UNPKG

playcanvas

Version:

PlayCanvas WebGL game engine

513 lines (512 loc) 20 kB
/** * A 4x4 matrix. * * @category Math */ export class Mat4 { static _getPerspectiveHalfSize(halfSize: any, fov: any, aspect: any, znear: any, fovIsHorizontal: any): void; /** * A constant matrix set to the identity. * * @type {Mat4} * @readonly */ static readonly IDENTITY: Mat4; /** * A constant matrix with all elements set to 0. * * @type {Mat4} * @readonly */ static readonly ZERO: Mat4; /** * Matrix elements in the form of a flat array. * * @type {Float32Array} */ data: Float32Array; /** * Adds the specified 4x4 matrices together and stores the result in the current instance. * * @param {Mat4} lhs - The 4x4 matrix used as the first operand of the addition. * @param {Mat4} rhs - The 4x4 matrix used as the second operand of the addition. * @returns {Mat4} Self for chaining. * @example * const m = new pc.Mat4(); * * m.add2(pc.Mat4.IDENTITY, pc.Mat4.ONE); * * console.log("The result of the addition is: " + m.toString()); */ add2(lhs: Mat4, rhs: Mat4): Mat4; /** * Adds the specified 4x4 matrix to the current instance. * * @param {Mat4} rhs - The 4x4 matrix used as the second operand of the addition. * @returns {Mat4} Self for chaining. * @example * const m = new pc.Mat4(); * * m.add(pc.Mat4.ONE); * * console.log("The result of the addition is: " + m.toString()); */ add(rhs: Mat4): Mat4; /** * Creates a duplicate of the specified matrix. * * @returns {this} A duplicate matrix. * @example * const src = new pc.Mat4().setFromEulerAngles(10, 20, 30); * const dst = src.clone(); * console.log("The two matrices are " + (src.equals(dst) ? "equal" : "different")); */ clone(): this; /** * Copies the contents of a source 4x4 matrix to a destination 4x4 matrix. * * @param {Mat4} rhs - A 4x4 matrix to be copied. * @returns {Mat4} Self for chaining. * @example * const src = new pc.Mat4().setFromEulerAngles(10, 20, 30); * const dst = new pc.Mat4(); * dst.copy(src); * console.log("The two matrices are " + (src.equals(dst) ? "equal" : "different")); */ copy(rhs: Mat4): Mat4; /** * Reports whether two matrices are equal. * * @param {Mat4} rhs - The other matrix. * @returns {boolean} True if the matrices are equal and false otherwise. * @example * const a = new pc.Mat4().setFromEulerAngles(10, 20, 30); * const b = new pc.Mat4(); * console.log("The two matrices are " + (a.equals(b) ? "equal" : "different")); */ equals(rhs: Mat4): boolean; /** * Reports whether the specified matrix is the identity matrix. * * @returns {boolean} True if the matrix is identity and false otherwise. * @example * const m = new pc.Mat4(); * console.log("The matrix is " + (m.isIdentity() ? "identity" : "not identity")); */ isIdentity(): boolean; /** * Multiplies the specified 4x4 matrices together and stores the result in the current * instance. * * @param {Mat4} lhs - The 4x4 matrix used as the first multiplicand of the operation. * @param {Mat4} rhs - The 4x4 matrix used as the second multiplicand of the operation. * @returns {Mat4} Self for chaining. * @example * const a = new pc.Mat4().setFromEulerAngles(10, 20, 30); * const b = new pc.Mat4().setFromAxisAngle(pc.Vec3.UP, 180); * const r = new pc.Mat4(); * * // r = a * b * r.mul2(a, b); * * console.log("The result of the multiplication is: " + r.toString()); */ mul2(lhs: Mat4, rhs: Mat4): Mat4; /** * Multiplies the specified 4x4 matrices together and stores the result in the current * instance. This function assumes the matrices are affine transformation matrices, where the * upper left 3x3 elements are a rotation matrix, and the bottom left 3 elements are * translation. The rightmost column is assumed to be [0, 0, 0, 1]. The parameters are not * verified to be in the expected format. This function is faster than general * {@link Mat4#mul2}. * * @param {Mat4} lhs - The affine transformation 4x4 matrix used as the first multiplicand of * the operation. * @param {Mat4} rhs - The affine transformation 4x4 matrix used as the second multiplicand of * the operation. * @returns {Mat4} Self for chaining. */ mulAffine2(lhs: Mat4, rhs: Mat4): Mat4; /** * Multiplies the current instance by the specified 4x4 matrix. * * @param {Mat4} rhs - The 4x4 matrix used as the second multiplicand of the operation. * @returns {Mat4} Self for chaining. * @example * const a = new pc.Mat4().setFromEulerAngles(10, 20, 30); * const b = new pc.Mat4().setFromAxisAngle(pc.Vec3.UP, 