UNPKG

plotboilerplate

Version:

A simple javascript plotting boilerplate for 2d stuff.

804 lines 31.1 kB
/** * @author Ikaros Kappler * @date 2018-04-14 * @modified 2018-11-17 Added the containsVert function. * @modified 2018-12-04 Added the toSVGString function. * @modified 2019-03-20 Added JSDoc tags. * @modified 2019-10-25 Added the scale function. * @modified 2019-11-06 JSDoc update. * @modified 2019-11-07 Added toCubicBezierPath(number) function. * @modified 2019-11-22 Added the rotate(number,Vertex) function. * @modified 2020-03-24 Ported this class from vanilla-JS to Typescript. * @modified 2020-10-30 Added the `addVertex` function. * @modified 2020-10-31 Added the `getVertexAt` function. * @modified 2020-11-06 Added the `move` function. * @modified 2020-11-10 Added the `getBounds` function. * @modified 2020-11-11 Generalized `move(Vertex)` to `move(XYCoords)`. * @modified 2021-01-20 Added UID. * @modified 2021-01-29 Added the `signedArea` function (was global function in the demos before). * @modified 2021-01-29 Added the `isClockwise` function. * @modified 2021-01-29 Added the `area` function. * @modified 2021-01-29 Changed the param type for `containsVert` from Vertex to XYCoords. * @modified 2021-12-14 Added the `perimeter()` function. * @modified 2021-12-16 Added the `getEvenDistributionPolygon()` function. * @modified 2022-02-02 Added the `destroy` method. * @modified 2022-02-02 Cleared the `Polygon.toSVGString` function (deprecated). Use `drawutilssvg` instead. * @modified 2022-03-08 Added the `Polygon.clone()` function. * @modified 2023-09-25 Added the `Polygon.getInterpolationPolygon(number)` function. * @modified 2023-09-25 Added the `Polygon.lineIntersections(Line,boolean)` function. * @modified 2023-09-29 Added the `Polygon.closestLineIntersection(Line,boolean)` function. * @modified 2023-11-24 Added the `Polygon.containsPolygon(Polygon)' function. * @modified 2024-10-12 Added the `getEdgeAt` method. * @modified 2024-10-30 Added the `getEdges` method. * @modified 2024-12-02 Added the `elimitateColinearEdges` method. * @modified 2025-02-12 Added the `containsVerts` method to test multiple vertices for containment. * @version 1.14.0 * * @file Polygon * @public **/ import { BezierPath } from "./BezierPath"; import { Bounds } from "./Bounds"; import { Line } from "./Line"; import { Triangle } from "./Triangle"; import { UIDGenerator } from "./UIDGenerator"; import { Vertex } from "./Vertex"; import { geomutils } from "./geomutils"; /** * @classdesc A polygon class. Any polygon consists of an array of vertices; polygons can be open or closed. * * @requires BezierPath * @requires Bounds * @requires SVGSerializabe * @requires UID * @requires UIDGenerator * @requires Vertex * @requires XYCoords */ export class Polygon { /** * The constructor. * * @constructor * @name Polygon * @param {Vertex[]} vertices - An array of 2d vertices that shape the polygon. * @param {boolean} isOpen - Indicates if the polygon should be rendered as an open or closed shape. **/ constructor(vertices, isOpen) { /** * Required to generate proper CSS classes and other class related IDs. **/ this.className = "Polygon"; this.uid = UIDGenerator.next(); if (typeof vertices == "undefined") { vertices = []; } this.vertices = vertices; this.isOpen = isOpen || false; } /** * Add a vertex to the end of the `vertices` array. * * @method addVertex * @param {Vertex} vert - The vertex to add. * @instance * @memberof Polygon **/ addVertex(vert) { this.vertices.push(vert); } /** * Add a vertex at a particular position of the `vertices` array. * * @method addVertexAt * @param {Vertex} vert - The vertex to add. * @param {number} index - The position to add the vertex at. Will be handled modulo. * @instance * @memberof Polygon **/ addVertexAt(vert, index) { // var moduloIndex = index % (this.vertices.length + 1); this.vertices.splice(index, 0, vert); } /** * Get a new instance of the line at the given start index. The returned line will consist * of the vertex at `vertIndex` and `vertIndex+1` (will be handled modulo). * * @method getEdgeAt * @param {number} vertIndex - The vertex index of the line to start. * @instance * @memberof Polygon * @return {Line} **/ getEdgeAt(vertIndex) { return new