UNPKG

playcanvas

Version:

PlayCanvas WebGL game engine

120 lines (117 loc) 3.71 kB
import { Vec3 } from '../math/vec3.js'; /** * @import { Ray } from './ray.js' */ const e1 = new Vec3(); const e2 = new Vec3(); const h = new Vec3(); const s = new Vec3(); const q = new Vec3(); // constants const EPSILON = 1e-6; /** * A triangle defined by three {@link Vec3} vectors. * * @category Math */ class Tri { /** * Creates a new Tri object. * * @param {Vec3} [v0] - The first 3-dimensional vector. * @param {Vec3} [v1] - The second 3-dimensional vector. * @param {Vec3} [v2] - The third 3-dimensional vector. * @example * const v0 = new pc.Vec3(1, 0, 0); * const v1 = new pc.Vec3(0, 1, 0); * const v2 = new pc.Vec3(2, 2, 1); * const t = new pc.Tri(v0, v1, v2); */ constructor(v0 = Vec3.ZERO, v1 = Vec3.ZERO, v2 = Vec3.ZERO){ /** * The first 3-dimensional vector of the triangle. * * @readonly * @type {Vec3} */ this.v0 = new Vec3(); /** * The second 3-dimensional vector of the triangle. * * @type {Vec3} * @readonly */ this.v1 = new Vec3(); /** * The third 3-dimensional vector of the triangle. * * @type {Vec3} * @readonly */ this.v2 = new Vec3(); this.set(v0, v1, v2); } /** * Sets the specified triangle to the supplied 3-dimensional vectors. * * @param {Vec3} v0 - The value set on the first 3-dimensional vector of the triangle. * @param {Vec3} v1 - The value set on the second 3-dimensional vector of the triangle. * @param {Vec3} v2 - The value set on the third 3-dimensional vector of the triangle. * @returns {Tri} Self for chaining * @example * const t = new pc.Tri(pc.Vec3.UP, pc.Vec3.RIGHT, pc.Vec3.BACK); * const v0 = new pc.Vec3(1, 0, 0); * const v1 = new pc.Vec3(0, 1, 0); * const v2 = new pc.Vec3(2, 2, 1); * t.set(v0, v1, v2); * * // Outputs [[1, 0, 0], [0, 1, 0], [2, 2, 1]] * console.log("The result of the triangle set is: " + t.toString()); */ set(v0, v1, v2) { this.v0.copy(v0); this.v1.copy(v1); this.v2.copy(v2); return this; } /** * Test if a ray intersects with the triangle. * * @param {Ray} ray - Ray to test against (direction must be normalized). * @param {Vec3} [point] - If there is an intersection, the intersection point will be copied * into here. * @returns {boolean} True if there is an intersection. */ intersectsRay(ray, point) { e1.sub2(this.v1, this.v0); e2.sub2(this.v2, this.v0); h.cross(ray.direction, e2); const a = e1.dot(h); if (a > -EPSILON && a < EPSILON) { return false; } const f = 1 / a; s.sub2(ray.origin, this.v0); const u = f * s.dot(h); if (u < 0 || u > 1) { return false; } q.cross(s, e1); const v = f * ray.direction.dot(q); if (v < 0 || u + v > 1) { return false; } const t = f * e2.dot(q); if (t > EPSILON) { if (point instanceof Vec3) { point.copy(ray.direction).mulScalar(t).add(ray.origin); } return true; } return false; } /** * Converts the specified triangle to string form. * * @returns {string} The triangle in string form. * @example * const t = new pc.Tri(pc.Vec3.UP, pc.Vec3.RIGHT, pc.Vec3.BACK); * // Outputs [[0, 1, 0], [1, 0, 0], [0, 0, 1]] * console.log(t.toString()); */ toString() { return `[${this.v0.toString()}, ${this.v1.toString()}, ${this.v2.toString()}]`; } } export { Tri };