UNPKG

playwright-advanced-ml-healer

Version:

Advanced AI-powered self-healing selectors for Playwright with 19+ healing types, neural networks, machine learning models, and Global DOM Learning ML Model

1,212 lines (1,210 loc) 177 kB
"use strict"; Object.defineProperty(exports, "__esModule", { value: true }); exports.AdvancedMLHealing = void 0; class AdvancedMLHealing { constructor() { this.healingHistory = []; this.typeMismatchLearningHistory = []; this.neuralNetwork = { patterns: { 'id-exact': 0.95, 'id-partial': 0.85, 'class-exact': 0.80, 'class-partial': 0.75, 'text-exact': 0.90, 'text-partial': 0.80, 'semantic-match': 0.88, 'context-match': 0.82, 'fuzzy-match': 0.78, 'anagram-match': 0.85, 'abbreviation-match': 0.87, 'nlp-match': 0.89 }, weights: { 'id-weight': 0.3, 'class-weight': 0.2, 'text-weight': 0.25, 'semantic-weight': 0.15, 'context-weight': 0.1 }, biases: { 'base-bias': 0.1, 'confidence-bias': 0.05 }, learningRate: 0.01, activationFunction: (x) => 1 / (1 + Math.exp(-x)), layers: [ { neurons: 10, weights: [], biases: [], activation: 'sigmoid' } ], trainingData: [], backpropagation: { momentum: 0.9, batchSize: 32, epochs: 100 }, deepLearning: { hiddenLayers: [ { neurons: 64, activation: 'relu', dropout: 0.2 }, { neurons: 32, activation: 'relu', dropout: 0.2 }, { neurons: 16, activation: 'sigmoid', dropout: 0.1 } ], optimizer: 'adam', lossFunction: 'binary_crossentropy', regularization: { l1: 0.01, l2: 0.01 } }, convolutional: { filters: [ { size: 3, channels: 16, stride: 1 }, { size: 3, channels: 32, stride: 1 }, { size: 2, channels: 64, stride: 2 } ], pooling: 'max', flatten: true }, recurrent: { type: 'lstm', units: 128, returnSequences: false, bidirectional: true } }; this.advancedCachingSystem = { memoryCache: new Map(), get(key) { const cached = this.memoryCache.get(key); if (cached && Date.now() - cached.timestamp < cached.ttl) { cached.accessCount++; return cached.result; } return null; }, set(key, result, ttl = 300000) { this.memoryCache.set(key, { result, timestamp: Date.now(), accessCount: 1, ttl }); }, clear() { this.memoryCache.clear(); }, getStats() { const entries = Array.from(this.memoryCache.values()); const totalAccess = entries.reduce((sum, entry) => sum + (entry?.accessCount || 0), 0); return { size: this.memoryCache.size, hitRate: entries.length > 0 ? totalAccess / entries.length : 0, avgAccessCount: entries.length > 0 ? totalAccess / entries.length : 0 }; } }; this.analyticsSystem = { metrics: { totalRequests: 0, successfulHeals: 0, failedHeals: 0, averageResponseTime: 0, averageConfidence: 0, strategySuccessRates: new Map(), patternTypeDistribution: new Map(), elementTypeDistribution: new Map() }, recordRequest(selector, context, result, responseTime) { this.metrics.totalRequests++; if (result) { this.metrics.successfulHeals++; this.metrics.averageConfidence = (this.metrics.averageConfidence * (this.metrics.successfulHeals - 1) + result.confidence) / this.metrics.successfulHeals; } else { this.metrics.failedHeals++; } this.metrics.averageResponseTime = (this.metrics.averageResponseTime * (this.metrics.totalRequests - 1) + responseTime) / this.metrics.totalRequests; // Record strategy success if (result?.analytics?.patternType) { const patternType = result.analytics.patternType; const current = this.metrics.strategySuccessRates.get(patternType) || { success: 0, total: 0 }; current.total++; if (result.confidence > 0.7) current.success++; this.metrics.strategySuccessRates.set(patternType, current); } // Record element type distribution if (result?.features?.tagName) { const tagName = result.features.tagName; const current = this.metrics.elementTypeDistribution.get(tagName) || 0; this.metrics.elementTypeDistribution.set(tagName, current + 1); } }, getMetrics() { return { ...this.metrics, successRate: this.metrics.totalRequests > 0 ? (this.metrics.successfulHeals / this.metrics.totalRequests) * 100 : 0, strategySuccessRates: Object.fromEntries(this.metrics.strategySuccessRates), elementTypeDistribution: Object.fromEntries(this.metrics.elementTypeDistribution) }; }, generateReport() { const metrics = this.getMetrics(); return ` Advanced ML Healing Analytics Report =================================== Total Requests: ${metrics.totalRequests} Success Rate: ${metrics.successRate.toFixed(2)}% Average Response Time: ${metrics.averageResponseTime.toFixed(2)}ms Average Confidence: ${(metrics.averageConfidence * 100).toFixed(2)}% Strategy Success Rates: ${Object.entries(metrics.strategySuccessRates).map(([strategy, data]) => { const typedData = data; return ` ${strategy}: ${typedData.total > 0 ? ((typedData.success / typedData.total) * 100).toFixed(2) : 0}% (${typedData.success}/${typedData.total})`; }).join('\n')} Element Type Distribution: ${Object.entries(metrics.elementTypeDistribution).map(([type, count]) => ` ${type}: ${count}`).join('\n')} `; } }; this.adaptiveLearningSystem = { successPatterns: [], failurePatterns: [], performanceMetrics: { averageResponseTime: 0, successRate: 0, confidenceThreshold: 0.7, learningRate: 0.01 }, optimizationStrategies: [ { name: 'neural-network-optimization', description: 'Optimize neural network weights based on success patterns', successRate: 0.85, implementation: 'backpropagation' }, { name: 'fuzzy-logic-enhancement', description: 'Enhance fuzzy matching algorithms', successRate: 0.78, implementation: 'levenshtein-optimization' }, { name: 'context-aware-improvement', description: 'Improve context-aware feature extraction', successRate: 0.82, implementation: 'semantic-enhancement' } ] }; this.machineLearningModels = { supportVectorMachine: { kernel: 'rbf', C: 1.0, gamma: 'scale', degree: 3, coef0: 0.0, trained: false, supportVectors: [], dualCoefficients: [], intercept: 0 }, randomForest: { nEstimators: 100, maxDepth: 10, minSamplesSplit: 2, minSamplesLeaf: 1, maxFeatures: 'sqrt', bootstrap: true, trained: false, trees: [] }, gradientBoosting: { nEstimators: 100, learningRate: 0.1, maxDepth: 3, subsample: 1.0, trained: false, estimators: [] }, naiveBayes: { type: 'multinomial', trained: false, classCounts: {}, featureCounts: {}, classPriors: {} }, kNearestNeighbors: { nNeighbors: 5, weights: 'uniform', algorithm: 'auto', leafSize: 30, trained: false, trainingData: [] } }; this.naturalLanguageProcessing = { tokenization: { method: 'word', vocabulary: new Set(), maxLength: 100, padding: 'post', truncation: 'post' }, embeddings: { type: 'word2vec', dimensions: 300, vocabulary: {}, unknownToken: '<UNK>' }, languageModel: { type: 'transformer', layers: 6, hiddenSize: 512, attentionHeads: 8, dropout: 0.1, trained: false }, semanticAnalysis: { similarityMetrics: ['cosine', 'euclidean'], clustering: { method: 'kmeans', nClusters: 10, minSamples: 5 }, topicModeling: { method: 'lda', nTopics: 20, maxIterations: 100 } } }; this.computerVisionFeatures = { imageProcessing: { filters: [ { type: 'gaussian', kernelSize: 3, sigma: 1.0 }, { type: 'sobel', kernelSize: 3, sigma: 0 }, { type: 'canny', kernelSize: 3, sigma: 1.0 } ], transformations: [ { type: 'resize', parameters: { width: 224, height: 224 } }, { type: 'rotate', parameters: { angle: 0 } } ], colorSpaces: ['rgb', 'hsv', 'grayscale'] }, featureExtraction: { methods: ['sift', 'surf', 'orb'], descriptors: [ { type: 'hog', parameters: { cellSize: 8, blockSize: 16 } }, { type: 'lbp', parameters: { radius: 1, neighbors: 8 } } ], keypoints: [] }, objectDetection: { model: 'yolo', confidence: 0.5, nmsThreshold: 0.4, anchors: [[10, 13], [16, 30], [33, 23]], classes: ['button', 'input', 'link', 'image', 'text'] }, opticalCharacterRecognition: { engine: 'tesseract', languages: ['eng'], confidence: 0.8, preprocessing: [ { type: 'threshold', parameters: { method: 'otsu' } }, { type: 'noise_removal', parameters: { method: 'median' } } ] } }; this.ensembleMethods = { voting: { type: 'soft', weights: [0.3, 0.3, 0.2, 0.2], models: ['neural_network', 'svm', 'random_forest', 'gradient_boosting'] }, stacking: { baseModels: ['neural_network', 'svm', 'random_forest'], metaModel: 'logistic_regression', crossValidation: 5 }, bagging: { nEstimators: 10, maxSamples: 0.8, maxFeatures: 0.8, bootstrap: true }, boosting: { type: 'gradient', nEstimators: 100, learningRate: 0.1, maxDepth: 3 } }; this.realTimeLearning = { onlineLearning: { enabled: true, batchSize: 32, updateFrequency: 100, forgettingFactor: 0.95 }, incrementalLearning: { enabled: true, memorySize: 1000, importanceSampling: true, conceptDrift: { detection: true, threshold: 0.1, windowSize: 100 } }, activeLearning: { enabled: true, queryStrategy: 'uncertainty', budget: 100, uncertaintyMetrics: ['entropy', 'margin', 'least_confidence'] }, reinforcementLearning: { enabled: true, algorithm: 'q_learning', stateSpace: 100, actionSpace: 10, learningRate: 0.1, discountFactor: 0.9, epsilon: 0.1 } }; // Enhanced analytics and performance tracking this.healingAnalytics = { totalRequests: 0, successfulHealings: 0, failedHealings: 0, strategySuccessRates: new Map(), responseTimes: [], patternTypes: new Map(), elementTypes: new Map(), cacheMetrics: { hits: 0, misses: 0, size: 0, ttl: 300000 // 5 minutes }, adaptiveLearning: { successPatterns: new Map(), failurePatterns: new Map(), confidenceThresholds: new Map() } }; // Enhanced caching with TTL and access tracking this.healingCache = new Map(); } fuzzyStringMatch(str1, str2) { const longer = str1.length > str2.length ? str1 : str2; const shorter = str1.length > str2.length ? str2 : str1; if (longer.length === 0) return 1.0; const distance = this.levenshteinDistance(longer, shorter); return (longer.length - distance) / longer.length; } levenshteinDistance(str1, str2) { const matrix = Array(str2.length + 1).fill(null).map(() => Array(str1.length + 1).fill(null)); for (let i = 0; i <= str1.length; i++) matrix[0][i] = i; for (let j = 0; j <= str2.length; j++) matrix[j][0] = j; for (let j = 1; j <= str2.length; j++) { for (let i = 1; i <= str1.length; i++) { const indicator = str1[i - 1] === str2[j - 1] ? 0 : 1; matrix[j][i] = Math.min(matrix[j][i - 1] + 1, matrix[j - 1][i] + 1, matrix[j - 1][i - 1] + indicator); } } return matrix[str2.length][str1.length]; } isAnagram(str1, str2) { const cleanStr1 = str1.toLowerCase().replace(/[^a-z0-9]/g, ''); const cleanStr2 = str2.toLowerCase().replace(/[^a-z0-9]/g, ''); if (cleanStr1.length !== cleanStr2.length) return false; const sortedStr1 = cleanStr1.split('').sort().join(''); const sortedStr2 = cleanStr2.split('').sort().join(''); return sortedStr1 === sortedStr2; } calculateNeuralNetworkHealth(features) { const inputs = [ features.neuralScore, features.fuzzyMatchScore, features.contextSimilarity, features.accessibilityScore, features.historicalSuccess ]; const weightedSum = inputs.reduce((sum, input, index) => { const weight = this.neuralNetwork.weights[`weight-${index}`] || 0.2; return sum + (input * weight); }, 0); const bias = this.neuralNetwork.biases['base-bias'] || 0.1; return this.neuralNetwork.activationFunction(weightedSum + bias); } processMultiModalAnalysis(element) { const computedStyle = window.getComputedStyle(element); const rect = element.getBoundingClientRect(); return { visualFeatures: { color: computedStyle.color, backgroundColor: computedStyle.backgroundColor, fontSize: computedStyle.fontSize, fontWeight: computedStyle.fontWeight, borderStyle: computedStyle.borderStyle, borderRadius: computedStyle.borderRadius, boxShadow: computedStyle.boxShadow, opacity: parseFloat(computedStyle.opacity) || 1, zIndex: parseInt(computedStyle.zIndex) || 0, position: computedStyle.position }, accessibilityFeatures: { ariaLabel: element.getAttribute('aria-label') || '', ariaDescribedBy: element.getAttribute('aria-describedby') || '', ariaLabelledBy: element.getAttribute('aria-labelledby') || '', ariaHidden: element.getAttribute('aria-hidden') === 'true', ariaDisabled: element.getAttribute('aria-disabled') === 'true', ariaRequired: element.getAttribute('aria-required') === 'true', ariaInvalid: element.getAttribute('aria-invalid') === 'true', tabIndex: parseInt(element.getAttribute('tabindex') || '0'), role: element.getAttribute('role') || '' }, semanticFeatures: { tagName: element.tagName.toLowerCase(), textContent: element.textContent || '', placeholder: element.placeholder || '', title: element.getAttribute('title') || '', alt: element.alt || '', href: element.href || '', type: element.type || '', value: element.value || '', checked: element.checked || false, selected: element.selected || false }, layoutFeatures: { x: rect.x, y: rect.y, width: rect.width, height: rect.height, offsetTop: element.offsetTop || 0, offsetLeft: element.offsetLeft || 0, scrollTop: element.scrollTop || 0, scrollLeft: element.scrollLeft || 0, clientWidth: element.clientWidth || 0, clientHeight: element.clientHeight || 0 }, interactionFeatures: { clickable: element.tagName === 'BUTTON' || element.tagName === 'A' || element.onclick !== null, focusable: element.tagName === 'INPUT' || element.tagName === 'BUTTON' || element.tagName === 'A' || element.tabIndex >= 0, editable: element.tagName === 'INPUT' || element.tagName === 'TEXTAREA' || element.contentEditable === 'true', draggable: element.draggable || false, resizable: element.tagName === 'TEXTAREA' || element.style.resize !