plotboilerplate
Version:
A simple javascript plotting boilerplate for 2d stuff.
385 lines (345 loc) • 15 kB
text/typescript
/**
* Implementation of elliptic sectors.
* Note that sectors are constructed in clockwise direction.
*
* @author Ikaros Kappler
* @date 2021-02-26
* @modified 2022-02-02 Added the `destroy` method.
* @modified 2022-11-01 Tweaked the `endpointToCenterParameters` function to handle negative values, too, without errors.
* @version 1.1.1
*/
import { CubicBezierCurve } from "./CubicBezierCurve";
import { geomutils } from "./geomutils";
import { SVGPathParams, UID, XYCoords } from "./interfaces";
import { Line } from "./Line";
import { UIDGenerator } from "./UIDGenerator";
import { Vector } from "./Vector";
import { VEllipse } from "./VEllipse";
import { Vertex } from "./Vertex";
/**
* @classdesc A class for elliptic sectors.
*
* @requires Line
* @requires Vector
* @requires VertTuple
* @requires Vertex
* @requires SVGSerializale
* @requires UID
* @requires UIDGenerator
**/
export class VEllipseSector {
/**
* Required to generate proper CSS classes and other class related IDs.
**/
readonly className: string = "VEllipseSector";
/**
* The UID of this drawable object.
*
* @member {UID}
* @memberof VEllipseSector
* @instance
* @readonly
*/
readonly uid: UID;
/**
* @member {VEllipse}
* @memberof VEllipseSector
* @instance
*/
ellipse: VEllipse;
/**
* @member {number}
* @memberof VEllipseSector
* @instance
*/
startAngle: number;
/**
* @member {number}
* @memberof VEllipseSector
* @instance
*/
endAngle: number;
/**
* @member isDestroyed
* @memberof VEllipseSector
* @type {boolean}
* @instance
*/
isDestroyed: boolean;
/**
* Create a new elliptic sector from the given ellipse and two angles.
*
* Note that the direction from start to end goes clockwise, and that start and end angle
* will be wrapped to [0,PI*2).
*
* @constructor
* @name VEllipseSector
* @param {VEllipse} - The underlying ellipse to use.
* @param {number} startAngle - The start angle of the sector.
* @param {numner} endAngle - The end angle of the sector.
*/
constructor(ellipse: VEllipse, startAngle: number, endAngle: number) {
this.uid = UIDGenerator.next();
this.ellipse = ellipse;
this.startAngle = geomutils.wrapMinMax(startAngle, 0, Math.PI * 2);
this.endAngle = geomutils.wrapMinMax(endAngle, 0, Math.PI * 2);
}
/**
* Convert this elliptic sector into cubic Bézier curves.
*
* @param {number=3} quarterSegmentCount - The number of segments per base elliptic quarter (default is 3, min is 1).
* @param {number=0.666666} threshold - The Bézier threshold (default value 0.666666 approximates the ellipse with best results
* but you might wish to use other values)
* @return {Array<CubicBezierCurve>} An array of cubic Bézier curves representing the elliptic sector.
*/
toCubicBezier(quarterSegmentCount?: number, threshold?: number): Array<CubicBezierCurve> {
// There are at least 4 segments required (dour quarters) to approximate a whole
// ellipse with Bézier curves.
// A visually 'good' approximation should have 12; this seems to be a good value (anything multiple of 4).
const segmentCount = Math.max(1, quarterSegmentCount || 3) * 4;
threshold = typeof threshold === "undefined" ? 0.666666 : threshold;
const radiusH: number = this.ellipse.radiusH();
const radiusV: number = this.ellipse.radiusV();
var startAngle = VEllipseSector.ellipseSectorUtils.normalizeAngle(this.startAngle);
var endAngle = VEllipseSector.ellipseSectorUtils.normalizeAngle(this.endAngle);
// Find all angles inside start and end
var angles = VEllipseSector.ellipseSectorUtils.equidistantVertAngles(radiusH, radiusV, startAngle, endAngle, segmentCount);
angles = [startAngle].concat(angles).concat([endAngle]);
const curves: Array<CubicBezierCurve> = [];
let curAngle: number = angles[0];
let startPoint: Vertex = this.ellipse.vertAt(curAngle);
for (var i = 0; i + 1 < angles.length; i++) {
let nextAngle = angles[(i + 1) % angles.length];
let endPoint: Vertex = this.ellipse.vertAt(nextAngle);
let startTangent: Vector = this.ellipse.tangentAt(curAngle);
let endTangent: Vector = this.ellipse.tangentAt(nextAngle);
// Distorted ellipses can only be approximated by linear Bézier segments
if (Math.abs(radiusV) < 0.0001 || Math.abs(radiusH) < 0.0001) {
let diff = startPoint.difference(endPoint);
let curve: CubicBezierCurve = new CubicBezierCurve(
startPoint.clone(),
endPoint.clone(),
startPoint.clone().addXY(diff.x * 0.333, diff.y * 0.333),
endPoint.clone().addXY(-diff.x * 0.333, -diff.y * 0.333)
);
curves.push(curve);
} else {
// Find intersection
let intersection: Vertex | null = startTangent.intersection(endTangent);
// What if intersection is undefined?
