plotboilerplate
Version:
A simple javascript plotting boilerplate for 2d stuff.
487 lines (453 loc) • 16.8 kB
text/typescript
/**
* @author Ikaros Kappler
* @date 2018-11-28
* @modified 2018-12-04 Added the toSVGString function.
* @modified 2020-03-25 Ported this class from vanilla-JS to Typescript.
* @modified 2021-01-20 Added UID.
* @modified 2021-02-14 Added functions `radiusH` and `radiusV`.
* @modified 2021-02-26 Added helper function `decribeSVGArc(...)`.
* @modified 2021-03-01 Added attribute `rotation` to allow rotation of ellipses.
* @modified 2021-03-03 Added the `vertAt` and `perimeter` methods.
* @modified 2021-03-05 Added the `getFoci`, `normalAt` and `tangentAt` methods.
* @modified 2021-03-09 Added the `clone` and `rotate` methods.
* @modified 2021-03-10 Added the `toCubicBezier` method.
* @modified 2021-03-15 Added `VEllipse.quarterSegmentCount` and `VEllipse.scale` functions.
* @modified 2021-03-19 Added the `VEllipse.rotate` function.
* @modified 2022-02-02 Added the `destroy` method.
* @modified 2022-02-02 Cleared the `VEllipse.toSVGString` function (deprecated). Use `drawutilssvg` instead.
* @version 1.3.0
*
* @file VEllipse
* @fileoverview Ellipses with a center and an x- and a y-axis (stored as a vertex).
**/
import { Line } from "./Line";
import { Vector } from "./Vector";
import { Vertex } from "./Vertex";
import { UIDGenerator } from "./UIDGenerator";
import { SVGSerializable, UID, XYCoords } from "./interfaces";
import { CubicBezierCurve } from "./CubicBezierCurve";
/**
* @classdesc An ellipse class based on two vertices [centerX,centerY] and [radiusX,radiusY].
*
* @requires SVGSerializable
* @requires UID
* @requires UIDGenerator
* @requires Vertex
*/
export class VEllipse implements SVGSerializable {
/**
* Required to generate proper CSS classes and other class related IDs.
**/
readonly className: string = "VEllipse";
/**
* The UID of this drawable object.
*
* @member {UID}
* @memberof VEllipse
* @instance
* @readonly
*/
readonly uid: UID;
/**
* @member {Vertex}
* @memberof VEllipse
* @instance
*/
center: Vertex;
/**
* @member {Vertex}
* @memberof VEllipse
* @instance
*/
axis: Vertex;
/**
* @member {number}
* @memberof VEllipse
* @instance
*/
rotation: number;
/**
* @member isDestroyed
* @memberof VEllipse
* @type {boolean}
* @instance
*/
isDestroyed: boolean;
/**
* The constructor.
*
* @constructor
* @param {Vertex} center - The ellipses center.
* @param {Vertex} axis - The x- and y-axis (the two radii encoded in a control point).
* @param {Vertex} rotation - [optional, default=0] The rotation of this ellipse.
* @name VEllipse
**/
constructor(center: Vertex, axis: Vertex, rotation?: number) {
this.uid = UIDGenerator.next();
this.center = center;
this.axis = axis;
this.rotation = rotation || 0.0;
}
/**
* Clone this ellipse (deep clone).
*
* @return {VEllipse} A copy of this ellipse.s
*/
clone(): VEllipse {
return new VEllipse(this.center.clone(), this.axis.clone(), this.rotation);
}
/**
* Get the non-negative horizonal radius of this ellipse.
*
* @method radiusH
* @instance
* @memberof VEllipse
* @return {number} The unsigned horizontal radius of this ellipse.
*/
radiusH(): number {
return Math.abs(this.signedRadiusH());
}
/**
* Get the signed horizonal radius of this ellipse.
*
* @method signedRadiusH
* @instance
* @memberof VEllipse
* @return {number} The signed horizontal radius of this ellipse.
*/
signedRadiusH(): number {
// return Math.abs(this.axis.x - this.center.x);
// Rotate axis back to origin before calculating radius
// return Math.abs(new Vertex(this.axis).rotate(-this.rotation,this.center).x - this.center.x);
return new Vertex(this.axis).rotate(-this.rotation, this.center).x - this.center.x;
}
/**
* Get the non-negative vertical radius of this ellipse.