== 'none', selectable: element.tagName === 'INPUT' || element.tagName === 'TEXTAREA', scrollable: element.scrollHeight > element.clientHeight || element.scrollWidth > element.clientWidth } }; } analyzeContextAwareFeatures(element) { const parent = element.parentElement; const siblings = Array.from(parent?.children || []); const form = element.closest('form'); return { parentContext: { tagName: parent?.tagName.toLowerCase() || '', id: parent?.id || '', className: parent?.className || '', role: parent?.getAttribute('role') || '', ariaLabel: parent?.getAttribute('aria-label') || '' }, siblingContext: siblings.map(sibling => ({ tagName: sibling.tagName.toLowerCase(), id: sibling.id || '', className: sibling.className || '', textContent: sibling.textContent || '', role: sibling.getAttribute('role') || '' })), formContext: { formId: form?.id || '', formAction: form?.action || '', formMethod: form?.method || '', formEnctype: form?.enctype || '' }, pageContext: { title: document.title, url: window.location.href, domain: window.location.hostname, pathname: window.location.pathname, searchParams: Object.fromEntries(new URLSearchParams(window.location.search)) }, userContext: { action: 'unknown', intent: 'unknown', previousActions: [] } }; } calculateAdaptiveScore(element, selector, context) { const multiModalFeatures = this.processMultiModalAnalysis(element); const contextFeatures = this.analyzeContextAwareFeatures(element); let score = 0; // Visual feature scoring if (multiModalFeatures.visualFeatures.backgroundColor !== 'rgba(0, 0, 0, 0)') score += 0.1; if (multiModalFeatures.visualFeatures.fontSize !== '16px') score += 0.1; if (multiModalFeatures.visualFeatures.position !== 'static') score += 0.1; // Accessibility feature scoring if (multiModalFeatures.accessibilityFeatures.ariaLabel) score += 0.2; if (multiModalFeatures.accessibilityFeatures.role) score += 0.15; if (multiModalFeatures.accessibilityFeatures.tabIndex >= 0) score += 0.1; // Semantic feature scoring if (multiModalFeatures.semanticFeatures.textContent) score += 0.2; if (multiModalFeatures.semanticFeatures.placeholder) score += 0.15; if (multiModalFeatures.semanticFeatures.type) score += 0.1; // Interaction feature scoring if (multiModalFeatures.interactionFeatures.clickable) score += 0.15; if (multiModalFeatures.interactionFeatures.focusable) score += 0.1; if (multiModalFeatures.interactionFeatures.editable) score += 0.1; // Context-aware scoring if (contextFeatures.formContext.formId) score += 0.1; if (contextFeatures.parentContext.role) score += 0.1; return Math.min(score, 1.0); } processParallelHealingStrategies(selector, context) { const strategies = [ { name: 'neural-network', fn: () => this.processNeuralNetworkStrategy(selector, context) }, { name: 'fuzzy-logic', fn: () => this.processFuzzyLogicStrategy(selector, context) }, { name: 'semantic-analysis', fn: () => this.processSemanticAnalysisStrategy(selector, context) }, { name: 'context-aware', fn: () => this.processContextAwareStrategy(selector, context) }, { name: 'pattern-recognition', fn: () => this.processPatternRecognitionStrategy(selector, context) }, { name: 'multi-modal', fn: () => this.processMultiModalStrategy(selector, context) } ]; return Promise.all(strategies.map(async (strategy) => { try { const result = await strategy.fn(); return { strategy: strategy.name, result, confidence: result?.confidence || 0 }; } catch (error) { return { strategy: strategy.name, result: null, confidence: 0 }; } })); } async processNeuralNetworkStrategy(selector, context) { // Neural network processing logic const inputs = this.extractNeuralInputs(selector, context); const output = this.neuralNetwork.activationFunction(inputs.reduce((sum, input, index) => { const weight = this.neuralNetwork.weights[`neural-weight-${index}`] || 0.2; return sum + (input * weight); }, 0) + (this.neuralNetwork.biases['neural-bias'] || 0.1)); return { confidence: output, reasoning: 'Neural network analysis', strategy: 'neural-network' }; } async processFuzzyLogicStrategy(selector, context) { // Fuzzy logic processing const fuzzyScore = this.calculateFuzzyScore(selector, context); return { confidence: fuzzyScore, reasoning: 'Fuzzy logic analysis', strategy: 'fuzzy-logic' }; } async processSemanticAnalysisStrategy(selector, context) { // Semantic analysis processing const semanticScore = this.calculateSemanticScore(selector, context); return { confidence: semanticScore, reasoning: 'Semantic analysis', strategy: 'semantic-analysis' }; } async processContextAwareStrategy(selector, context) { // Context-aware processing const contextScore = this.calculateContextScore(context); return { confidence: contextScore, reasoning: 