UNPKG

plotly.js

Version:

The open source javascript graphing library that powers plotly

141 lines (123 loc) 5.49 kB
'use strict'; /* * Return a function that evaluates a set of linear or bicubic control points. * This will get evaluated a lot, so we'll at least do a bit of extra work to * flatten some of the choices. In particular, we'll unroll the linear/bicubic * combinations and we'll allow computing results in parallel to cut down * on repeated arithmetic. * * Take note that we don't search for the correct range in this function. The * reason is for consistency due to the corrresponding derivative function. In * particular, the derivatives aren't continuous across cells, so it's important * to be able control whether the derivative at a cell boundary is approached * from one side or the other. */ module.exports = function(arrays, na, nb, asmoothing, bsmoothing) { var imax = na - 2; var jmax = nb - 2; if(asmoothing && bsmoothing) { return function(out, i, j) { if(!out) out = []; var f0, f1, f2, f3, ak, k; var i0 = Math.max(0, Math.min(Math.floor(i), imax)); var j0 = Math.max(0, Math.min(Math.floor(j), jmax)); var u = Math.max(0, Math.min(1, i - i0)); var v = Math.max(0, Math.min(1, j - j0)); // Since it's a grid of control points, the actual indices are * 3: i0 *= 3; j0 *= 3; // Precompute some numbers: var u2 = u * u; var u3 = u2 * u; var ou = 1 - u; var ou2 = ou * ou; var ou3 = ou2 * ou; var v2 = v * v; var v3 = v2 * v; var ov = 1 - v; var ov2 = ov * ov; var ov3 = ov2 * ov; for(k = 0; k < arrays.length; k++) { ak = arrays[k]; f0 = ou3 * ak[j0][i0] + 3 * (ou2 * u * ak[j0][i0 + 1] + ou * u2 * ak[j0][i0 + 2]) + u3 * ak[j0][i0 + 3]; f1 = ou3 * ak[j0 + 1][i0] + 3 * (ou2 * u * ak[j0 + 1][i0 + 1] + ou * u2 * ak[j0 + 1][i0 + 2]) + u3 * ak[j0 + 1][i0 + 3]; f2 = ou3 * ak[j0 + 2][i0] + 3 * (ou2 * u * ak[j0 + 2][i0 + 1] + ou * u2 * ak[j0 + 2][i0 + 2]) + u3 * ak[j0 + 2][i0 + 3]; f3 = ou3 * ak[j0 + 3][i0] + 3 * (ou2 * u * ak[j0 + 3][i0 + 1] + ou * u2 * ak[j0 + 3][i0 + 2]) + u3 * ak[j0 + 3][i0 + 3]; out[k] = ov3 * f0 + 3 * (ov2 * v * f1 + ov * v2 * f2) + v3 * f3; } return out; }; } else if(asmoothing) { // Handle smooth in the a-direction but linear in the b-direction by performing four // linear interpolations followed by one cubic interpolation of the result return function(out, i, j) { if(!out) out = []; var i0 = Math.max(0, Math.min(Math.floor(i), imax)); var j0 = Math.max(0, Math.min(Math.floor(j), jmax)); var u = Math.max(0, Math.min(1, i - i0)); var v = Math.max(0, Math.min(1, j - j0)); var f0, f1, f2, f3, k, ak; i0 *= 3; var u2 = u * u; var u3 = u2 * u; var ou = 1 - u; var ou2 = ou * ou; var ou3 = ou2 * ou; var ov = 1 - v; for(k = 0; k < arrays.length; k++) { ak = arrays[k]; f0 = ov * ak[j0][i0] + v * ak[j0 + 1][i0]; f1 = ov * ak[j0][i0 + 1] + v * ak[j0 + 1][i0 + 1]; f2 = ov * ak[j0][i0 + 2] + v * ak[j0 + 1][i0 + 1]; f3 = ov * ak[j0][i0 + 3] + v * ak[j0 + 1][i0 + 1]; out[k] = ou3 * f0 + 3 * (ou2 * u * f1 + ou * u2 * f2) + u3 * f3; } return out; }; } else if(bsmoothing) { // Same as the above case, except reversed: return function(out, i, j) { if(!out) out = []; var i0 = Math.max(0, Math.min(Math.floor(i), imax)); var j0 = Math.max(0, Math.min(Math.floor(j), jmax)); var u = Math.max(0, Math.min(1, i - i0)); var v = Math.max(0, Math.min(1, j - j0)); var f0, f1, f2, f3, k, ak; j0 *= 3; var v2 = v * v; var v3 = v2 * v; var ov = 1 - v; var ov2 = ov * ov; var ov3 = ov2 * ov; var ou = 1 - u; for(k = 0; k < arrays.length; k++) { ak = arrays[k]; f0 = ou * ak[j0][i0] + u * ak[j0][i0 + 1]; f1 = ou * ak[j0 + 1][i0] + u * ak[j0 + 1][i0 + 1]; f2 = ou * ak[j0 + 2][i0] + u * ak[j0 + 2][i0 + 1]; f3 = ou * ak[j0 + 3][i0] + u * ak[j0 + 3][i0 + 1]; out[k] = ov3 * f0 + 3 * (ov2 * v * f1 + ov * v2 * f2) + v3 * f3; } return out; }; } else { // Finally, both directions are linear: return function(out, i, j) { if(!out) out = []; var i0 = Math.max(0, Math.min(Math.floor(i), imax)); var j0 = Math.max(0, Math.min(Math.floor(j), jmax)); var u = Math.max(0, Math.min(1, i - i0)); var v = Math.max(0, Math.min(1, j - j0)); var f0, f1, k, ak; var ov = 1 - v; var ou = 1 - u; for(k = 0; k < arrays.length; k++) { ak = arrays[k]; f0 = ou * ak[j0][i0] + u * ak[j0][i0 + 1]; f1 = ou * ak[j0 + 1][i0] + u * ak[j0 + 1][i0 + 1]; out[k] = ov * f0 + v * f1; } return out; }; } };