180); * * // a = a * b * a.mul(b); * * console.log("The result of the multiplication is: " + a.toString()); */ mul(rhs: Mat4): Mat4; /** * Transforms a 3-dimensional point by a 4x4 matrix. * * @param {Vec3} vec - The 3-dimensional point to be transformed. * @param {Vec3} [res] - An optional 3-dimensional point to receive the result of the * transformation. * @returns {Vec3} The input point v transformed by the current instance. * @example * // Create a 3-dimensional point * const v = new pc.Vec3(1, 2, 3); * * // Create a 4x4 rotation matrix * const m = new pc.Mat4().setFromEulerAngles(10, 20, 30); * * const tv = m.transformPoint(v); */ transformPoint(vec: Vec3, res?: Vec3): Vec3; /** * Transforms a 3-dimensional vector by a 4x4 matrix. * * @param {Vec3} vec - The 3-dimensional vector to be transformed. * @param {Vec3} [res] - An optional 3-dimensional vector to receive the result of the * transformation. * @returns {Vec3} The input vector v transformed by the current instance. * @example * // Create a 3-dimensional vector * const v = new pc.Vec3(1, 2, 3); * * // Create a 4x4 rotation matrix * const m = new pc.Mat4().setFromEulerAngles(10, 20, 30); * * const tv = m.transformVector(v); */ transformVector(vec: Vec3, res?: Vec3): Vec3; /** * Transforms a 4-dimensional vector by a 4x4 matrix. * * @param {Vec4} vec - The 4-dimensional vector to be transformed. * @param {Vec4} [res] - An optional 4-dimensional vector to receive the result of the * transformation. * @returns {Vec4} The input vector v transformed by the current instance. * @example * // Create an input 4-dimensional vector * const v = new pc.Vec4(1, 2, 3, 4); * * // Create an output 4-dimensional vector * const result = new pc.Vec4(); * * // Create a 4x4 rotation matrix * const m = new pc.Mat4().setFromEulerAngles(10, 20, 30); * * m.transformVec4(v, result); */ transformVec4(vec: Vec4, res?: Vec4): Vec4; /** * Sets the specified matrix to a viewing matrix derived from an eye point, a target point and * an up vector. The matrix maps the target point to the negative z-axis and the eye point to * the origin, so that when you use a typical projection matrix, the center of the scene maps * to the center of the viewport. Similarly, the direction described by the up vector projected * onto the viewing plane is mapped to the positive y-axis so that it points upward in the * viewport. The up vector must not be parallel to the line of sight from the eye to the * reference point. * * @param {Vec3} position - 3-d vector holding view position. * @param {Vec3} target - 3-d vector holding reference point. * @param {Vec3} up - 3-d vector holding the up direction. * @returns {Mat4} Self for chaining. * @example * const position = new pc.Vec3(10, 10, 10); * const target = new pc.Vec3(0, 0, 0); * const up = new pc.Vec3(0, 1, 0); * const m = new pc.Mat4().setLookAt(position, target, up); */ setLookAt(position: Vec3, target: Vec3, up: Vec3): Mat4; /** * Sets the specified matrix to a perspective projection matrix. The function's parameters * define the shape of a frustum. * * @param {number} left - The x-coordinate for the left edge of the camera's projection plane * in eye space. * @param {number} right - The x-coordinate for the right edge of the camera's projection plane * in eye space. * @param {number} bottom - The y-coordinate for the bottom edge of the camera's projection * plane in eye space. * @param {number} top - The y-coordinate for the top edge of the camera's projection plane in * eye space. * @param {number} znear - The near clip plane in eye coordinates. * @param {number} zfar - The far clip plane in eye coordinates. * @returns {Mat4} Self for chaining. * @example * // Create a 4x4 perspective projection matrix * const f = pc.Mat4().setFrustum(-2, 2, -1, 1, 1, 1000); * @ignore */ setFrustum(left: number, right: number, bottom: number, top: number, znear: number, zfar: number): Mat4; /** * Sets the specified matrix to a perspective projection matrix. The function's parameters * define the shape of a frustum. * * @param {number} fov - The frustum's field of view in degrees. The fovIsHorizontal parameter * controls whether this is a vertical or horizontal field of view. By default, it's a vertical * field of view. * @param {number} aspect - The aspect ratio of the frustum's projection plane * (width / height). * @param {number} znear - The near clip plane in eye coordinates. * @param {number} zfar - The far clip plane in eye coordinates. * @param {boolean} [fovIsHorizontal] - Set to true to treat the fov as horizontal (x-axis) and * false for vertical (y-axis). Defaults to false. * @returns {Mat4} Self for chaining. * @example * // Create a 4x4 perspective projection matrix * const persp = pc.Mat4().setPerspective(45, 16 / 9, 1, 1000); */ setPerspective(fov: number, aspect: number, znear: number, zfar: number, fovIsHorizontal?: boolean): Mat4; /** * Sets the specified matrix to an orthographic projection matrix. The function's parameters * define the shape of a cuboid-shaped frustum. * * @param {number} left - The x-coordinate for the left edge of the camera's projection plane * in eye space. * @param {number} right - The x-coordinate for the right edge of the camera's projection plane * in eye space. * @param {number} bottom - The y-coordinate for the bottom edge of the camera's projection * plane in eye space. * @param {number} top - The y-coordinate for the top edge of the camera's projection plane in * eye space. * @param {number} near - The near clip plane in eye coordinates. * @param {number} far - The far clip plane in eye coordinates. * @returns {Mat4} Self for chaining. * @example * // Create a 4x4 orthographic projection matrix * const ortho = pc.Mat4().ortho(-2, 2, -2, 2, 1, 1000); */ setOrtho(left: number, right: number, bottom: number, top: number, near: number, far: number): Mat4; /** * Sets the specified matrix to a rotation matrix equivalent to a rotation around an axis. The * axis must be normalized (unit length) and the angle must be specified in degrees. * * @param {Vec3} axis - The normalized axis vector around which to rotate. * @param {number} angle - The angle of rotation in degrees. * @returns {Mat4} Self for chaining. * @example * // Create a 4x4 rotation matrix * const rm = new pc.Mat4().setFromAxisAngle(pc.Vec3.UP, 90); */ setFromAxisAngle(axis: Vec3, angle: number): Mat4; /** * Sets the specified matrix to a translation matrix. * * @param {number} x - The x-component of the translation. * @param {number} y - The y-component of the translation. * @param {number} z - The z-component of the translation. * @returns {Mat4} Self for chaining. * @example * // Create a 4x4 translation matrix * const tm = new pc.Mat4().setTranslate(10, 10, 10); * @ignore */ setTranslate(x: number, y: number, z: number): Mat4; /** * Sets the specified matrix to a scale matrix. * * @param {number} x - The x-component of the scale. * @param {number} y - The y-component of the scale. * @param {number} z - The z-component of the scale. * @returns {Mat4} Self for chaining. * @example * // Create a 4x4 scale matrix * const sm = new pc.Mat4().setScale(10, 10, 10); * @ignore */ setScale(x: number, y: number, z: number): Mat4; /** * Sets the specified matrix to a matrix transforming a normalized view volume (in range of * -1 .. 1) to their position inside a viewport (in range of 0 .. 1). This encapsulates a * scaling to the size of the viewport and a translation to the position of the viewport. * * @param {number} x - The x-component of the position of the viewport (in 0..1 range). * @param {number} y - The y-component of the position of the viewport (in 0..1 range). * @param {number} width - The width of the viewport (in 0..1 range). * @param {number} height - The height of the viewport (in 0..1 range). * @returns {Mat4} Self for chaining. * @example * // Create a 4x4 viewport matrix which scales normalized view volume to full texture viewport * const vm = new pc.Mat4().setViewport(0, 0, 1, 1); * @ignore */ setViewport(x: number, y: number, width: number, height: number): Mat4; /** * Sets the matrix to a reflection matrix, which can be used as a mirror transformation by the * plane. * * @param {Vec3} normal - The normal of the plane to reflect by. * @param {number} distance - The distance of plane to reflect by. * @returns {Mat4} Self for chaining. */ setReflection(normal: Vec3, distance: number): Mat4; /** * Sets the matrix to the inverse of a source matrix. * * @param {Mat4} [src] - The matrix to invert. If not set, the matrix is inverted in-place. * @returns {Mat4} Self for chaining. * @example * // Create a 4x4 rotation matrix of 180 degrees around the y-axis * const rot = new pc.Mat4().setFromAxisAngle(pc.Vec3.UP, 180); * * // Invert in place * rot.invert(); */ invert(src?: Mat4): Mat4; /** * Sets matrix data from an