UNPKG

plotboilerplate

Version:

A simple javascript plotting boilerplate for 2d stuff.

314 lines (296 loc) 10.7 kB
/** * @classdesc A HobbyCurve/HobbyPath calculation class: compute a set of optimal * cubic Bézier curves from a sequence of vertices. * * This Hobby curve (path) implementation was strongly inspired by * the one by Prof. Dr. Edmund Weitz: * Here's the website: * http://weitz.de/hobby/ * * @date 2020-04-07 * @author Transformed to a JS-class by Ikaros Kappler * @modified 2020-08-19 Ported from vanilla JS to TypeScript. * @version 1.0.1 * * @file HobbyPath * @public **/ import { CubicBezierCurve } from "../../CubicBezierCurve"; import { Vertex } from "../../Vertex"; interface IControlPoints { startControlPoints : Array<Vertex>; endControlPoints : Array<Vertex>; }; /** * @classdesc A HobbyCurve/HobbyPath calculation class: compute a set of optimal * cubic Bézier curves from a sequence of vertices. * * @requires CubicBezierCurve * @requires Vertex */ export class HobbyPath { /** * @member {Array<Vertex>} vertices * @memberof HobbyPath * @type {Array<Vertex>} * @instance **/ private vertices : Array<Vertex>; /** * @constructor * @name HobbyPath * @param {Array<Vertex>=} vertices? - An optional array of vertices to initialize the path with. **/ constructor( vertices?:Array<Vertex> ) { this.vertices = vertices ? vertices : []; }; /** * Add a new point to the end of the vertex sequence. * * @name addPoint * @memberof HobbyPath * @instance * @param {Vertex} p - The vertex (point) to add. **/ addPoint(p: Vertex) : void { this.vertices.push( p ); }; /** * Generate a sequence of cubic Bézier curves from the point set. * * @name generateCurve * @memberof HobbyPath * @instance * @param {boolean=} circular - Specify if the path should be closed. * @param {number=0} omega - (default=0) An optional tension parameter. * @return Array<CubicBezierCurve> **/ generateCurve( circular?:boolean, omega?:number ) : Array<CubicBezierCurve> { let n : number = this.vertices.length; if (n > 1) { if (n == 2) { // for two points, just draw a straight line return [ new CubicBezierCurve( this.vertices[0], this.vertices[1], this.vertices[0], this.vertices[1] ) ]; } else { const curves : Array<CubicBezierCurve> = []; let controlPoints = this.hobbyControls(circular,omega); for (let i = 0; i < n - (circular?0:1); i++) { // if i is n-1, the "next" point is the first one let j : number = (i+1) % n; // Use a succ function here? curves.push( new CubicBezierCurve( this.vertices[i], this.vertices[j], controlPoints.startControlPoints[i], controlPoints.endControlPoints[i] ) ); } return curves; } } else { return []; } }; /** * Computes the control point coordinates for a Hobby curve through * the points given. * * @name hobbyControls * @memberof HobbyPath * @instance * @param {boolean} circular - If true, then the path will be closed. * @param {number=0} omega - The 'curl' or the path. * @return {IControlPoints} An object with two members: startControlPoints and endControlPoints (Array<Vertex>). **/ private hobbyControls(circular?:boolean, omega?:number) : IControlPoints { // This is a version that works for both, closed and non-closed paths. if( typeof omega === 'undefined' ) omega = 0; let n : number = this.vertices.length - (circular ? 0 : 1); let D : Array<number> = new Array<number>(n); let ds : Array<Vertex> = new Array<Vertex>(n); var succ = (i:number) : number => { return circular ? ((i+1)%n) : (i+1) }; var pred = (i:number) : number => { return circular ? ((i + n - 1) % n) : (i-1) }; for (let i = 0; i < n; i++) { // the "next" point in a modular way let j : number = succ(i); ds[i] = this.vertices[i].difference( this.vertices[j] ); D[i] = Math.sqrt(ds[i].x*ds[i].x+ds[i].y*ds[i].y); } let gamma : Array<number> = new Array(n + (circular?0:1)); for (let i = (circular?0:1); i < n; i++) { // the "previous" point in a modular way let k : number = pred(i); let sin = ds[k].y / D[k]; let cos = ds[k].x / D[k]; let vec = HobbyPath.utils.rotate(ds[i], -sin, cos); gamma[i] = Math.atan2(vec.y, vec.x); } if( !circular ) gamma[n] = 0; let a : Array<number> = new Array(n + (circular?0:1)); let b : Array<number> = new Array(n + (circular?0:1)); let c : Array<number> = new Array(n + (circular?0:1)); let d : Array<number> = new Array(n + (circular?0:1)); for (let i = (circular?0:1); i < n; i++) { // j is the "next" point, k the "previous" one let j : number = succ(i); let k : number = pred(i); // see video for the equations a[i] = 1 / D[k]; b[i] = (2*D[k]+2*D[i])/(D[k]*D[i]); c[i] = 1 / D[i]; d[i] = -(2*gamma[i]*D[i]+gamma[j]*D[k])/(D[k]*D[i]); } // make matrix tridiagonal in preparation for the "sherman" function var alpha : Array<number>; var beta : Array<number>; if( circular ) { let s : number = a[0]*omega; // Use omega here? a[0] = 0; let t : number = c[n-1]*omega; // Use omega here? c[n-1] = 