*
* @method radiusV
* @instance
* @memberof VEllipse
* @return {number} The unsigned vertical radius of this ellipse.
*/
radiusV(): number {
return Math.abs(this.signedRadiusV());
}
/**
* Get the signed vertical radius of this ellipse.
*
* @method radiusV
* @instance
* @memberof VEllipse
* @return {number} The signed vertical radius of this ellipse.
*/
signedRadiusV(): number {
// return Math.abs(this.axis.y - this.center.y);
// Rotate axis back to origin before calculating radius
// return Math.abs(new Vertex(this.axis).rotate(-this.rotation,this.center).y - this.center.y);
return new Vertex(this.axis).rotate(-this.rotation, this.center).y - this.center.y;
}
/**
* Scale this ellipse by the given factor from the center point. The factor will be applied to both radii.
*
* @method scale
* @instance
* @memberof VEllipse
* @param {number} factor - The factor to scale by.
* @return {VEllipse} this for chaining.
*/
scale(factor: number): VEllipse {
this.axis.scale(factor, this.center);
return this;
}
/**
* Rotate this ellipse around its center.
*
* @method rotate
* @instance
* @memberof VEllipse
* @param {number} angle - The angle to rotate by.
* @returns {VEllipse} this for chaining.
*/
rotate(angle: number): VEllipse {
this.axis.rotate(angle, this.center);
this.rotation += angle;
return this;
}
/**
* Get the vertex on the ellipse's outline at the given angle.
*
* @method vertAt
* @instance
* @memberof VEllipse
* @param {number} angle - The angle to determine the vertex at.
* @return {Vertex} The vertex on the outline at the given angle.
*/
vertAt(angle: number): Vertex {
// Tanks to Narasinham for the vertex-on-ellipse equations
// https://math.stackexchange.com/questions/22064/calculating-a-point-that-lies-on-an-ellipse-given-an-angle
const a: number = this.radiusH();
const b: number = this.radiusV();
return new Vertex(VEllipse.utils.polarToCartesian(this.center.x, this.center.y, a, b, angle)).rotate(
this.rotation,
this.center
);
}
/**
* Get the normal vector at the given angle.
* The normal vector is the vector that intersects the ellipse in a 90 degree angle
* at the given point (speicified by the given angle).
*
* Length of desired normal vector can be specified, default is 1.0.
*
* @method normalAt
* @instance
* @memberof VEllipse
* @param {number} angle - The angle to get the normal vector at.
* @param {number=1.0} length - [optional, default=1] The length of the returned vector.
*/
normalAt(angle: number, length?: number): Vector {
const point: Vertex = this.vertAt(angle);
const foci: [Vertex, Vertex] = this.getFoci();
// Calculate the angle between [point,focusA] and [point,focusB]
const angleA: number = new Line(point, foci[0]).angle();
const angleB: number = new Line(point, foci[1]).angle();
const centerAngle: number = angleA + (angleB - angleA) / 2.0;
const endPointA: Vertex = point.clone().addX(50).clone().rotate(centerAngle, point);
const endPointB: Vertex = point
.clone()
.addX(50)
.clone()
.rotate(Math.PI + centerAngle, point);
if (this.center.distance(endPointA) < this.center.distance(endPointB)) {
return new Vector(point, endPointB);
} else {
return new Vector(point, endPointA);
}
}
/**
* Get the tangent vector at the given angle.
* The tangent vector is the vector that touches the ellipse exactly at the given given
* point (speicified by the given angle).
*
* Note that the tangent is just 90 degree rotated normal vector.
*
* Length of desired tangent vector can be specified, default is 1.0.
*
* @method tangentAt
* @instance
* @memberof VEllipse
* @param {number} angle - The angle to get the tangent vector at.
* @param {number=1.0} length - [optional, default=1] The length of the returned vector.
*/
tangentAt(angle: number, length?: number): Vector {
const normal: Vector = this.normalAt(angle, length);
// Rotate the normal by 90 degrees, then it is the tangent.
normal.b.rotate(Math.PI / 2, normal.a);
return normal;
}
/**
* Get the perimeter of this ellipse.
