UNPKG

plotboilerplate

Version:

A simple javascript plotting boilerplate for 2d stuff.

814 lines 33.5 kB
"use strict"; /** * @author Ikaros Kappler * @date 2013-08-15 * @modified 2018-08-16 Added a closure. Removed the wrapper class 'IKRS'. Replaced class THREE.Vector2 by Vertex class. * @modified 2018-11-19 Added the fromArray(Array) function. * @modified 2018-11-28 Added the locateCurveByPoint(Vertex) function. * @modified 2018-12-04 Added the toSVGPathData() function. * @modified 2019-03-20 Added JSDoc tags. * @modified 2019-03-23 Changed the signatures of getPoint, getPointAt and getTangent (!version 2.0). * @modified 2019-12-02 Fixed the updateArcLength function. It used the wrong pointAt function (was renamed before). * @modified 2020-02-06 Added the getSubCurveAt(number,number) function. * @modified 2020-02-06 Fixed a serious bug in the arc lenght calculation (length was never reset, urgh). * @modified 2020-02-07 Added the isInstance(any) function. * @modified 2020-02-10 Added the reverse() function. * @modified 2020-02-10 Fixed the translate(...) function (returning 'this' was missing). * @modified 2020-03-24 Ported this class from vanilla JS to Typescript. * @modified 2020-06-03 Added the getBounds() function. * @modified 2020-07-14 Changed the moveCurvePoint(...,Vertex) to moveCurvePoint(...,XYCoords), which is more generic. * @modified 2020-07-24 Added the getClosestT function and the helper function locateIntervalByDistance(...). * @modified 2021-01-20 Added UID. * @modified 2022-02-02 Added the `destroy` method. * @modified 2022-02-02 Cleared the `toSVGPathData` function (deprecated). Use `drawutilssvg` instead. * @modified 2022-10-17 The `CubicBezierCurve` class now implements the new `PathSegment` interface. * @modified 2023-09-30 Added the function `CubicbezierCurve.getSubCurve(number,number)` – similar to `getSubCurveAt(...)` but with absolute position parameters. * @modified 2023-10-07 Added the `trimEnd`, `trimEndAt`, `trimStart`, `trimStartAt` methods. * @version 2.8.0 * * @file CubicBezierCurve * @public **/ Object.defineProperty(exports, "__esModule", { value: true }); exports.CubicBezierCurve = void 0; var Bounds_1 = require("./Bounds"); var UIDGenerator_1 = require("./UIDGenerator"); var Vertex_1 = require("./Vertex"); var Vector_1 = require("./Vector"); /** * @classdesc A refactored cubic bezier curve class. * * @requires Bounds * @requires Vertex * @requires Vector * @requires XYCoords * @requires UID * @requires UIDGenerator */ var CubicBezierCurve = /** @class */ (function () { /** * The constructor. * * @constructor * @name CubicBezierCurve * @param {Vertex} startPoint - The Bézier curve's start point. * @param {Vertex} endPoint - The Bézier curve's end point. * @param {Vertex} startControlPoint - The Bézier curve's start control point. * @param {Vertex} endControlPoint - The Bézier curve's end control point. **/ function CubicBezierCurve(startPoint, endPoint, startControlPoint, endControlPoint) { /** @constant {number} */ this.START_POINT = CubicBezierCurve.START_POINT; /** @constant {number} */ this.START_CONTROL_POINT = CubicBezierCurve.START_CONTROL_POINT; /** @constant {number} */ this.END_CONTROL_POINT = CubicBezierCurve.END_CONTROL_POINT; /** @constant {number} */ this.END_POINT = CubicBezierCurve.END_POINT; this.uid = UIDGenerator_1.UIDGenerator.next(); this.startPoint = startPoint; this.startControlPoint = startControlPoint; this.endPoint = endPoint; this.endControlPoint = endControlPoint; this.curveIntervals = 30; // An array of vertices this.segmentCache = []; // An array of floats this.segmentLengths = []; // float // this.arcLength = null; this.updateArcLengths(); } /** * Move the given curve point (the start point, end point or one of the two * control points). * * @method moveCurvePoint * @param {number} pointID - The numeric identicator of the point to move. Use one of the four eBezierPoint constants. * @param {XYCoords} moveAmount - The amount to move the specified point by. * @param {boolean} moveControlPoint - Move the control points along with their