0; alpha = HobbyPath.utils.sherman(a, b, c, d, s, t); beta = new Array<number>(n); for (let i = 0; i < n - (circular?0:1); i++) { // "next" point let j : number = succ(i); beta[i] = -gamma[j]-alpha[j]; } } else { // see the Jackowski article for the following values; the result // will be that the curvature at the first point is identical to the // curvature at the second point (and likewise for the last and // second-to-last) b[0] = 2 + omega; c[0] = 2 * omega + 1; d[0] = -c[0] * gamma[1]; a[n] = 2 * omega + 1; b[n] = 2 + omega; d[n] = 0; // solve system for the angles called "alpha" in the video alpha = HobbyPath.utils.thomas(a, b, c, d); // compute "beta" angles from "alpha" angles beta = new Array<number>(n); for (let i = 0; i < n - 1; i++) beta[i] = -gamma[i+1]-alpha[i+1]; // again, see Jackowski article beta[n-1] = -alpha[n]; } let startControlPoints = new Array<Vertex>(n); let endControlPoints = new Array<Vertex>(n); for (let i = 0; i < n; i++) { let j : number = succ(i); let a : number = HobbyPath.utils.rho(alpha[i], beta[i]) * D[i] / 3; let b : number = HobbyPath.utils.rho(beta[i], alpha[i]) * D[i] / 3; let v : Vertex = HobbyPath.utils.normalize(HobbyPath.utils.rotateAngle(ds[i], alpha[i])); startControlPoints[i] = new Vertex( this.vertices[i].x + a * v.x, this.vertices[i].y + a * v.y ); v = HobbyPath.utils.normalize(HobbyPath.utils.rotateAngle(ds[i], -beta[i])); endControlPoints[i] = new Vertex( this.vertices[j].x - b * v.x, this.vertices[j].y - b * v.y ); } return { startControlPoints : startControlPoints, endControlPoints: endControlPoints }; } static utils = { // rotates a vector [x, y] about an angle; the angle is implicitly // determined by its sine and cosine rotate : (vert: Vertex, sin: number, cos: number) : Vertex => { return new Vertex( vert.x*cos - vert.y*sin, vert.x*sin + vert.y*cos ); }, // rotates a vector [x, y] about the angle alpha rotateAngle: (vert: Vertex, alpha: number) : Vertex => { return HobbyPath.utils.rotate(vert, Math.sin(alpha), Math.cos(alpha)); }, // returns a normalized version of the vector normalize : (vec: Vertex) : Vertex => { let n = Math.hypot(vec.x, vec.y); if (n == 0) return new Vertex(0,0); else return new Vertex( vec.x/n, vec.y/n ); // TODO: do in-place }, // the "velocity function" (also called rho in the video); a and b are // the angles alpha and beta, the return value is the distance between // a control point and its neighboring point; to compute sigma(a,b) // we'll simply use rho(b,a) rho : (a: number , b: number) : number => { // see video for formula let sa = Math.sin(a); let sb = Math.sin(b); let ca = Math.cos(a); let cb = Math.cos(b); let s5 = Math.sqrt(5); let num = 4 + Math.sqrt(8) * (sa - sb/16) * (sb - sa/16) * (ca - cb); let den = 2 + (s5 - 1) * ca + (3 - s5) * cb; return num/den; }, // Implements the Thomas algorithm for a tridiagonal system with i-th // row a[i]x[i-1] + b[i]x[i] + c[i]x[i+1] = d[i] starting with row // i=0, ending with row i=n-1 and with a[0] = c[n-1] = 0. Returns the // values x[i] as an array. thomas : (a: Array<number>, b: Array<number>, c: Array<number>, d: Array<number>) : Array<number> => { let n : number = a.length; let cc : Array<number> = new Array<number>(n); let dd : Array<number> = new Array<number>(n); // forward sweep cc[0] = c[0] / b[0]; dd[0] = d[0] / b[0]; for (let i = 1; i < n; i++) { let den : number = b[i] - cc[i-1]*a[i]; cc[i] = c[i] / den; dd[i] = (d[i] - dd[i-1]*a[i]) / den; } let x : Array<number> = new Array<number>(n); // back substitution x[n-1] = dd[n-1]; for (let i = n-2; i >= 0; i--) x[i] = dd[i] - cc[i]*x[i+1]; return x; }, // Solves an "almost" tridiagonal linear system with i-th row // a[i]x[i-1] + b[i]x[i] + c[i]x[i+1] = d[i] starting with row i=0, // ending with row i=n-1 and with a[0] = c[n-1] = 0. Returns the // values x[i] as an array. The system is not really tridiagonal // because the 0-th row is b[0]x[0] + c[0]x[1] + sx[n-1] = d[0] and // row n-1 is tx[0] + a[n-1]x[n-2] + b[n-1]x[n-1] = d[n-1]. The // Sherman-Morrison-Woodbury formula is used so that the function // "thomas" can be called to solve the system. sherman : ( a: Array<number>, b: Array<number>, c: Array<number>, d: Array<number>, s: number , t: number) : Array<number> => { const n : number = a.length; const u : Array<number> = new Array<number>(n); u.fill(0, 1, n-1); u[0] = 1; u[n-1] = 1; let v : Array<number> = new Array<number>(n); v.fill(0, 1, n-1); v[0] = t; v[n-1] = s; b[0] -= t; b[n-1] -= s; // this would be more efficient if computed in parallel, but hey... const Td : Array<number> = HobbyPath.utils.thomas(a, b, c, d); const Tu : Array<number> = HobbyPath.utils.thomas(a, b, c, u); const factor : number = (t*Td[0] + s*Td[n-1]) / (1 + t*Tu[0] + s*Tu[n-1]); const x = new Array(n); for (let i = 0; i < n; i++) x[i] = Td[i] - factor * Tu[i]; return x; } }; }; // END class