from '@noble/hashes/sha3'; import { getMask } from "./utils.js"; // TODO: benchmark function bitReversal(n, bits = 8) { const padded = n.toString(2).padStart(8, '0'); const sliced = padded.slice(-bits).padStart(7, '0'); const revrsd = sliced.split('').reverse().join(''); return Number.parseInt(revrsd, 2); } export const genCrystals = (opts) => { // isKyber: true means Kyber, false means Dilithium const { newPoly, N, Q, F, ROOT_OF_UNITY, brvBits, isKyber } = opts; const mod = (a, modulo = Q) => { const result = a % modulo | 0; return (result >= 0 ? result | 0 : (modulo + result) | 0) | 0; }; // -(Q-1)/2 < a <= (Q-1)/2 const smod = (a, modulo = Q) => { const r = mod(a, modulo) | 0; return (r > modulo >> 1 ? (r - modulo) | 0 : r) | 0; }; // Generate zettas function getZettas() { const out = newPoly(N); for (let i = 0; i < N; i++) { const b = bitReversal(i, brvBits); const p = BigInt(ROOT_OF_UNITY) ** BigInt(b) % BigInt(Q); out[i] = Number(p) | 0; } return out; } const nttZetas = getZettas(); // Number-Theoretic Transform // Explained: https://electricdusk.com/ntt.html // Kyber has slightly different params, since there is no 512th primitive root of unity mod q, // only 256th primitive root of unity mod. Which also complicates MultiplyNTT. // TODO: there should be less ugly way to define this. const LEN1 = isKyber ? 128 : N; const LEN2 = isKyber ? 1 : 0; const NTT = { encode: (r) => { for (let k = 1, len = 128; len > LEN2; len >>= 1) { for (let start = 0; start < N; start += 2 * len) { const zeta = nttZetas[k++]; for (let j = start; j < start + len; j++) { const t = mod(zeta * r[j + len]); r[j + len] = mod(r[j] - t) | 0; r[j] = mod(r[j] + t) | 0; } } } return r; }, decode: (r) => { for (let k = LEN1 - 1, len = 1 + LEN2; len < LEN1 + LEN2; len <<= 1) { for (let start = 0; start < N; start += 2 * len) { const zeta = nttZetas[k--]; for (let j = start; j < start + len; j++) { const t = r[j]; r[j] = mod(t + r[j + len]); r[j + len] = mod(zeta * (r[j + len] - t)); } } } for (let i = 0; i < r.length; i++) r[i] = mod(F * r[i]); return r; }, }; // Encode polynominal as bits const bitsCoder = (d, c) => { const mask = getMask(d); const bytesLen = d * (N / 8); return { bytesLen, encode: (poly) => { const r = new Uint8Array(bytesLen); for (let i = 0, buf = 0, bufLen = 0, pos = 0; i < poly.length; i++) { buf |= (c.encode(poly[i]) & mask) << bufLen; bufLen += d; for (; bufLen >= 8; bufLen -= 8, buf >>= 8) r[pos++] = buf & getMask(bufLen); } return r; }, decode: (bytes) => { const r = newPoly(N); for (let i = 0, buf = 0, bufLen = 0, pos = 0; i < bytes.length; i++) { buf |= bytes[i] << bufLen; bufLen += 8; for (; bufLen >= d; bufLen -= d, buf >>= d) r[pos++] = c.decode(buf & mask); } return r; }, }; }; return { mod, smod, nttZetas, NTT, bitsCoder }; }; const createXofShake = (shake) => (seed, blockLen) => { if (!blockLen) blockLen = shake.blockLen; // Optimizations that won't mater: // - cached seed update (two .update(), on start and on the end) // - another cache which cloned into working copy // Faster than multiple updates, since seed less than blockLen const _seed = new Uint8Array(seed.length + 2); _seed.set(seed); const seedLen = seed.length; const buf = new Uint8Array(blockLen); // == shake128.blockLen let h = shake.create({}); let calls = 0; let xofs = 0; return { stats: () => ({ calls, xofs }), get: (x, y) => { _seed[seedLen + 0] = x; _seed[seedLen + 1] = y; h.destroy(); h = shake.create({}).update(_seed); calls++; return () => { xofs++; return h.xofInto(buf); }; }, clean: () => { h.destroy(); buf.fill(0); _seed.fill(0); }, }; }; export const XOF128 = /* @__PURE__ */ createXofShake(shake128); export const XOF256 = /* @__PURE__ */ createXofShake(shake256);