path point (if specified point is a path point). * @param {boolean} updateArcLengths - Specifiy if the internal arc segment buffer should be updated. * @instance * @memberof CubicBezierCurve * @return {void} **/ CubicBezierCurve.prototype.moveCurvePoint = function (pointID, moveAmount, moveControlPoint, updateArcLengths) { if (pointID == this.START_POINT) { this.getStartPoint().add(moveAmount); if (moveControlPoint) this.getStartControlPoint().add(moveAmount); } else if (pointID == this.START_CONTROL_POINT) { this.getStartControlPoint().add(moveAmount); } else if (pointID == this.END_CONTROL_POINT) { this.getEndControlPoint().add(moveAmount); } else if (pointID == this.END_POINT) { this.getEndPoint().add(moveAmount); if (moveControlPoint) this.getEndControlPoint().add(moveAmount); } else { console.log("[CubicBezierCurve.moveCurvePoint] pointID '".concat(pointID, "' invalid.")); } if (updateArcLengths) this.updateArcLengths(); }; /** * Translate the whole curve by the given {x,y} amount: moves all four points. * * @method translate * @param {Vertex} amount - The amount to translate this curve by. * @instance * @memberof CubicBezierCurve * @return {CubicBezierCurve} this (for chaining). **/ CubicBezierCurve.prototype.translate = function (amount) { this.startPoint.add(amount); this.startControlPoint.add(amount); this.endControlPoint.add(amount); this.endPoint.add(amount); return this; }; /** * Reverse this curve, means swapping start- and end-point and swapping * start-control- and end-control-point. * * @method reverse * @instance * @memberof CubicBezierCurve * @return {CubicBezierCurve} this (for chaining). **/ CubicBezierCurve.prototype.reverse = function () { var tmp = this.startPoint; this.startPoint = this.endPoint; this.endPoint = tmp; tmp = this.startControlPoint; this.startControlPoint = this.endControlPoint; this.endControlPoint = tmp; return this; }; /** * Get the total curve length.<br> * <br> * As not all Bézier curved have a closed formula to calculate their lengths, this * implementation uses a segment buffer (with a length of 30 segments). So the * returned length is taken from the arc segment buffer.<br> * <br> * Note that if the curve points were changed and the segment buffer was not * updated this function might return wrong (old) values. * * @method getLength * @instance * @memberof CubicBezierCurve * @return {number} >= 0 **/ CubicBezierCurve.prototype.getLength = function () { return this.arcLength; }; /** * Uptate the internal arc segment buffer and their lengths.<br> * <br> * All class functions update the buffer automatically; if any * curve point is changed by other reasons you should call this * function to keep actual values in the buffer. * * @method updateArcLengths * @instance * @memberof CubicBezierCurve * @return {void} **/ CubicBezierCurve.prototype.updateArcLengths = function () { var pointA = this.startPoint.clone(); var pointB = new Vertex_1.Vertex(0, 0); var curveStep = 1.0 / this.curveIntervals; // Clear segment cache this.segmentCache = []; // Push start point into buffer this.segmentCache.push(this.startPoint); this.segmentLengths = []; var newLength = 0.0; var t = 0.0; var tmpLength; while (t <= 1.0) { pointB = this.getPointAt(t); // Store point into cache this.segmentCache.push(pointB); // Calculate segment length tmpLength = pointA.distance(pointB); this.segmentLengths.push(tmpLength); newLength += tmpLength; pointA = pointB; t += curveStep; } this.arcLength = newLength; }; /** * Get a 't' (relative position on curve) with the closest distance to point 'p'. * * The returned number is 0.0 <= t <= 1.0. Use the getPointAt(t) function to retrieve the actual curve point. * * This function uses a recursive approach by cutting the curve into several linear segments. * * @param {Vertex} p - The point to find the closest position ('t' on the curve). * @return {number} **/ CubicBezierCurve.prototype.getClosestT = function (p) { // We would like to have an error that's not larger than 1.0. var desiredEpsilon = 1.0; var result = { t: 0, tPrev: 0.0, tNext: 1.0 }; var