*
* @method perimeter
* @instance
* @memberof VEllipse
* @return {number}
*/
perimeter(): number {
// This method does not use an iterative approximation to determine the perimeter, but it uses
// a wonderful closed approximation found by Srinivasa Ramanujan.
// Matt Parker made a neat video about it:
// https://www.youtube.com/watch?v=5nW3nJhBHL0
const a: number = this.radiusH();
const b: number = this.radiusV();
return Math.PI * (3 * (a + b) - Math.sqrt((3 * a + b) * (a + 3 * b)));
}
/**
* Get the two foci of this ellipse.
*
* @method getFoci
* @instance
* @memberof VEllipse
* @return {Array<Vertex>} An array with two elements, the two focal points of the ellipse (foci).
*/
getFoci(): [Vertex, Vertex] {
// https://www.mathopenref.com/ellipsefoci.html
const rh: number = this.radiusH();
const rv: number = this.radiusV();
const sdiff: number = rh * rh - rv * rv;
// f is the distance of each focs to the center.
const f: number = Math.sqrt(Math.abs(sdiff));
// Foci on x- or y-axis?
if (sdiff < 0) {
return [
this.center.clone().addY(f).rotate(this.rotation, this.center),
this.center.clone().addY(-f).rotate(this.rotation, this.center)
];
} else {
return [
this.center.clone().addX(f).rotate(this.rotation, this.center),
this.center.clone().addX(-f).rotate(this.rotation, this.center)
];
}
}
/**
* Get equally distributed points on the outline of this ellipse.
*
* @param {number} pointCount - The number of points.
* @returns {Array<Vertex>}
*/
getEquidistantVertices(pointCount: number): Array<Vertex> {
const angles: Array<number> = VEllipse.utils.equidistantVertAngles(this.radiusH(), this.radiusV(), pointCount);
const result: Array<Vertex> = [];
for (var i = 0; i < angles.length; i++) {
result.push(this.vertAt(angles[i]));
}
return result;
}
/**
* Convert this ellipse into cubic Bézier curves.
*
* @param {number=3} quarterSegmentCount - The number of segments per base elliptic quarter (default is 3, min is 1).
* @param {number=0.666666} threshold - The Bézier threshold (default value 0.666666 approximates the ellipse with best results
* but you might wish to use other values)
* @return {Array<CubicBezierCurve>} An array of cubic Bézier curves representing this ellipse.
*/
toCubicBezier(quarterSegmentCount?: number, threshold?: number): Array<CubicBezierCurve> {
// Math by Luc Maisonobe
// http://www.spaceroots.org/documents/ellipse/node22.html
// Note that ellipses with radiusH=0 or radiusV=0 cannot be represented as Bézier curves.
// Return a single line here (as a Bézier curve)
// if (Math.abs(this.radiusV()) < 0.00001) {
// const radiusH = this.radiusH();
// return [
// new CubicBezierCurve(
// this.center.clone().addX(radiusH),
// this.center.clone().addX(-radiusH),
// this.center.clone(),
// this.center.clone()
// )
// ]; // TODO: test horizontal line ellipse
// }
// if (Math.abs(this.radiusH()) < 0.00001) {
// const radiusV = this.radiusV();
// return [
// new CubicBezierCurve(
// this.center.clone().addY(radiusV),
// this.center.clone().addY(-radiusV),
// this.center.clone(),
// this.center.clone()
// )
// ]; // TODO: test vertical line ellipse
// }
// At least 4, but 16 seems to be a good value.