// --> This *can* not happen if segmentCount > 2 and height and width of the ellipse are not zero.
if (intersection) {
// It's VERY LIKELY hat this ALWAYS happens; it's just a typesave variant.
// Intersection cannot be null.
let startDiff: Vertex = startPoint.difference(intersection);
let endDiff: Vertex = endPoint.difference(intersection);
let curve: CubicBezierCurve = new CubicBezierCurve(
startPoint.clone(),
endPoint.clone(),
startPoint.clone().add(startDiff.scale(threshold)),
endPoint.clone().add(endDiff.scale(threshold))
);
curves.push(curve);
}
}
startPoint = endPoint;
curAngle = nextAngle;
}
return curves;
}
/**
* This function should invalidate any installed listeners and invalidate this object.
* After calling this function the object might not hold valid data any more and
* should not be used.
*/
destroy() {
this.ellipse.destroy();
this.isDestroyed = true;
}
static ellipseSectorUtils = {
/**
* Helper function to convert an elliptic section to SVG arc params (for the `d` attribute).
* Inspiration found at:
* https://stackoverflow.com/questions/5736398/how-to-calculate-the-svg-path-for-an-arc-of-a-circle
*
* @param {boolean} options.moveToStart - If false (default=true) the initial 'Move' command will not be used.
* @return [ 'A', radiusH, radiusV, rotation, largeArcFlag=1|0, sweepFlag=0, endx, endy ]
*/
describeSVGArc: (
x: number,
y: number,
radiusH: number,
radiusV: number,
startAngle: number,
endAngle: number,
rotation?: number,
options?: { moveToStart: boolean }
): SVGPathParams => {
if (typeof options === "undefined") options = { moveToStart: true };
if (typeof rotation === "undefined") rotation = 0.0;
// Important note: this function only works if start- and end-angle are within
// one whole circle [x,x+2*PI].
// Revelations of more than 2*PI might result in unexpected arcs.
// -> Use the geomutils.wrapMax( angle, 2*PI )
startAngle = geomutils.wrapMax(startAngle, Math.PI * 2);
endAngle = geomutils.wrapMax(endAngle, Math.PI * 2);
// Find the start- and end-point on the rotated ellipse
// XYCoords to Vertex (for rotation)
var end: Vertex = new Vertex(VEllipse.utils.polarToCartesian(x, y, radiusH, radiusV, endAngle));
var start: Vertex = new Vertex(VEllipse.utils.polarToCartesian(x, y, radiusH, radiusV, startAngle));
end.rotate(rotation, { x: x, y: y });
start.rotate(rotation, { x: x, y: y });
// Boolean stored as integers (0|1).
var diff: number = endAngle - startAngle;
var largeArcFlag: number;
if (diff < 0) {
largeArcFlag = Math.abs(diff) < Math.PI ? 1 : 0;
} else {
largeArcFlag = Math.abs(diff) > Math.PI ? 1 : 0;
}
const sweepFlag: number = 1;
const pathData: SVGPathParams = [];
if (options.moveToStart) {
pathData.push("M", start.x, start.y);
}
// Arc rotation in degrees, not radians.
const r2d: number = 180 / Math.PI;
pathData.push("A", radiusH, radiusV, rotation * r2d, largeArcFlag, sweepFlag, end.x, end.y);
return pathData;
}, // END function describeSVGArc
/**
* Helper function to find second-kind elliptic angles, so that the euclidean distance along the the
* elliptic sector is the same for all.
*
* Note that this is based on the full ellipse calculuation and start and end will be cropped; so the
* distance from the start angle to the first angle and/or the distance from the last angle to
* the end angle may be different to the others.
*
* Furthermore the computation is only possible on un-rotated ellipses; if your source ellipse has
* a rotation on the plane please 'rotate' the result angles afterwards to find matching angles.
*
* Returned angles are normalized to the interval `[ 0, PI*2 ]`.
*
* @param {number} radiusH - The first (horizonal) radius of the ellipse.
* @param {number} radiusV - The second (vertical) radius of the ellipse.
* @param {number} startAngle - The opening angle of your elliptic sector (please use normalized angles).
* @param {number} endAngle - The closing angle of your elliptic sector (please use normalized angles).
* @param {number} fullEllipsePointCount - The number of base segments to use from the source ellipse (12 or 16 are good numbers).
* @return {Array<number>} An array of n angles inside startAngle and endAngle (where n <= fullEllipsePointCount).