iteration = 0; do { result = this.locateIntervalByDistance(p, result.tPrev, result.tNext, this.curveIntervals); iteration++; // Be sure: stop after 4 iterations } while (iteration < 4 && this.getPointAt(result.tPrev).distance(this.getPointAt(result.tNext)) > desiredEpsilon); return result.t; }; /** * This helper function locates the 't' on a fixed step interval with the minimal distance * between the curve (at 't') and the given point. * * Furthermore you must specify a sub curve (start 't' and end 't') you want to search on. * Using tStart=0.0 and tEnd=1.0 will search on the full curve. * * @param {Vertex} p - The point to find the closest curve point for. * @param {number} tStart - The start position (start 't' of the sub curve). Should be >= 0.0. * @param {number} tEnd - The end position (end 't' of the sub curve). Should be <= 1.0. * @param {number} stepCount - The number of steps to check within the interval. * * @return {object} - An object with t, tPrev and tNext (numbers). **/ CubicBezierCurve.prototype.locateIntervalByDistance = function (p, tStart, tEnd, stepCount) { var minIndex = -1; var minDist = 0; var t = 0.0; var tDiff = tEnd - tStart; for (var i = 0; i <= stepCount; i++) { t = tStart + tDiff * (i / stepCount); var vert = this.getPointAt(t); var dist = vert.distance(p); if (minIndex == -1 || dist < minDist) { minIndex = i; minDist = dist; } } return { t: tStart + tDiff * (minIndex / stepCount), tPrev: tStart + tDiff * (Math.max(0, minIndex - 1) / stepCount), tNext: tStart + tDiff * (Math.min(stepCount, minIndex + 1) / stepCount) }; }; /** * Get the bounds of this bezier curve. * * The bounds are approximated by the underlying segment buffer; the more segment there are, * the more accurate will be the returned bounds. * * @return {Bounds} The bounds of this curve. **/ CubicBezierCurve.prototype.getBounds = function () { var min = new Vertex_1.Vertex(Number.POSITIVE_INFINITY, Number.POSITIVE_INFINITY); var max = new Vertex_1.Vertex(Number.NEGATIVE_INFINITY, Number.NEGATIVE_INFINITY); var v; for (var i = 0; i < this.segmentCache.length; i++) { v = this.segmentCache[i]; min.x = Math.min(min.x, v.x); min.y = Math.min(min.y, v.y); max.x = Math.max(max.x, v.x); max.y = Math.max(max.y, v.y); } return new Bounds_1.Bounds(min, max); }; /** * Get the start point of the curve.<br> * <br> * This function just returns this.startPoint. * * @method getStartPoint * @instance * @memberof CubicBezierCurve * @return {Vertex} this.startPoint **/ CubicBezierCurve.prototype.getStartPoint = function () { return this.startPoint; }; /** * Get the end point of the curve.<br> * <br> * This function just returns this.endPoint. * * @method getEndPoint * @instance * @memberof CubicBezierCurve * @return {Vertex} this.endPoint **/ CubicBezierCurve.prototype.getEndPoint = function () { return this.endPoint; }; /** * Get the start control point of the curve.<br> * <br> * This function just returns this.startControlPoint. * * @method getStartControlPoint * @instance * @memberof CubicBezierCurve * @return {Vertex} this.startControlPoint **/ CubicBezierCurve.prototype.getStartControlPoint = function () { return this.startControlPoint; }; /** * Get the end control point of the curve.<br> * <br> * This function just returns this.endControlPoint. * * @method getEndControlPoint * @instance * @memberof CubicBezierCurve * @return {Vertex} this.endControlPoint **/ CubicBezierCurve.prototype.getEndControlPoint = function () { return this.endControlPoint; }; /** * Get one of the four curve points specified by the passt point ID. * * @method getEndControlPoint * @param {number} id - One of START_POINT, START_CONTROL_POINT, END_CONTROL_POINT or END_POINT. * @instance * @memberof CubicBezierCurve * @return {Vertex} **/ CubicBezierCurve.prototype.getPointByID = function (id) { if (id == this.START_POINT) return this.startPoint; if (id == this.END_POINT) return this.endPoint; if (id == this.START_CONTROL_POINT) return this.startControlPoint; if (id == this.END_CONTROL_POINT) return this.endControlPoint; throw new Error("Invalid point ID '".concat(id, "'.")); }; /** * Get the curve point at a given position t, where t is in [0,1].