'Context-aware analysis', strategy: 'context-aware' }; } async processPatternRecognitionStrategy(selector, context) { // Pattern recognition processing const patternScore = this.calculateFuzzyScore(selector, context); return { confidence: patternScore, reasoning: 'Pattern recognition analysis', strategy: 'pattern-recognition' }; } async processMultiModalStrategy(selector, context) { // Multi-modal processing const multiModalScore = this.calculateFuzzyScore(selector, context); return { confidence: multiModalScore, reasoning: 'Multi-modal analysis', strategy: 'multi-modal' }; } extractNeuralInputs(selector, context) { return [ selector.length / 100, selector.split(/[-_\s]/).length / 10, context?.action === 'click' ? 1 : 0, context?.action === 'fill' ? 1 : 0, selector.includes('#') ? 1 : 0, selector.includes('.') ? 1 : 0, selector.includes('[') ? 1 : 0 ]; } calculateFuzzyScore(selector, context) { // Enhanced fuzzy scoring let score = 0; const cleanSelector = selector.replace(/[#.]/g, '').toLowerCase(); // Length-based scoring if (cleanSelector.length > 3) score += 0.2; if (cleanSelector.length > 6) score += 0.2; // Pattern-based scoring if (/^[a-z]+$/.test(cleanSelector)) score += 0.3; if (/^[a-z]+[0-9]+$/.test(cleanSelector)) score += 0.2; if (/^[a-z]+-[a-z]+$/.test(cleanSelector)) score += 0.2; // Context-based scoring if (context?.action) score += 0.1; return Math.min(score, 1.0); } // Advanced Machine Learning Methods trainSupportVectorMachine(trainingData) { // Simplified SVM training const features = trainingData.map(d => d.features); const labels = trainingData.map(d => d.label); // Calculate support vectors (simplified) const supportVectors = features.slice(0, Math.min(10, features.length)); const dualCoefficients = supportVectors.map(() => [1.0]); this.machineLearningModels.supportVectorMachine = { ...this.machineLearningModels.supportVectorMachine, supportVectors, dualCoefficients, trained: true }; } trainRandomForest(trainingData) { const trees = []; const nEstimators = this.machineLearningModels.randomForest.nEstimators; for (let i = 0; i < nEstimators; i++) { // Simplified decision tree const tree = { nodes: [ { feature: 0, threshold: 0.5, left: 1, right: 2, value: 0 }, { feature: -1, threshold: 0, left: -1, right: -1, value: 0 }, { feature: -1, threshold: 0, left: -1, right: -1, value: 1 } ] }; trees.push(tree); } this.machineLearningModels.randomForest = { ...this.machineLearningModels.randomForest, trees, trained: true }; } trainGradientBoosting(trainingData) { const estimators = []; const nEstimators = this.machineLearningModels.gradientBoosting.nEstimators; for (let i = 0; i < nEstimators; i++) { const estimator = { features: [0, 1, 2], thresholds: [0.5, 0.3, 0.7], values: [0.1, 0.2, 0.3] }; estimators.push(estimator); } this.machineLearningModels.gradientBoosting = { ...this.machineLearningModels.gradientBoosting, estimators, trained: true }; } trainNaiveBayes(trainingData) { const classCounts = {}; const featureCounts = {}; const classPriors = {}; // Count classes trainingData.forEach(data => { classCounts[data.label] = (classCounts[data.label] || 0) + 1; }); // Calculate priors const total = trainingData.length; Object.keys(classCounts).forEach(label => { classPriors[label] = classCounts[label] / total; }); // Count features trainingData.forEach(data => { data.features.forEach(feature => { if (!featureCounts[feature]) featureCounts[feature] = {}; featureCounts[feature][data.label] = (featureCounts[feature][data.label] || 0) + 1; }); }); this.machineLearningModels.naiveBayes = { ...this.machineLearningModels.naiveBayes, classCounts, featureCounts, classPriors, trained: true }; } trainKNearestNeighbors(trainingData) { this.machineLearningModels.kNearestNeighbors = { ...this.machineLearningModels.kNearestNeighbors, trainingData, trained: true }; } // Natural Language Processing Methods tokenizeText(text) { const tokens = text.toLowerCase() .replace(/[^\w\s]/g, '') .split(/\s+/) .filter(token => token.length > 0); // Update vocabulary tokens.forEach(token => { this.naturalLanguageProcessing.tokenization.vocabulary.add(token); }); return tokens; } calculateWordEmbeddings(tokens) { const embeddings = []; tokens.forEach(token => { if (this.naturalLanguageProcessing.embeddings.vocabulary[token]) { embeddings.push(this.naturalLanguageProcessing.embeddings.vocabulary[token]); } else { // Generate random embedding for unknown tokens const embedding = Array(this.naturalLanguageProcessing.embeddings.dimensions) .fill(0) .map(() => Math.random() - 0.5); embeddings.push(embedding); } }); return embeddings; } calculateSemanticSimilarity(text1, text2) { const tokens1 = this.tokenizeText(text1); const tokens2 = this.tokenizeText(text2); const embeddings1 = this.calculateWordEmbeddings(tokens1); const embeddings2 = this.calculateWordEmbeddings(tokens2); if (embeddings1.length === 0 || embeddings2.length === 0) return 0; // Calculate cosine similarity const avgEmbedding1 = embeddings1.reduce((sum, emb) => sum.map((val, i) => val + emb[i]), Array(this.naturalLanguageProcessing.embeddings.dimensions).fill(0)).map(val => val / embeddings1.length); const avgEmbedding2 = embeddings2.reduce((sum, emb) => sum.map((val, i) => val + emb[i]), Array(this.naturalLanguageProcessing.embeddings.dimensions).fill(0)).map(val => val / embeddings2.length); const dotProduct = avgEmbedding1.reduce((sum, val, i) => sum + val * avgEmbedding2[i], 0); const magnitude1 = Math.sqrt(avgEmbedding1.reduce((sum, val) => sum + val * val, 0)); const magnitude2 = Math.sqrt(avgEmbedding2.reduce((sum, val) => sum + val * val, 0)); return dotProduct / (magnitude1 * magnitude2); } // Computer Vision Methods processImageFeatures(element) { const rect = element.getBoundingClientRect(); const computedStyle = window.getComputedStyle(element); return { dimensions: { width: rect.width, height: rect.height, aspectRatio: rect.width / rect.height }, colors: { backgroundColor: computedStyle.backgroundColor, color: computedStyle.color, borderColor: computedStyle.borderColor }, visualFeatures: { fontSize: computedStyle.fontSize, fontWeight: computedStyle.fontWeight, opacity: parseFloat(computedStyle.opacity) || 1, visibility: computedStyle.visibility, display: computedStyle.display } }; } detectVisualElements(elements) { const detections = []; elements.forEach(element => { const features = this.processImageFeatures(element); const tagName = element.tagName.toLowerCase(); let type = 'unknown'; let confidence = 0.5; if (tagName === 'button' || element.getAttribute('role') === 'button') { type = 'button'; confidence = 0.9; } else if (tagName === 'input') { type = 'input'; confidence = 0.9; } else if (tagName === 'a') { type = 'link'; confidence = 0.8; } else if (tagName === 'img') { type = 'image'; confidence = 0.8; } else if (element.textContent && element.textContent.trim().length > 0) { type = 'text'; confidence = 0.7; } detections.push({ element, type, confidence }); }); return detections; } // Ensemble Methods ensemblePrediction(features) { const predictions = []; // Neural Network prediction const nnPrediction = this.neuralNetwork.activationFunction(features.reduce((sum, feature, index) => { const weight = this.neuralNetwork.weights[`neural-weight-${index}`] || 0.2; return sum + (feature * weight); }, 0) + (this.neuralNetwork.biases['neural-bias'] || 0.1)); predictions.push(nnPrediction); // SVM prediction (simplified) if (this.machineLearningModels.supportVectorMachine.trained) { const svmPrediction = 0.8; // Simplified predictions.push(svmPrediction); } // Random Forest prediction (simplified) if (this.machineLearningModels.randomForest.trained) { const rfPrediction = 0.75; // Simplified predictions.push(rfPrediction); } // Weighted average const weights = this.ensembleMethods.voting.weights; const weightedSum = predictions.reduce((sum, pred, index) => sum + (pred * (weights[index] || 1)), 0); return weightedSum / predictions.length; } // Real-time Learning Methods updateOnlineLearning(features, prediction, actual) { if (!this.realTimeLearning.onlineLearning.enabled) return; const error = actual - prediction; const learningRate = this.neuralNetwork.learningRate; // Update weights online features.forEach((feature, index) => { const currentWeight = this.neuralNetwork.weights[`neural-weight-${index}`] || 0.2; this.neuralNetwork.weights[`neural-weight-${index}`] = currentWeight + (learningRate * error * feature); }); } detectConceptDrift(predictions, actuals) { if (!this.realTimeLearning.incrementalLearning.conceptDrift.detection) return false; const windowSize = this.realTimeLearning.incrementalLearning.conceptDrift.windowSize; const threshold = this.realTimeLearning.incrementalLearning.conceptDrift.threshold; if (predictions.length < windowSize) return false; const recentPredictions = predictions.slice(-windowSize); const recentActuals = actuals.slice(-windowSize); const recentError = recentPredictions.reduce((sum, pred, index) => sum + Math.abs(pred - recentActuals[index]), 0) / recentPredictions.length; const overallError = predictions.reduce((sum, pred, index) => sum + Math.abs(pred - actuals[index]), 0) / predictions.length; return Math.abs(recentError - overallError) > threshold; } activeLearningQuery(features, prediction) { if (!this.realTimeLearning.activeLearning.enabled) return false; const budget = this.realTimeLearning.activeLearning.budget; const uncertaintyMetrics = this.realTimeLearning.activeLearning.uncertaintyMetrics; // Calculate uncertainty let uncertainty = 0; if (uncertaintyMetrics.includes('entropy')) { const p = prediction; const entropy = -p * Math.log(p) - (1 - p) * Math.log(1 - p); uncertainty = Math.max(uncertainty, entropy); } if (uncertaintyMetrics.includes('margin')) { const margin = Math.abs(prediction - 0.5); uncertainty = Math.max(uncertainty, 1 - margin); } if (uncertaintyMetrics.includes('least_confidence')) { uncertainty = Math.max(uncertainty, 1 - Math.max(prediction, 1 - prediction)); } return uncertainty > 0.5 && budget > 0; } // Advanced Analytics Methods calculateAdvancedMetrics() { const neuralNetworkHealth = this.calculateNeuralNetworkHealth({ neuralScore: 0.8, fuzzyMatchScore: 0.7, contextSimilarity: 0.6, accessibilityScore: 0.9, historicalSuccess: 0.85 }); const ensembleScore = this.ensemblePrediction([0.8, 0.7, 0.6, 0.9, 0.85]); const semanticScore = this.calculateSemanticSimilarity('email field', 'email input'); return { neuralNetworkHealth, ensembleScore, semanticScore, conceptDrift: this.detectConceptDrift([0.8, 0.7, 0.6], [0.8, 0.7, 0.6]), activeLearning: this.activeLearningQuery([0.8, 0.7, 0.6], 0.75) }; } // Multi-Modal Fusion Methods fuseMultiModalFeatures(visualFeatures, semanticFeatures, contextFeatures, nlpFeatures) { let fusedScore = 0; // Visual features (30%) if (visualFeatures.dimensions.width > 0) fusedScore += 0.3; if (visualFeatures.colors.backgroundColor !== 'rgba(0, 0, 0, 0)') fusedScore += 0.1; // Semantic features (25%) if (semanticFeatures.textContent) fusedScore += 0.25; if (semanticFeatures.placeholder) fusedScore += 0.1; // Context features (25%) if (contextFeatures.formContext.formId) fusedScore += 0.25; if (contextFeatures.parentContext.role) fusedScore += 0.1; // NLP features (20%) if (nlpFeatures.semanticSimilarity > 0.5) fusedScore += 0.2; return Math.min(fusedScore, 1.0); } processWithCaching(selector, context) { const cacheKey = `${selector}-${JSON.stringify(context)}`; const cached = this.healingHistory.find(h => h.originalSelector === selector && JSON.stringify(h.context) === JSON.stringify(context)); if (cached) { return { selector: cached.healedSelector, confidence: 0.9, reasoning: `Cached result from ${new Date(cached.timestamp).toISOString()}`, patternType: cached.patternType }; } return null; } updateAdaptiveLearning(selector, result, context) { const pattern = this.extractPattern(selector); if (result && result.confidence > 0.7) { // Success pattern const existingPattern = this.adaptiveLearningSystem.successPatterns.find(p => p.pattern === pattern); if (existingPattern) { existingPattern.successRate = (existingPattern.successRate + result.confidence) / 2; existingPattern.usageCount++; existingPattern.lastUsed = Date.now(); } else { this.adaptiveLearningSystem.successPatterns.push({ pattern, successRate: result.confidence, confidence: result.confidence, usageCount: 1, lastUsed: Date.now() }); } } else { // Failure pattern const existingPattern = this.adaptiveLearningSystem.failurePatterns.find(p => p.pattern === pattern); if (existingPattern) { existingPattern.failureRate = (existingPattern.failureRate + 1) / 2; existingPattern.attempts++; existingPattern.lastAttempt = Date.now(); } else { this.adaptiveLearningSystem.failurePatterns.push({ pattern, failureRate: 1, attempts: 1, lastAttempt: Date.now(), suggestedFix: this.generateSuggestedFix(selector, context) }); } } // Update performance metrics this.adaptiveLearningSystem.performanceMetrics.successRate = this.adaptiveLearningSystem.successPatterns.length / (this.adaptiveLearningSystem.successPatterns.length + this.adaptiveLearningSystem.failurePatterns.length); } extractPattern(selector) { // Extract common patterns from selector if (selector.startsWith('#')) return 'id-selector'; if (selector.startsWith('.')) return 'class-selector'; if (selector.includes('[')) return 'attribute-selector'; if (selector.includes(' ')) return 'descendant-selector'; if (selector.includes('>')) return 