UNPKG

plotboilerplate

Version:

A simple javascript plotting boilerplate for 2d stuff.

262 lines 10.9 kB
"use strict"; /** * This file defines a Matrix4x4 class for 3d transformations. * * [ xx xy yz xw * yx yy yz yw * zx zy zz zw * wx wy wz ww ] * * Original class found at * https://www.migenius.com/articles/3d-transformations-part1-matrices * by Paul Arden * * @file Matrix4x4.js */ var __assign = (this && this.__assign) || function () { __assign = Object.assign || function(t) { for (var s, i = 1, n = arguments.length; i < n; i++) { s = arguments[i]; for (var p in s) if (Object.prototype.hasOwnProperty.call(s, p)) t[p] = s[p]; } return t; }; return __assign.apply(this, arguments); }; Object.defineProperty(exports, "__esModule", { value: true }); exports.Matrix4x4 = void 0; var Matrix4x4 = /** @class */ (function () { /** * Generic class for representing 4x4 matrices. * @constructor * @param {Object} matrix - An object with the initial values for the Matrix4x4. * Can be either an Object or Matrix4x4. */ function Matrix4x4(matrix) { if (matrix) { this.setFromObject(matrix); } else { this.setIdentity(); } } /** * Set matrix components from object * @param {Object} mat - Object with each component of the matrix, all components must be present. * @public */ Matrix4x4.prototype.setFromObject = function (mat) { this.xx = mat.xx; this.xy = mat.xy; this.xz = mat.xz; this.xw = mat.xw; this.yx = mat.yx; this.yy = mat.yy; this.yz = mat.yz; this.yw = mat.yw; this.zx = mat.zx; this.zy = mat.zy; this.zz = mat.zz; this.zw = mat.zw; this.wx = mat.wx; this.wy = mat.wy; this.wz = mat.wz; this.ww = mat.ww; }; // A vector {x,y,z,w=1} Matrix4x4.prototype.apply4 = function (vec4) { return { x: vec4.x * this.xx + vec4.y * this.xy + vec4.z * this.xz + vec4.w * this.xw, y: vec4.x * this.yx + vec4.y * this.yy + vec4.z * this.yz + vec4.w * this.yw, z: vec4.x * this.zx + vec4.y * this.zy + vec4.z * this.zz + vec4.w * this.zw, w: vec4.x * this.wx + vec4.y * this.wy + vec4.z * this.wz + vec4.w * this.ww }; }; Matrix4x4.prototype.apply3 = function (vec3) { var vec4 = __assign(__assign({}, vec3), { w: 1.0 }); var result4 = this.apply4(vec4); // Divide by w: project result on the 4d sphere into 3d space. return { x: result4.x / result4.w, y: result4.y / result4.w, z: result4.z / result4.w }; }; /** * Set all matrix components to 0. * @public */ Matrix4x4.prototype.clear = function () { this.xx = this.xy = this.xz = this.xw = this.yx = this.yy = this.yz = this.yw = this.zx = this.zy = this.zz = this.zw = this.wx = this.wy = this.wz = this.ww = 0; }; /** * Set matrix to the identity matrix. * @public */ Matrix4x4.prototype.setIdentity = function () { this.clear(); this.xx = this.yy = this.zz = this.ww = 1; return this; }; /** * Sets this matrix to a rotation matrix. * @param {Vec3} axis - The vector to rotate around. * @param {Number} angle - The angle to rotate in radians. * @public */ Matrix4x4.prototype.setRotation = function (axis, angle) { this.setIdentity(); var c = Math.cos(angle); var s = Math.sin(angle); var t = 1 - c; var X = axis.x; var Y = axis.y; var Z = axis.z; this.xx = t * X * X + c; this.xy = t * X * Y + s * Z; this.xz = t * X * Z - s * Y; this.yx = t * X * Y - s * Z; this.yy = t * Y * Y + c; this.yz = t * Y * Z + s * X; this.zx = t * X * Z + s * Y; this.zy = t * Y * Z - s * X; this.zz = t * Z * Z + c; return this; }; /** * Sets this matrix to a rotation matrix. * @param {Number} x - Scaling factor in the x axis. * @param {Number} y - Scaling factor in the y axis. * @param {Number} z - Scaling factor in the z axis. * @public */ Matrix4x4.prototype.setScaling = function (x, y, z) { this.setIdentity(); this.xx = x; this.yy = y; this.zz = z; return this; }; /** * Sets the translation elements of this matrix while leaving the * rest of the matrix untouched. * @param {Number} x - Translation amount in the x axis. * @param {Number} y - Translation amount in the y axis. * @param {Number} z - Translation amount in the z axis. */ Matrix4x4.prototype.setTranslation = function (x, y, z) { this.setIdentity(); // There was an error in the original implementation. // See https://pages.mtu.edu/~shene/COURSES/cs3621/NOTES/geometry/geo-tran.html // This is fixed: this.xw = x; this.yw = y; this.zw = z; return this; }; /** * Sets this matrix to the dot product between this matrix and the * matrix specified by rhs. * @param {Matrix4x4} matrix - The matrix on the right hand side of the dot product. */ Matrix4x4.prototype.multiply = function (matrix) { var _mat = new Matrix4x4(this); this.xx = _mat.xx * matrix.xx + _mat.xy * matrix.yx + _mat.xz * matrix.zx + _mat.xw * matrix.wx; this.xy = _mat.xx * matrix.xy + _mat.xy * matrix.yy + _mat.xz * matrix.zy + _mat.xw * matrix.wy; this.xz = _mat.xx * matrix.xz + _mat.xy * matrix.yz + _mat.xz * matrix.zz + _mat.xw * matrix.wz; this.xw = _mat.xx * matrix.xw + _mat.xy * matrix.yw + _mat.xz * matrix.zw + _mat.xw * matrix.ww; this.yx = _mat.yx * matrix.xx + _mat.yy * matrix.yx + _mat.yz * matrix.zx + _mat.yw * matrix.wx; this.yy = _mat.yx * matrix.xy + _mat.yy * matrix.yy + _mat.yz * matrix.zy + _mat.yw * matrix.wy; this.yz = _mat.yx * matrix.xz + _mat.yy * matrix.yz + _mat.yz * matrix.zz + _mat.yw * matrix.wz; this.yw = _mat.yx * matrix.xw + _mat.yy * matrix.yw + _mat.yz * matrix.zw + _mat.yw * matrix.ww; this.zx = _mat.zx * matrix.xx + _mat.zy * matrix.yx + _mat.zz * matrix.zx + _mat.zw * matrix.wx; this.zy = _mat.zx * matrix.xy + _mat.zy * matrix.yy + _mat.zz * matrix.zy + _mat.zw * matrix.wy; this.zz = _mat.zx * matrix.xz + _mat.zy * matrix.yz + _mat.zz * matrix.zz + _mat.zw * matrix.wz; this.zw = _mat.zx * matrix.xw + _mat.zy * matrix.yw + _mat.zz * matrix.zw + _mat.zw * matrix.ww; this.wx = _mat.wx * matrix.xx + _mat.wy * matrix.yx + _mat.wz * matrix.zx + _mat.ww * matrix.wx; this.wy = _mat.wx * matrix.xy + _mat.wy * matrix.yy + _mat.wz * matrix.zy + _mat.ww * matrix.wy; this.wz = _mat.wx * matrix.xz + _mat.wy * matrix.yz + _mat.wz * matrix.zz + _mat.ww * matrix.wz; this.ww = _mat.wx * matrix.xw + _mat.wy * matrix.yw + _mat.wz * matrix.zw + _mat.ww * matrix.ww; return this; }; /** * Create the rotation matrix from the given axis and angle. * * @param {Vec3} axis - The axis to rotate around. * @param {number} angle - The angle to use for rotation (in radians). * @returns Matrix4x4 */ Matrix4x4.makeRotationMatrix = function (axis, angle) { return new Matrix4x4().setRotation(axis, angle); }; /** * Create the scaling matrix from the given x-, y- and z- scaling factors (use 1.0 for no scaling). * * @param {number} scaleX - The x scaling factor. * @param {number} scaleY - The y scaling factor. * @param {number} scaleZ - The z scaling factor. * @returns Matrix4x4 */ Matrix4x4.makeScalingMatrix = function (scaleX, scaleY, scaleZ) { return new Matrix4x4().setScaling(scaleX, scaleY, scaleZ); }; /** * Create the translation matrix from the given x-, y- and z- translation amounts (use 0.0 for no translation). * * @param {number} translateX - The x translation amount. * @param {number} translateY - The y translation amount. * @param {number} translateZ - The z translation amount. * @returns Matrix4x4 */ Matrix4x4.makeTranslationMatrix = function (translateX, translateY, translateZ) { return new Matrix4x4().setTranslation(translateX, translateY, translateZ); }; /** * Create a full transform matrix from the rotation, scaling and translation params. * * @param {number} rotateX - The rotation angle around the x axis. * @param {number} rotateY - The rotation angle around the y axis. * @param {number} rotateZ - The rotation angle around the z axis. * @param {number} scaleX - The x scaling factor. * @param {number} scaleY - The y scaling factor. * @param {number} scaleZ - The z scaling factor. * @param {number} translateX - The x translation amount. * @param {number} translateY - The y translation amount. * @param {number} translateZ - The z translation amount. * @returns Matrix4x4 */ Matrix4x4.makeTransformationMatrix = function (rotateX, rotateY, rotateZ, scaleX, scaleY, scaleZ, translateX, translateY, translateZ) { var matrixRx = new Matrix4x4().setRotation({ x: 1, y: 0, z: 0 }, rotateX); var matrixRy = new Matrix4x4().setRotation({ x: 0, y: 1, z: 0 }, rotateY); var matrixRz = new Matrix4x4().setRotation({ x: 0, y: 0, z: 1 }, rotateZ); var matrixS = new Matrix4x4().setScaling(scaleX, scaleY, scaleZ); var matrixT0 = new Matrix4x4().setTranslation(translateX, translateY, translateZ); var transformMatrix = new Matrix4x4() .multiply(matrixRx) .multiply(matrixRy) .multiply(matrixRz) .multiply(matrixS) .multiply(matrixT0); return transformMatrix; }; /** * Returns a deep copy of this matrix. * @return {Matrix4x4} A deep copy of this matrix. */ Matrix4x4.prototype.clone = function () { return new Matrix4x4(this); }; /** * Returns a pretty print string representation of the matrix. * @return {String} Pretty printed string of the matrix. */ Matrix4x4.prototype.toJSON = function () { // prettier-ignore return ("{\n" + '\t"xx": ' + this.xx + ', "xy": ' + this.xy + ', "xz": ' + this.xz + ', "xw": ' + this.xw + ",\n" + '\t"yx": ' + this.yx + ', "yy": ' + this.yy + ', "yz": ' + this.yz + ', "yw": ' + this.yw + ",\n" + '\t"zx": ' + this.zx + ', "zy": ' + this.zy + ', "zz": ' + this.zz + ', "zw": ' + this.zw + ",\n" + '\t"wx": ' + this.wx + ', "wy": ' + this.wy + ', "wz": ' + this.wz + ', "ww": ' + this.ww + "\n" + "}"); }; return Matrix4x4; }()); exports.Matrix4x4 = Matrix4x4; //# sourceMappingURL=Matrix4x4.js.map