<br> * <br> * @see Line.pointAt * * @method getPointAt * @param {number} t - The position on the curve in [0,1] (0 means at * start point, 1 means at end point, other values address points in bertween). * @instance * @memberof CubicBezierCurve * @return {Vertex} **/ CubicBezierCurve.prototype.getPointAt = function (t) { // Perform some powerful math magic var x = this.startPoint.x * Math.pow(1.0 - t, 3) + this.startControlPoint.x * 3 * t * Math.pow(1.0 - t, 2) + this.endControlPoint.x * 3 * Math.pow(t, 2) * (1.0 - t) + this.endPoint.x * Math.pow(t, 3); var y = this.startPoint.y * Math.pow(1.0 - t, 3) + this.startControlPoint.y * 3 * t * Math.pow(1.0 - t, 2) + this.endControlPoint.y * 3 * Math.pow(t, 2) * (1.0 - t) + this.endPoint.y * Math.pow(t, 3); return new Vertex_1.Vertex(x, y); }; /** * Get the curve point at a given position u, where u is in [0,arcLength].<br> * <br> * @see CubicBezierCurve.getPointAt * * @method getPoint * @param {number} u - The position on the curve in [0,arcLength] (0 means at * start point, arcLength means at end point, other values address points in bertween). * @instance * @memberof CubicBezierCurve * @return {Vertex} **/ CubicBezierCurve.prototype.getPoint = function (u) { return this.getPointAt(u / this.arcLength); }; /** * Get the curve tangent vector at a given absolute curve position t in [0,1].<br> * <br> * Note that the returned tangent vector (end point) is not normalized and relative to (0,0). * * @method getTangent * @param {number} t - The position on the curve in [0,1]. * @instance * @memberof CubicBezierCurve * @return {Vertex} **/ CubicBezierCurve.prototype.getTangentAt = function (t) { var a = this.getStartPoint(); var b = this.getStartControlPoint(); var c = this.getEndControlPoint(); var d = this.getEndPoint(); // This is the shortened one var t2 = t * t; // (1 - t)^2 = (1-t)*(1-t) = 1 - t - t + t^2 = 1 - 2*t + t^2 var nt2 = 1 - 2 * t + t2; var tX = -3 * a.x * nt2 + b.x * (3 * nt2 - 6 * (t - t2)) + c.x * (6 * (t - t2) - 3 * t2) + 3 * d.x * t2; var tY = -3 * a.y * nt2 + b.y * (3 * nt2 - 6 * (t - t2)) + c.y * (6 * (t - t2) - 3 * t2) + 3 * d.y * t2; // Note: my implementation does NOT normalize tangent vectors! return new Vertex_1.Vertex(tX, tY); }; /** * Trim off a start section of this curve. The position parameter `uValue` is the absolute position on the * curve in `[0...arcLength]`. * The remaining curve will be the one in the bounds `[uValue,1]` (so `[0.0,uValue]` is cut off). * * Note this function just converts the absolute parameter to a relative one and call `trimStartAt`. * * @method trimStart * @instance * @memberof CubicBezierCurve * @param {number} uValue - The absolute position parameter where to cut off the head curve. * @returns {CubicBezierCurve} `this` for chanining. */ CubicBezierCurve.prototype.trimStart = function (uValue) { return this.trimStartAt(this.convertU2T(uValue)); }; /** * Trim off a start section of this curve. The position parameter `t` is the relative position in [0..1]. * The remaining curve will be the one in the bounds `[uValue,1]` (so `[0.0,uValue]` is cut off). * * @method trimStartAt * @instance * @memberof CubicBezierCurve * @param {number} t - The relative position parameter where to cut off the head curve. * @returns {CubicBezierCurve} `this` for chanining. */ CubicBezierCurve.prototype.trimStartAt = function (t) { var subCurbePoints = CubicBezierCurve.utils.getSubCurvePointsAt(this, t, 1.0); this.startPoint.set(subCurbePoints[0]); this.startControlPoint.set(subCurbePoints[2]); this.endPoint.set(subCurbePoints[1]); this.endControlPoint.set(subCurbePoints[3]); this.updateArcLengths(); return this; }; /** * Trim off the end of this curve. The position parameter `uValue` is the absolute position on the * curve in `[0...arcLength]`. * The remaining curve will be the one in the bounds `[0,uValue]` (so `[1.0-uValue,1.0]` is cut off). * * Note this function just converts the absolute parameter to a relative one and call `trimEndAt`. * * @method