const segmentCount = Math.max(1, quarterSegmentCount || 3) * 4;
threshold = typeof threshold === "undefined" ? 0.666666 : threshold;
const radiusH = this.radiusH();
const radiusV = this.radiusV();
const curves: Array<CubicBezierCurve> = [];
const angles: Array<number> = VEllipse.utils.equidistantVertAngles(radiusH, radiusV, segmentCount);
let curAngle: number = angles[0];
let startPoint: Vertex = this.vertAt(curAngle);
for (var i = 0; i < angles.length; i++) {
let nextAngle = angles[(i + 1) % angles.length];
let endPoint: Vertex = this.vertAt(nextAngle);
if (Math.abs(radiusV) < 0.0001 || Math.abs(radiusH) < 0.0001) {
// Distorted ellipses can only be approximated by linear Bézier segments
let diff: XYCoords = startPoint.difference(endPoint);
let curve: CubicBezierCurve = new CubicBezierCurve(
startPoint.clone(),
endPoint.clone(),
startPoint.clone().addXY(diff.x * 0.333, diff.y * 0.333),
endPoint.clone().addXY(-diff.x * 0.333, -diff.y * 0.333)
);
curves.push(curve);
} else {
let startTangent: Vector = this.tangentAt(curAngle);
let endTangent: Vector = this.tangentAt(nextAngle);
// Find intersection (ignore that the result might be null in some extreme cases)
let intersection: Vertex = startTangent.intersection(endTangent) as Vertex;
// What if intersection is undefined?
// --> This *can* not happen if segmentCount > 2 and height and width of the ellipse are not zero.
let startDiff: Vertex = startPoint.difference(intersection);
let endDiff: Vertex = endPoint.difference(intersection);
let curve: CubicBezierCurve = new CubicBezierCurve(
startPoint.clone(),
endPoint.clone(),
startPoint.clone().add(startDiff.scale(threshold)),
endPoint.clone().add(endDiff.scale(threshold))
);
curves.push(curve);
}
startPoint = endPoint;
curAngle = nextAngle;
}
return curves;
}
/**
* This function should invalidate any installed listeners and invalidate this object.
* After calling this function the object might not hold valid data any more and
* should not be used.
*/
destroy() {
this.center.destroy();
this.axis.destroy();
this.isDestroyed = true;
}
/**
* A static collection of ellipse-related helper functions.
* @static
*/
static utils = {
/**
* Calculate a particular point on the outline of the given ellipse (center plus two radii plus angle).
*
* @name polarToCartesian
* @param {number} centerX - The x coordinate of the elliptic center.
* @param {number} centerY - The y coordinate of the elliptic center.
* @param {number} radiusH - The horizontal radius of the ellipse.
* @param {number} radiusV - The vertical radius of the ellipse.
* @param {number} angle - The angle (in radians) to get the desired outline point for.
* @reutn {XYCoords} The outlont point in absolute x-y-coordinates.
*/
polarToCartesian: (centerX: number, centerY: number, radiusH: number, radiusV: number, angle: number): XYCoords => {
// Tanks to Narasinham for the vertex-on-ellipse equations
// https://math.stackexchange.com/questions/22064/calculating-a-point-that-lies-on-an-ellipse-given-an-angle
var s = Math.sin(Math.PI / 2 - angle);
var c = Math.cos(Math.PI / 2 - angle);
return {
x: centerX + (radiusH * radiusV * s) / Math.sqrt(Math.pow(radiusH * c, 2) + Math.pow(radiusV * s, 2)),
y: centerY + (radiusH * radiusV * c) / Math.sqrt(Math.pow(radiusH * c, 2) + Math.pow(radiusV * s, 2))
};
},
/**
* Get the `theta` for a given `phi` (used to determine equidistant points on ellipse).
*
* @param radiusH
* @param radiusV
* @param phi
* @returns {number} theta
*/
phiToTheta: (radiusH: number, radiusV: number, phi: number): number => {
// See https://math.stackexchange.com/questions/172766/calculating-equidistant-points-around-an-ellipse-arc
var tanPhi = Math.tan(phi);
var tanPhi2 = tanPhi * tanPhi;
var theta = -Math.PI / 2 + phi + Math.atan(((radiusH - radiusV) * tanPhi) / (radiusV + radiusH * tanPhi2));
return theta;
},
/**
* Get n equidistant points on the elliptic arc.
*
* @param pointCount
* @returns
*/
equidistantVertAngles: (radiusH: number, radiusV: number, pointCount: number): Array<number> => {
const angles: Array<number> = [];
for (var i = 0; i < pointCount; i++) {
var phi = Math.PI / 2.0 + ((Math.PI * 2) / pointCount) * i;
let theta = VEllipse.utils.phiToTheta(radiusH, radiusV, phi);
angles[i] = theta;
}
return angles;
}
}; // END utils
}