array. * * @param {number[]} src - Source array. Must have 16 values. * @returns {Mat4} Self for chaining. */ set(src: number[]): Mat4; /** * Sets the specified matrix to the identity matrix. * * @returns {Mat4} Self for chaining. * @example * m.setIdentity(); * console.log("The matrix is " + (m.isIdentity() ? "identity" : "not identity")); */ setIdentity(): Mat4; /** * Sets the specified matrix to the concatenation of a translation, a quaternion rotation and a * scale. * * @param {Vec3} t - A 3-d vector translation. * @param {Quat} r - A quaternion rotation. * @param {Vec3} s - A 3-d vector scale. * @returns {Mat4} Self for chaining. * @example * const t = new pc.Vec3(10, 20, 30); * const r = new pc.Quat(); * const s = new pc.Vec3(2, 2, 2); * * const m = new pc.Mat4(); * m.setTRS(t, r, s); */ setTRS(t: Vec3, r: Quat, s: Vec3): Mat4; /** * Sets the matrix to the transpose of a source matrix. * * @param {Mat4} [src] - The matrix to transpose. If not set, the matrix is transposed in-place. * @returns {Mat4} Self for chaining. * @example * const m = new pc.Mat4(); * * // Transpose in place * m.transpose(); */ transpose(src?: Mat4): Mat4; /** * Extracts the translational component from the specified 4x4 matrix. * * @param {Vec3} [t] - The vector to receive the translation of the matrix. * @returns {Vec3} The translation of the specified 4x4 matrix. * @example * // Create a 4x4 matrix * const m = new pc.Mat4(); * * // Query the translation component * const t = new pc.Vec3(); * m.getTranslation(t); */ getTranslation(t?: Vec3): Vec3; /** * Extracts the x-axis from the specified 4x4 matrix. * * @param {Vec3} [x] - The vector to receive the x axis of the matrix. * @returns {Vec3} The x-axis of the specified 4x4 matrix. * @example * // Create a 4x4 matrix * const m = new pc.Mat4(); * * // Query the x-axis component * const x = new pc.Vec3(); * m.getX(x); */ getX(x?: Vec3): Vec3; /** * Extracts the y-axis from the specified 4x4 matrix. * * @param {Vec3} [y] - The vector to receive the y axis of the matrix. * @returns {Vec3} The y-axis of the specified 4x4 matrix. * @example * // Create a 4x4 matrix * const m = new pc.Mat4(); * * // Query the y-axis component * const y = new pc.Vec3(); * m.getY(y); */ getY(y?: Vec3): Vec3; /** * Extracts the z-axis from the specified 4x4 matrix. * * @param {Vec3} [z] - The vector to receive the z axis of the matrix. * @returns {Vec3} The z-axis of the specified 4x4 matrix. * @example * // Create a 4x4 matrix * const m = new pc.Mat4(); * * // Query the z-axis component * const z = new pc.Vec3(); * m.getZ(z); */ getZ(z?: Vec3): Vec3; /** * Extracts the scale component from the specified 4x4 matrix. * * @param {Vec3} [scale] - Vector to receive the scale. * @returns {Vec3} The scale in X, Y and Z of the specified 4x4 matrix. * @example * // Query the scale component * const scale = m.getScale(); */ getScale(scale?: Vec3): Vec3; /** * -1 if the the matrix has an odd number of negative scales (mirrored); 1 otherwise. * * @type {number} * @ignore */ get scaleSign(): number; /** * Sets the specified matrix to a rotation matrix defined by Euler angles. The Euler angles are * specified in XYZ order and in degrees. * * @param {number} ex - Angle to rotate around X axis in degrees. * @param {number} ey - Angle to rotate around Y axis in degrees. * @param {number} ez - Angle to rotate around Z axis in degrees. * @returns {Mat4} Self for chaining. * @example * const m = new pc.Mat4(); * m.setFromEulerAngles(45, 90, 180); */ setFromEulerAngles(ex: number, ey: number, ez: number): Mat4; /** * Extracts the Euler angles equivalent to the rotational portion of the specified matrix. The * returned Euler angles are in XYZ order an in degrees. * * @param {Vec3} [eulers] - A 3-d vector to receive the Euler angles. * @returns {Vec3} A 3-d vector containing the Euler angles. * @example * // Create a 4x4 rotation matrix of 45 degrees around the y-axis * const m = new pc.Mat4().setFromAxisAngle(pc.Vec3.UP, 45); * * const eulers = m.getEulerAngles(); */ getEulerAngles(eulers?: Vec3): Vec3; /** * Converts the specified matrix to string form. * * @returns {string} The matrix in string form. * @example * const m = new pc.Mat4(); * // Outputs [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1] * console.log(m.toString()); */ toString(): string; } import { Vec3 } from './vec3.js'; import { Vec4 } from './vec4.js'; import type { Quat } from './quat.js';