Line(this.getVertexAt(vertIndex), this.getVertexAt(vertIndex + 1)); } /** * Converts this polygon into a sequence of lines. Please note that each time * this method is called new lines are created. The underlying line vertices are no clones * (instances). * * @method getEdges * @instance * @memberof Polygon * @return {Array<Line>} */ getEdges() { const lines = []; for (var i = 0; i + 1 < this.vertices.length; i++) { // var line = this.getLineAt(i).clone(); lines.push(this.getEdgeAt(i)); } if (!this.isOpen && this.vertices.length > 0) { lines.push(this.getEdgeAt(this.vertices.length - 1)); } return lines; } /** * Checks if the angle at the given polygon vertex (index) is acute. Please not that this is * only working for clockwise polygons. If this polygon is not clockwise please use the * `isClockwise` method and reverse polygon vertices if needed. * * @method isAngleAcute * @instance * @memberof Polygon * @param {number} vertIndex - The index of the polygon vertex to check. * @returns {boolean} `true` is angle is acute, `false` is obtuse. */ getInnerAngleAt(vertIndex) { const p2 = this.vertices[vertIndex]; const p1 = this.vertices[(vertIndex + this.vertices.length - 1) % this.vertices.length].clone(); const p3 = this.vertices[(vertIndex + 1) % this.vertices.length].clone(); // See // https://math.stackexchange.com/questions/149959/how-to-find-the-interior-angle-of-an-irregular-pentagon-or-polygon // π−arccos((P2−P1)⋅(P3−P2)|P2−P1||P3−P2|) // Check if triangle is acute (will be used later) // Acute angles and obtuse angles need to be handled differently. const isAcute = this.isAngleAcute(vertIndex); // Differences const zero = new Vertex(0, 0); const p2mp1 = new Vertex(p2.x - p1.x, p2.y - p1.y); const p3mp2 = new Vertex(p3.x - p2.x, p3.y - p2.y); const p2mp1_len = zero.distance(p2mp1); const p3mp2_len = zero.distance(p3mp2); // Dot products const dotProduct = geomutils.dotProduct(p2mp1, p3mp2); const lengthProduct = p2mp1_len * p3mp2_len; if (isAcute) { return Math.PI - Math.acos(dotProduct / lengthProduct); } else { return Math.PI + Math.acos(dotProduct / lengthProduct); } } /** * Checks if the angle at the given polygon vertex (index) is acute. * * @method isAngleAcute * @instance * @memberof Polygon * @param {number} vertIndex - The index of the polygon vertex to check. * @returns {boolean} `true` is angle is acute, `false` is obtuse. */ isAngleAcute(vertIndex) { const A = this.vertices[(vertIndex + this.vertices.length - 1) % this.vertices.length].clone(); const B = this.vertices[vertIndex]; const C = this.vertices[(vertIndex + 1) % this.vertices.length].clone(); // Find local winding number for triangle A B C const windingNumber = Triangle.utils.determinant(A, B, C); // console.log("vertIndex", vertIndex, "windingNumber", windingNumber); return windingNumber < 0; } /** * Get the polygon vertex at the given position (index). * * The index may exceed the total vertex count, and will be wrapped around then (modulo). * * For k >= 0: * - getVertexAt( vertices.length ) == getVertexAt( 0 ) * - getVertexAt( vertices.length + k ) == getVertexAt( k ) * - getVertexAt( -k ) == getVertexAt( vertices.length -k ) * * @method getVertexAt * @param {number} index - The index of the desired vertex. * @instance * @memberof Polygon * @return {Vertex} At the given index. **/ getVertexAt(index) { if (index < 0) { return this.vertices[this.vertices.length - (Math.abs(index) % this.vertices.length)]; } else { return this.vertices[index % this.vertices.length]; } } /** * Move the polygon's vertices by the given amount. * * @method move * @param {XYCoords} amount - The amount to move. * @instance * @memberof Polygon * @return {Polygon} this for chaining **/ move(amount) { for (var i in this.vertices) { this.vertices[i].add(amount); } return this; } /** * Check if the given vertex is inside this polygon.