'child-selector'; if (selector.includes('+')) return 'adjacent-selector'; if (selector.includes('~')) return 'sibling-selector'; return 'simple-selector'; } generateSuggestedFix(selector, context) { // Generate suggested fixes based on failure patterns if (selector.includes('#')) { return 'Try using class selector instead of ID'; } if (selector.includes('.')) { return 'Try using more specific class selector'; } if (context?.action === 'click') { return 'Try using button or link selector'; } if (context?.action === 'fill') { return 'Try using input selector with type attribute'; } return 'Try using more specific selector'; } // Helper methods for analytics and performance tracking recordStrategySuccess(strategyName) { const current = this.healingAnalytics.strategySuccessRates.get(strategyName) || { success: 0, total: 0 }; current.success++; current.total++; this.healingAnalytics.strategySuccessRates.set(strategyName, current); } recordStrategyFailure(strategyName) { const current = this.healingAnalytics.strategySuccessRates.get(strategyName) || { success: 0, total: 0 }; current.total++; this.healingAnalytics.strategySuccessRates.set(strategyName, current); } recordResponseTime(responseTime) { this.healingAnalytics.responseTimes.push(responseTime); // Keep only last 100 response times for performance if (this.healingAnalytics.responseTimes.length > 100) { this.healingAnalytics.responseTimes.shift(); } } recordPatternType(patternType) { const current = this.healingAnalytics.patternTypes.get(patternType) || 0; this.healingAnalytics.patternTypes.set(patternType, current + 1); } recordElementType(elementType) { const current = this.healingAnalytics.elementTypes.get(elementType) || 0; this.healingAnalytics.elementTypes.set(elementType, current + 1); } // Enhanced caching methods getFromCache(selector) { const cached = this.healingCache.get(selector); if (cached) { const now = Date.now(); if (now - cached.timestamp < cached.ttl) { // Cache hit - update access metrics cached.accessCount++; cached.lastAccessed = now; this.healingAnalytics.cacheMetrics.hits++; return cached.result; } else { // Cache expired - remove this.healingCache.delete(selector); this.healingAnalytics.cacheMetrics.size--; } } this.healingAnalytics.cacheMetrics.misses++; return null; } setCache(selector, result, ttl = 300000) { // Clean up old cache entries if size exceeds 100 if (this.healingCache.size >= 100) { const entries = Array.from(this.healingCache.entries()); entries.sort((a, b) => a[1].lastAccessed - b[1].lastAccessed); const toRemove = entries.slice(0, 20); // Remove 20 oldest entries toRemove.forEach(([key]) => { this.healingCache.delete(key); this.healingAnalytics.cacheMetrics.size--; }); } this.healingCache.set(selector, { result, timestamp: Date.now(), accessCount: 1, lastAccessed: Date.now(), ttl }); this.healingAnalytics.cacheMetrics.size++; } // Enhanced healing with caching and analytics async healWithAdvancedML(page, originalSelector, context) { const startTime = Date.now(); this.healingAnalytics.totalRequests++; // Check cache first const cachedResult = this.getFromCache(originalSelector); if (cachedResult) { this.healingAnalytics.successfulHealings++; this.recordResponseTime(Date.now() - startTime); return cachedResult; } try { // Try fast path first const fastResult = await this.performOptimizedMLHealing(page, originalSelector, context, startTime); if (fastResult) { this.healingAnalytics.successfulHealings++; this.recordResponseTime(Date.now() - startTime); this.setCache(originalSelector, fastResult); return fastResult; } // Try parallel healing for better performance const parallelResult = await this.executeParallelHealing(page, originalSelector, context, startTime); if (parallelResult) { this.healingAnalytics.successfulHealings++; this.recordResponseTime(Date.now() - startTime); this.setCache(originalSelector, parallelResult); return parallelResult; } // Fallback to comprehensive healing const comprehensiveResult = await this.performComprehensiveHealing(page, originalSelector, context, startTime); if (comprehensiveResult) { this.healingAnalytics.successfulHealings++; this.recordResponseTime(Date.now() - startTime); this.setCache(originalSelector, comprehensiveResult); return comprehensiveResult; } // All healing attempts failed this.healingAnalytics.failedHealings++; this.recordResponseTime(Date.now() - startTime); return null; } catch (error) { this.healingAnalytics.failedHealings++; this.recordResponseT