*/
equidistantVertAngles: (
radiusH: number,
radiusV: number,
startAngle: number,
endAngle: number,
fullEllipsePointCount: number
): Array<number> => {
var ellipseAngles = VEllipse.utils.equidistantVertAngles(radiusH, radiusV, fullEllipsePointCount);
ellipseAngles = ellipseAngles.map((angle: number) => VEllipseSector.ellipseSectorUtils.normalizeAngle(angle));
var angleIsInRange = (angle: number) => {
if (startAngle < endAngle) return angle >= startAngle && angle <= endAngle;
else return angle >= startAngle || (angle <= endAngle && angle >= 0);
};
// Drop all angles outside the sector
var ellipseAngles = ellipseAngles.filter(angleIsInRange);
// Now we need to sort the angles to the first one in the array is the closest to startAngle.
// --> find the angle that is closest to the start angle
var startIndex = VEllipseSector.ellipseSectorUtils.findClosestToStartAngle(startAngle, endAngle, ellipseAngles);
// Bring all angles into the correct order
// Idea: use splice or slice here?
var angles: Array<number> = [];
for (var i = 0; i < ellipseAngles.length; i++) {
angles.push(ellipseAngles[(startIndex + i) % ellipseAngles.length]);
}
return angles;
},
findClosestToStartAngle: (startAngle: number, endAngle: number, ellipseAngles: Array<number>): number => {
// Note: endAngle > 0 && startAngle > 0
if (startAngle > endAngle) {
const n: number = ellipseAngles.length;
for (var i = 0; i < n; i++) {
const ea: number = geomutils.wrapMinMax(ellipseAngles[i], 0, Math.PI * 2);
if (ea >= startAngle && ea >= endAngle) {
return i;
}
}
}
return 0;
},
normalizeAngle: (angle: number): number => (angle < 0 ? Math.PI * 2 + angle : angle),
/**
* Convert the elliptic arc from endpoint parameters to center parameters as described
* in the w3c svg arc implementation note.
*
* https://www.w3.org/TR/SVG/implnote.html#ArcConversionEndpointToCenter
*
* @param {number} x1 - The x component of the start point (end of last SVG command).
* @param {number} y1 - The y component of the start point (end of last SVG command).
* @param {number} rx - The first (horizontal) radius of the ellipse.
* @param {number} ry - The second (vertical) radius of the ellipse.
* @param {number} phi - The ellipse's rotational angle (angle of axis rotation) in radians (not in degrees as the SVG command uses!)
* @param {boolean} fa - The large-arc-flag (boolean, not 0 or 1).
* @param {boolean} fs - The sweep-flag (boolean, not 0 or 1).
* @param {number} x2 - The x component of the end point (end of last SVG command).
* @param {number} y2 - The y component of the end point (end of last SVG command).
* @returns
*/
endpointToCenterParameters(
x1: number,
y1: number,
rx: number,
ry: number,
phi: number,
fa: boolean,
fs: boolean,
x2: number,
y2: number
): VEllipseSector {
// console.log("endpointToCenterParameters", x1, y1, phi, rx, ry, fa, fs, x2, y2);
// Thanks to
// https://observablehq.com/@toja/ellipse-and-elliptical-arc-conversion
const abs = Math.abs;
const sin = Math.sin;
const cos = Math.cos;
const sqrt = Math.sqrt;
const pow = (n: number): number => {
return n * n;
};
const sinphi: number = sin(phi);
const cosphi: number = cos(phi);
// Step 1: simplify through translation/rotation
const x: number = (cosphi * (x1 - x2)) / 2 + (sinphi * (y1 - y2)) / 2;
const y: number = (-sinphi * (x1 - x2)) / 2 + (cosphi * (y1 - y2)) / 2;
const px: number = pow(x),
py: number = pow(y),
prx: number = pow(rx),
pry: number = pow(ry);
// correct of out-of-range radii
const L: number = px / prx + py / pry;
if (L > 1) {
rx = sqrt(L) * abs(rx);
ry = sqrt(L) * abs(ry);
} else {
rx = abs(rx);
ry = abs(ry);
}
// Step 2 + 3: compute center
const sign: number = fa === fs ? -1 : 1;
// const M: number = sqrt((prx * pry - prx * py - pry * px) / (prx * py + pry * px)) * sign;
const M: number = sqrt(Math.abs((prx * pry - prx * py - pry * px) / (prx * py + pry * px))) * sign;
const _cx: number = (M * (rx * y)) / ry;
const _cy: number = (M * (-ry * x)) / rx;
const cx: number = cosphi * _cx - sinphi * _cy + (x1 + x2) / 2;
const cy: number = sinphi * _cx + cosphi * _cy + (y1 + y2) / 2;
// Step 4: Compute start and end angle
const center: Vertex = new Vertex(cx, cy);
const axis: Vertex = center.clone().addXY(rx, ry);
const ellipse: VEllipse = new VEllipse(center, axis, 0);
// console.log("VELLIPSE::::::", ellipse);
ellipse.rotate(phi);
const startAngle: number = new Line(ellipse.center, new Vertex(x1, y1)).angle();
const endAngle: number = new Line(ellipse.center, new Vertex(x2, y2)).angle();
return new VEllipseSector(ellipse, startAngle - phi, endAngle - phi);
}
}; // END ellipseSectorUtils
}