trimEnd * @instance * @memberof CubicBezierCurve * @param {number} uValue - The absolute position parameter where to cut off the tail curve. * @returns {CubicBezierCurve} `this` for chanining. */ CubicBezierCurve.prototype.trimEnd = function (uValue) { return this.trimEndAt(this.convertU2T(uValue)); }; /** * Trim off the end of this curve. The position parameter `t` is the relative position in [0..1]. * The remaining curve will be the one in the bounds `[0,t]` (so `[1.0-t,1.0]` is cut off). * * @method trimEndAt * @instance * @memberof CubicBezierCurve * @param {number} t - The relative position parameter where to cut off the tail curve. * @returns {CubicBezierCurve} `this` for chanining. */ CubicBezierCurve.prototype.trimEndAt = function (t) { var subCurbePoints = CubicBezierCurve.utils.getSubCurvePointsAt(this, 0.0, t); this.startPoint.set(subCurbePoints[0]); this.startControlPoint.set(subCurbePoints[2]); this.endPoint.set(subCurbePoints[1]); this.endControlPoint.set(subCurbePoints[3]); this.updateArcLengths(); return this; }; /** * Get a sub curve at the given start end end positions (values on the curve's length, between 0 and curve.arcLength). * * tStart >= tEnd is allowed, you will get a reversed sub curve then. * * @method getSubCurve * @param {number} tStart – The start position of the desired sub curve (must be in [0..arcLength]). * @param {number} tEnd – The end position if the desired cub curve (must be in [0..arcLength]). * @instance * @memberof CubicBezierCurve * @return {CubicBezierCurve} The sub curve as a new curve. **/ CubicBezierCurve.prototype.getSubCurve = function (uStart, uEnd) { return this.getSubCurveAt(this.convertU2T(uStart), this.convertU2T(uEnd)); }; /** * Get a sub curve at the given start end end offsets (values between 0.0 and 1.0). * * tStart >= tEnd is allowed, you will get a reversed sub curve then. * * @method getSubCurveAt * @param {number} tStart – The start offset of the desired sub curve (must be in [0..1]). * @param {number} tEnd – The end offset if the desired cub curve (must be in [0..1]). * @instance * @memberof CubicBezierCurve * @return {CubicBezierCurve} The sub curve as a new curve. **/ CubicBezierCurve.prototype.getSubCurveAt = function (tStart, tEnd) { // const startVec: Vector = new Vector(this.getPointAt(tStart), this.getTangentAt(tStart)); // const endVec: Vector = new Vector(this.getPointAt(tEnd), this.getTangentAt(tEnd).inv()); // // Tangents are relative. Make absolute. // startVec.b.add(startVec.a); // endVec.b.add(endVec.a); // // This 'splits' the curve at the given point at t. // startVec.scale(0.33333333 * (tEnd - tStart)); // endVec.scale(0.33333333 * (tEnd - tStart)); // // Draw the bezier curve // // pb.draw.cubicBezier( startVec.a, endVec.a, startVec.b, endVec.b, '#8800ff', 2 ); // return new CubicBezierCurve(startVec.a, endVec.a, startVec.b, endVec.b); var subCurbePoints = CubicBezierCurve.utils.getSubCurvePointsAt(this, tStart, tEnd); return new CubicBezierCurve(subCurbePoints[0], subCurbePoints[1], subCurbePoints[2], subCurbePoints[3]); }; /** * Convert a relative curve position u to the absolute curve position t. * * @method convertU2t * @param {number} u - The relative position on the curve in [0,arcLength]. * @instance * @memberof CubicBezierCurve * @return {number} **/ CubicBezierCurve.prototype.convertU2T = function (u) { return Math.max(0.0, Math.min(1.0, u / this.arcLength)); }; /** * Get the curve tangent vector at a given relative position u in [0,arcLength].<br> * <br> * Note that the returned tangent vector (end point) is not normalized. * * @method getTangent * @param {number} u - The position on the curve in [0,arcLength]. * @instance * @memberof CubicBezierCurve * @return {Vertex} **/ CubicBezierCurve.prototype.getTangent = function (u) { return this.getTangentAt(this.convertU2T(u)); }; /** * Get the curve perpendicular at a given relative position u in [0,arcLength] as a vector.