<br> * <br> * Ray-casting algorithm found at<br> * https://stackoverflow.com/questions/22521982/check-if-point-inside-a-polygon * * @method containsVert * @param {XYCoords} vert - The vertex to check. * @return {boolean} True if the passed vertex is inside this polygon. The polygon is considered closed. * @instance * @memberof Polygon **/ containsVert(vert) { // ray-casting algorithm based on // http://www.ecse.rpi.edu/Homepages/wrf/Research/Short_Notes/pnpoly.html var inside = false; for (var i = 0, j = this.vertices.length - 1; i < this.vertices.length; j = i++) { let xi = this.vertices[i].x, yi = this.vertices[i].y; let xj = this.vertices[j].x, yj = this.vertices[j].y; var intersect = yi > vert.y != yj > vert.y && vert.x < ((xj - xi) * (vert.y - yi)) / (yj - yi) + xi; if (intersect) inside = !inside; } return inside; } /** * Check if all given vertices are inside this polygon.<br> * <br> * This method just uses the `Polygon.containsVert` method. * * @method containsVerts * @param {XYCoords[]} verts - The vertices to check. * @return {boolean} True if all passed vertices are inside this polygon. The polygon is considered closed. * @instance * @memberof Polygon **/ containsVerts(verts) { return verts.every((vert) => this.containsVert(vert)); } /** * Check if the passed polygon is completly contained inside this polygon. * * This means: * - all polygon's vertices must be inside this polygon. * - the polygon has no edge intersections with this polygon. * * @param {Polygon} polygon - The polygon to check if contained. * @return {boolean} */ containsPolygon(polygon) { for (var i = 0; i < polygon.vertices.length; i++) { if (!this.containsVert(polygon.vertices[i])) { return false; } } // All vertices are inside; check for intersections const lineSegment = new Line(new Vertex(), new Vertex()); for (var i = 0; i < polygon.vertices.length; i++) { lineSegment.a.set(polygon.vertices[i]); lineSegment.b.set(polygon.vertices[(i + 1) % polygon.vertices.length]); if (this.lineIntersections(lineSegment, true).length > 0) { // Current segment has intersection(s) with this polygon. return false; } } return true; } /** * Calculate the area of the given polygon (unsigned). * * Note that this does not work for self-intersecting polygons. * * @method area * @instance * @memberof Polygon * @return {number} */ area() { return Polygon.utils.area(this.vertices); } /** * Calulate the signed polyon area by interpreting the polygon as a matrix * and calculating its determinant. * * @method signedArea * @instance * @memberof Polygon * @return {number} */ signedArea() { return Polygon.utils.signedArea(this.vertices); } /** * Get the winding order of this polgon: clockwise or counterclockwise. * * @method isClockwise * @instance * @memberof Polygon * @return {boolean} */ isClockwise() { // return Polygon.utils.signedArea(this.vertices) < 0; return Polygon.utils.isClockwise(this.vertices); } /** * Get the perimeter of this polygon. * The perimeter is the absolute length of the outline. * * If this polygon is open then the last segment (connecting the first and the * last vertex) will be skipped. * * @method perimeter * @instance * @memberof Polygon * @return {number} */ perimeter() { let length = 0; for (var i = 1; i < this.vertices.length; i++) { length += this.vertices[i - 1].distance(this.vertices[i]); } if (!this.isOpen && this.vertices.length > 1) { length += this.vertices[0].distance(this.vertices[this.vertices.length - 1]); } return length; } /** * Scale the polygon relative to the given center. * * @method scale * @param {number} factor - The scale factor. * @param {Vertex} center - The center of scaling. * @return {Polygon} this, for chaining. * @instance * @memberof Polygon **/ scale(factor, center) { for (var i in this.vertices) { if (typeof this.vertices[i].scale == "function") this.vertices[i].scale(factor, center); else console.log("There seems to be a null vertex!", this.vertices[i]); } return this; } /** * Rotate the polygon around the given center. * * @method rotate * @param {number} angle - The rotation angle. * @param {Vertex} center - The center of rotation. * @instance * @memberof Polygon * @return {Polygon} this, for chaining. **/ rotate(angle, center) { for (var i in this.vertices) { this.vertices[i].rotate(angle, center); } return this; } /** * Get the mean `center` of this polygon by calculating the mean value of all vertices. * * Mean: (v[0] + v[1] + ... v[n-1]) / n * * @method getMeanCenter * @instance * @memberof Polygon * @return {Vertex|null} `null` is no vertices are available. */ getMeanCenter() { if (this.vertices.length === 0) { return null; } const center = this.vertices[0].clone(); for (var i = 1; i < this.vertices.length; i++) { center.add(this.vertices[i]); } center.x /= this.vertices.length; center.y /= this.vertices.length; return center; } /** * Get all line intersections with this polygon. * * See demo `47-closest-vector-projection-on-polygon` for how it works. * * @param {VertTuple} line - The line to find intersections with. * @param {boolean} inVectorBoundsOnly - If set to true only intersecion points on the passed vector are returned (located strictly between start and end vertex). * @returns {Array<Vertex>} - An array of all intersections within the polygon bounds. */ lineIntersections(line, inVectorBoundsOnly = false) { // Find the intersections of all lines inside the edge bounds const intersectionPoints = []; for (var i = 0; i < this.vertices.length; i++) { const polyLine = new Line(this.vertices[i], this.vertices[(i + 1) % this.vertices.length]); const intersection = polyLine.intersection(line); // true => only inside bounds // ignore last edge if open if ((!this.isOpen || i + 1 !== this.vertices.length) && intersection !== null && polyLine.hasPoint(intersection, true) && (!inVectorBoundsOnly || line.hasPoint(intersection, inVectorBoundsOnly))) { intersectionPoints.push(intersection); } } return intersectionPoints; } /** * Get the closest line-polygon-intersection point (closest the line point A). * * See demo `47-closest-vector-projection-on-polygon` for how it works. * * @param {VertTuple} line - The line to find intersections with. * @param {boolean} inVectorBoundsOnly - If set to true only intersecion points on the passed vector are considered (located strictly between start and end vertex). * @returns {Array<Vertex>} - An array of all intersections within the polygon bounds. */ closestLineIntersection(line, inVectorBoundsOnly = false) { const allIntersections = this.lineIntersections(line, inVectorBoundsOnly); if (allIntersections.length <= 0) { // Empty polygon -> no intersections return null; } // Find the closest intersection let closestIntersection = new Vertex(Number.MAX_VALUE, Number.MAX_VALUE); let curDist = Number.MAX_VALUE; for (var i in allIntersections) { const curVert = allIntersections[i]; const dist = curVert.distance(line.a); if (dist < curDist) { // && line.hasPoint(curVert)) { curDist = dist; closestIntersection = curVert; } } return closestIntersection; } /** * Construct a new polygon from this polygon with more vertices on each edge. The * interpolation count determines the number of additional vertices on each edge. * An interpolation count of `0` will return a polygon that equals the source * polygon. * * @param {number} interpolationCount * @returns {Polygon} A polygon with `interpolationCount` more vertices (as as factor). */ getInterpolationPolygon(interpolationCount) { const verts = []; for (var i = 0; i < this.vertices.length; i++) { const curVert = this.vertices[i]; const nextVert = this.vertices[(i + 1) % this.vertices.length]; verts.push(curVert.clone()); // Add interpolation points if (!this.isOpen || i + 1 !== this.vertices.length) { const lerpAmount = 1.0 / (interpolationCount + 1); for (var j = 1; j <= interpolationCount; j++) { verts.push(curVert.clone().lerp(nextVert, lerpAmount * j)); } } } return new Polygon(verts, this.isOpen); } /** * Convert this polygon into a new polygon with n evenly distributed vertices. * * @param {number} pointCount - Must not be negative. */ getEvenDistributionPolygon(pointCount) { if (pointCount <= 0) { throw new Error("pointCount must be larger than zero; is " + pointCount + "."); } const result = new Polygon([], this.isOpen); if (this.vertices.length === 0) { return result; } // Fetch and add the start point from the source polygon let polygonPoint = new Vertex(this.vertices[0]); result.vertices.push(polygonPoint); if (this.vertices.length === 1) { return result; } const perimeter = this.perimeter(); const stepSize = perimeter / pointCount; const n = this.vertices.length; let polygonIndex = 1; let nextPolygonPoint = new Vertex(this.vertices[1]); let segmentLength = polygonPoint.distance(nextPolygonPoint); let loopMax = this.isOpen ? n : n + 1; let curSegmentU = stepSize; var i = 1; while (i < pointCount && polygonIndex < loopMax) { // Check if next eq point is inside this segment if (curSegmentU < segmentLength) { let newPoint = polygonPoint.clone().lerpAbs(nextPolygonPoint, curSegmentU); result.vertices.push(newPoint); curSegmentU += stepSize; i++; } else { polygonIndex++; polygonPoint = nextPolygonPoint; nextPolygonPoint = new Vertex(this.vertices[polygonIndex % n]); curSegmentU = curSegmentU - segmentLength; segmentLength = polygonPoint.distance(nextPolygonPoint); } } return result; } /** * Get the bounding box (bounds) of this polygon. * * @method getBounds * @instance * @memberof Polygon * @return {Bounds} The rectangular bounds of this polygon. **/ getBounds() { return Bounds.computeFromVertices(this.vertices); } /** * Create a deep copy of this polygon. * * @method clone * @instance * @memberof Polygon * @return {Polygon} The cloned polygon. */ clone() { return new Polygon(this.vertices.map(vert => vert.clone()), this.isOpen); } /** * Create a new polygon without colinear adjacent edges. This method does not midify the current polygon * but creates a new one. * * Please note that this method does NOT create deep clones of the vertices. Use Polygon.clone() if you need to. * * Please also note that the `tolerance` may become really large here, as the denominator of two closely * parallel lines is usually pretty large. See the demo `57-eliminate-colinear-polygon-edges` to get * an impression of how denominators work. * * @method elimitateColinearEdges * @instance * @memberof Polygon * @param {number?} tolerance - (default is 1.0) The epsilon to detect co-linear edges. * @return {Polygon} A new polygon without co-linear adjacent edges – respective the given epsilon. */ elimitateColinearEdges(tolerance) { const eps = typeof tolerance === "undefined" ? 1.0 : tolerance; const verts = this.vertices.slice(); // Creates a shallow copy let i = 0; var lineA = new Line(new Vertex(), new Vertex()); var lineB = new Line(new Vertex(), new Vertex()); while (i + 1 < verts.length && verts.length > 2) { const vertA = verts[i]; const vertB = verts[(i + 1) % verts.length]; lineA.a = vertA; lineA.b = vertB; lineB.a = vertB; let areColinear = false; let j = i + 2; do { let vertC = verts[j % verts.length]; lineB.b = vertC; areColinear = lineA.colinear(lineB, eps); // console.log("are colinear?", i, i + 1, j, areColinear); if (areColinear) { j++; } } while (areColinear); // Now j points to the first vertex that's NOT colinear to the current lineA // -> delete all vertices in between if (j - i > 2) { // Means: there have been 'colinear vertices' in between // console.log("Splice", "i", i, "j", j, i + 1, j - i - 1); verts.splice(i + 1, j - i - 2); } i++; } return new Polygon(verts, this.isOpen); } /** * Convert this polygon to a sequence of quadratic Bézier curves.<br> * <br> * The first vertex in the returned array is the start point.<br> * The following sequence are pairs of control-point-and-end-point: * <pre>startPoint, controlPoint0, pathPoint1, controlPoint1, pathPoint2, controlPoint2, ..., endPoint</pre> * * @method toQuadraticBezierData * @return {Vertex[]} An array of 2d vertices that shape the quadratic Bézier curve. * @instance * @memberof Polygon **/ toQuadraticBezierData() { if (this.vertices.length < 3) return []; var qbezier = []; var cc0 = this.vertices[0]; var cc1 = this.vertices[1]; var edgeCenter = new Vertex(cc0.x + (cc1.x - cc0.x) / 2, cc0.y + (cc1.y - cc0.y) / 2); qbezier.push(edgeCenter); var limit = this.isOpen ? this.vertices.length : this.vertices.length + 1; for (var t = 1; t < limit; t++) { cc0 = this.vertices[t % this.vertices.length]; cc1 = this.vertices[(t + 1) % this.vertices.length]; var edgeCenter = new Vertex(cc0.x + (cc1.x - cc0.x) / 2, cc0.y + (cc1.y - cc0.y) / 2); qbezier.push(cc0); qbezier.push(edgeCenter); cc0 = cc1; } return qbezier; } /** * Convert this polygon to a quadratic bezier curve, represented as an SVG data string. * * @method toQuadraticBezierSVGString * @return {string} The 'd' part for an SVG 'path' element. * @instance * @memberof Polygon **/ toQuadraticBezierSVGString() { var qdata = this.toQuadraticBezierData(); if (qdata.length == 0) return ""; var buffer = ["M " + qdata[0].x + " " + qdata[0].y]; for (var i = 1; i < qdata.length; i += 2) { buffer.push("Q " + qdata[i].x + " " + qdata[i].y + ", " + qdata[i + 1].x + " " + qdata[i + 1].y); } return buffer.join(" "); } /** * Convert this polygon to a sequence of cubic Bézier curves.