<br> * <br> * Note that the returned vector (end point) is not normalized. * * @method getPerpendicular * @param {number} u - The relative position on the curve in [0,arcLength]. * @instance * @memberof CubicBezierCurve * @return {Vertex} **/ CubicBezierCurve.prototype.getPerpendicular = function (u) { return this.getPerpendicularAt(this.convertU2T(u)); }; /** * Get the curve perpendicular at a given absolute position t in [0,1] as a vector.<br> * <br> * Note that the returned vector (end point) is not normalized. * * @method getPerpendicularAt * @param {number} u - The absolute position on the curve in [0,1]. * @instance * @memberof CubicBezierCurve * @return {Vertex} **/ CubicBezierCurve.prototype.getPerpendicularAt = function (t) { var tangentVector = this.getTangentAt(t); return new Vertex_1.Vertex(tangentVector.y, -tangentVector.x); }; /** * Clone this Bézier curve (deep clone). * * @method clone * @instance * @memberof CubicBezierCurve * @return {CubicBezierCurve} **/ CubicBezierCurve.prototype.clone = function () { return new CubicBezierCurve(this.getStartPoint().clone(), this.getEndPoint().clone(), this.getStartControlPoint().clone(), this.getEndControlPoint().clone()); }; //---BEGIN PathSegment------------------------- /** * Get the tangent's end point at the start point of this segment. * * @method getStartTangent * @memberof PathSegment * @return {Vertex} The end point of the starting point's tangent. */ CubicBezierCurve.prototype.getStartTangent = function () { return this.startControlPoint; }; /** * Get the tangent's end point at the end point of this segment. * * @method getEndTangent * @memberof PathSegment * @return {Vertex} The end point of the ending point's tangent. */ CubicBezierCurve.prototype.getEndTangent = function () { return this.endControlPoint; }; //---END PathSegment------------------------- /** * Check if this and the specified curve are equal.<br> * <br> * All four points need to be equal for this, the Vertex.equals function is used.<br> * <br> * Please note that this function is not type safe (comparison with any object will fail). * * @method clone * @param {CubicBezierCurve} curve - The curve to compare with. * @instance * @memberof CubicBezierCurve * @return {boolean} **/ CubicBezierCurve.prototype.equals = function (curve) { // Note: in the earlier vanilla-JS version this was callable with plain objects. // Let's see if this restricted version works out. if (!curve) return false; if (!curve.startPoint || !curve.endPoint || !curve.startControlPoint || !curve.endControlPoint) return false; return (this.startPoint.equals(curve.startPoint) && this.endPoint.equals(curve.endPoint) && this.startControlPoint.equals(curve.startControlPoint) && this.endControlPoint.equals(curve.endControlPoint)); }; /** * This function should invalidate any installed listeners and invalidate this object. * After calling this function the object might not hold valid data any more and * should not be used. */ CubicBezierCurve.prototype.destroy = function () { this.startPoint.destroy(); this.endPoint.destroy(); this.startControlPoint.destroy(); this.endControlPoint.destroy(); this.isDestroyed = true; }; /** * Quick check for class instance. * Is there a better way? * * @method isInstance * @param {any} obj - Check if the passed object/value is an instance of CubicBezierCurve. * @instance * @memberof CubicBezierCurve * @return {boolean} **/ CubicBezierCurve.isInstance = function (obj) { // Note: check this again /* OLD VANILLA JS IMPLEMENTATION */ /* if( typeof obj != "object" ) return false; function hasXY(v) { return typeof v != "undefined" && typeof v.x == "number" && typeof v.y == "number"; } return typeof obj.startPoint == "object" && hasXY(obj.startPoint) && typeof obj.endPoint == "object" && hasXY(obj.endPoint) && typeof obj.startControlPoint == "object" && hasXY(obj.startControlPoint) && typeof obj.endControlPoint == "object" && hasXY(obj.endControlPoint); */ return obj instanceof CubicBezierCurve; }; /** * Convert this curve to a JSON string. * * @method toJSON * @param {boolean=} [prettyFormat=false] - If set to true the function will add line breaks. * @instance * @memberof CubicBezierCurve * @return {string} The JSON data. **/ CubicBezierCurve.prototype.toJSON = function (prettyFormat) { var jsonString = "{ " + // begin object (prettyFormat ? "\n\t" : "") + '"startPoint" : [' + this.getStartPoint().x + "," + this.getStartPoint().y + "], " + (prettyFormat ? "\n\t" : "") + '"endPoint" : [' + this.getEndPoint().x + "," + this.getEndPoint().y + "], " + (prettyFormat ? "\n\t" : "") + '"startControlPoint": [' + this.getStartControlPoint().x + "," + this.getStartControlPoint().y + "], " + (prettyFormat ? "\n\t" : "") + '"endControlPoint" : [' + this.getEndControlPoint().x + "," + this.getEndControlPoint().y + "]" + (prettyFormat ? "\n\t" : "") + " }"; // end object return jsonString; }; /** * Parse a Bézier curve from the given JSON string. * * @method fromJSON * @param {string} jsonString - The JSON data to parse. * @memberof CubicBezierCurve * @static * @throws An exception if the JSON string is malformed. * @return {CubicBezierCurve} **/ CubicBezierCurve.fromJSON = function (jsonString) { var obj = JSON.parse(jsonString); return CubicBezierCurve.fromObject(obj); }; /** * Try to convert the passed object to a CubicBezierCurve. * * @method fromObject * @param {object} obj - The object to convert. * @memberof CubicBezierCurve * @static * @throws An exception if the passed object is malformed. * @return {CubicBezierCurve} **/ CubicBezierCurve.fromObject = function (obj) { if (typeof obj !== "object") throw "Can only build from object."; if (!obj.startPoint) throw 'Object member "startPoint" missing.'; if (!obj.endPoint) throw 'Object member "endPoint" missing.'; if (!obj.startControlPoint) throw 'Object member "startControlPoint" missing.'; if (!obj.endControlPoint) throw 'Object member "endControlPoint" missing.'; return new CubicBezierCurve(new Vertex_1.Vertex(obj.startPoint[0], obj.startPoint[1]), new Vertex_1.Vertex(obj.endPoint[0], obj.endPoint[1]), new Vertex_1.Vertex(obj.startControlPoint[0], obj.startControlPoint[1]), new Vertex_1.Vertex(obj.endControlPoint[0], obj.endControlPoint[1])); }; /** * Convert a 4-element array of vertices to a cubic bézier curve. * * @method fromArray * @param {Vertex[]} arr - [ startVertex, endVertex, startControlVertex, endControlVertex ] * @memberof CubicBezierCurve * @throws An exception if the passed array is malformed. * @return {CubicBezierCurve} **/ CubicBezierCurve.fromArray = function (arr) { if (!Array.isArray(arr)) throw "Can only build from object."; if (arr.length != 4) throw "Can only build from array with four elements."; return new CubicBezierCurve(arr[0], arr[1], arr[2], arr[3]); }; /** @constant {number} */ CubicBezierCurve.START_POINT = 0; /** @constant {number} */ CubicBezierCurve.START_CONTROL_POINT = 1; /** @constant {number} */ CubicBezierCurve.END_CONTROL_POINT = 2; /** @constant {number} */ CubicBezierCurve.END_POINT = 3; /** * Helper utils. */ CubicBezierCurve.utils = { /** * Get the points of a sub curve at the given start end end offsets (values between 0.0 and 1.0). * * tStart >= tEnd is allowed, you will get a reversed sub curve then. * * @method getSubCurvePointsAt * @param {CubicBezierCurve} curve – The curve to get the sub curve points from. * @param {number} tStart – The start offset of the desired sub curve (must be in [0..1]). * @param {number} tEnd – The end offset if the desired cub curve (must be in [0..1]). * @instance * @memberof CubicBezierCurve * @return {CubicBezierCurve} The sub curve as a new curve. **/ getSubCurvePointsAt: function (curve, tStart, tEnd) { var startVec = new Vector_1.Vector(curve.getPointAt(tStart), curve.getTangentAt(tStart)); var endVec = new Vector_1.Vector(curve.getPointAt(tEnd), curve.getTangentAt(tEnd).inv()); // Tangents are relative. Make absolute. startVec.b.add(startVec.a); endVec.b.add(endVec.a); // This 'splits' the curve at the given point at t. startVec.scale(0.33333333 * (tEnd - tStart)); endVec.scale(0.33333333 * (tEnd - tStart)); return [startVec.a, endVec.a, startVec.b, endVec.b]; } }; return CubicBezierCurve; }()); exports.CubicBezierCurve = CubicBezierCurve; //# sourceMappingURL=CubicBezierCurve.js.map