<br> * <br> * The first vertex in the returned array is the start point.<br> * The following sequence are triplets of (first-control-point, secnond-control-point, end-point):<br> * <pre>startPoint, controlPoint0_0, controlPoint1_1, pathPoint1, controlPoint1_0, controlPoint1_1, ..., endPoint</pre> * * @method toCubicBezierData * @param {number=} threshold - An optional threshold (default=1.0) how strong the curve segments * should over-/under-drive. Should be between 0.0 and 1.0 for best * results but other values are allowed. * @return {Vertex[]} An array of 2d vertices that shape the cubic Bézier curve. * @instance * @memberof Polygon **/ toCubicBezierData(threshold) { if (typeof threshold == "undefined") threshold = 1.0; if (this.vertices.length < 3) return []; var cbezier = []; var a = this.vertices[0]; var b = this.vertices[1]; var edgeCenter = new Vertex(a.x + (b.x - a.x) / 2, a.y + (b.y - a.y) / 2); cbezier.push(edgeCenter); var limit = this.isOpen ? this.vertices.length - 1 : this.vertices.length; for (var t = 0; t < limit; t++) { var a = this.vertices[t % this.vertices.length]; var b = this.vertices[(t + 1) % this.vertices.length]; var c = this.vertices[(t + 2) % this.vertices.length]; var aCenter = new Vertex(a.x + (b.x - a.x) / 2, a.y + (b.y - a.y) / 2); var bCenter = new Vertex(b.x + (c.x - b.x) / 2, b.y + (c.y - b.y) / 2); var a2 = new Vertex(aCenter.x + (b.x - aCenter.x) * threshold, aCenter.y + (b.y - aCenter.y) * threshold); var b0 = new Vertex(bCenter.x + (b.x - bCenter.x) * threshold, bCenter.y + (b.y - bCenter.y) * threshold); cbezier.push(a2); cbezier.push(b0); cbezier.push(bCenter); } return cbezier; } /** * Convert this polygon to a cubic bezier curve, represented as an SVG data string. * * @method toCubicBezierSVGString * @return {string} The 'd' part for an SVG 'path' element. * @instance * @memberof Polygon **/ toCubicBezierSVGString(threshold) { var qdata = this.toCubicBezierData(threshold); if (qdata.length == 0) { return ""; } var buffer = ["M " + qdata[0].x + " " + qdata[0].y]; for (var i = 1; i < qdata.length; i += 3) { buffer.push("C " + qdata[i].x + " " + qdata[i].y + ", " + qdata[i + 1].x + " " + qdata[i + 1].y + ", " + qdata[i + 2].x + " " + qdata[i + 2].y); } return buffer.join(" "); } /** * Convert this polygon to a cubic bezier path instance. * * @method toCubicBezierPath * @param {number} threshold - The threshold, usually from 0.0 to 1.0. * @return {BezierPath} - A bezier path instance. * @instance * @memberof Polygon **/ toCubicBezierPath(threshold) { var qdata = this.toCubicBezierData(threshold); // Conver the linear path vertices to a two-dimensional path array var pathdata = []; for (var i = 0; i + 3 < qdata.length; i += 3) { pathdata.push([qdata[i], qdata[i + 3], qdata[i + 1], qdata[i + 2]]); } return BezierPath.fromArray(pathdata); } /** * This function should invalidate any installed listeners and invalidate this object. * After calling this function the object might not hold valid data any more and * should not be used. */ destroy() { for (var i = 0; i < this.vertices.length; i++) { this.vertices[i].destroy(); } this.isDestroyed = true; } } Polygon.utils = { /** * Calculate the area of the given polygon (unsigned). * * Note that this does not work for self-intersecting polygons. * * @name area * @return {number} */ area(vertices) { // Found at: // https://stackoverflow.com/questions/16285134/calculating-polygon-area let total = 0.0; for (var i = 0, l = vertices.length; i < l; i++) { const addX = vertices[i].x; const addY = vertices[(i + 1) % l].y; const subX = vertices[(i + 1) % l].x; const subY = vertices[i].y; total += addX * addY * 0.5; total -= subX * subY * 0.5; } return Math.abs(total); }, isClockwise(vertices) { return Polygon.utils.signedArea(vertices) < 0; }, /** * Calulate the signed polyon area by interpreting the polygon as a matrix * and calculating its determinant. * * @name signedArea * @return {number} */ signedArea(vertices) { let sum = 0; const n = vertices.length; for (var i = 0; i < n; i++) { const j = (i + 1) % n; sum += (vertices[j].x - vertices[i].x) * (vertices[i].y + vertices[j].y); } return sum; } }; //# sourceMappingURL=Polygon.js.map