UNPKG

playcanvas

Version:

PlayCanvas WebGL game engine

104 lines (101 loc) 4.05 kB
import { calculateTangents } from './geometry-utils.js'; import { Geometry } from './geometry.js'; /** * A procedural sphere-shaped geometry. * * Typically, you would: * * 1. Create a SphereGeometry instance. * 2. Generate a {@link Mesh} from the geometry. * 3. Create a {@link MeshInstance} referencing the mesh. * 4. Create an {@link Entity} with a {@link RenderComponent} and assign the {@link MeshInstance} to it. * 5. Add the entity to the {@link Scene}. * * ```javascript * // Create a mesh instance * const geometry = new pc.SphereGeometry(); * const mesh = pc.Mesh.fromGeometry(app.graphicsDevice, geometry); * const material = new pc.StandardMaterial(); * const meshInstance = new pc.MeshInstance(mesh, material); * * // Create an entity * const entity = new pc.Entity(); * entity.addComponent('render', { * meshInstances: [meshInstance] * }); * * // Add the entity to the scene hierarchy * app.scene.root.addChild(entity); * ``` * * @category Graphics */ class SphereGeometry extends Geometry { /** * Create a new SphereGeometry instance. * * By default, the constructor creates a sphere centered on the object space origin with a radius * of 0.5 and 16 segments in both longitude and latitude. The sphere is created with UVs in the * range of 0 to 1. * * @param {object} [opts] - Options object. * @param {number} [opts.radius] - The radius of the sphere. Defaults to 0.5. * @param {number} [opts.latitudeBands] - The number of divisions along the latitudinal axis of * the sphere. Defaults to 16. * @param {number} [opts.longitudeBands] - The number of divisions along the longitudinal axis of * the sphere. Defaults to 16. * @param {boolean} [opts.calculateTangents] - Generate tangent information. Defaults to false. * @example * const geometry = new pc.SphereGeometry({ * radius: 1, * latitudeBands: 32, * longitudeBands: 32 * }); */ constructor(opts = {}){ super(); // Check the supplied options and provide defaults for unspecified ones const radius = opts.radius ?? 0.5; const latitudeBands = opts.latitudeBands ?? 16; const longitudeBands = opts.longitudeBands ?? 16; // Variable declarations const positions = []; const normals = []; const uvs = []; const indices = []; for(let lat = 0; lat <= latitudeBands; lat++){ const theta = lat * Math.PI / latitudeBands; const sinTheta = Math.sin(theta); const cosTheta = Math.cos(theta); for(let lon = 0; lon <= longitudeBands; lon++){ // Sweep the sphere from the positive Z axis to match a 3DS Max sphere const phi = lon * 2 * Math.PI / longitudeBands - Math.PI / 2; const sinPhi = Math.sin(phi); const cosPhi = Math.cos(phi); const x = cosPhi * sinTheta; const y = cosTheta; const z = sinPhi * sinTheta; const u = 1 - lon / longitudeBands; const v = 1 - lat / latitudeBands; positions.push(x * radius, y * radius, z * radius); normals.push(x, y, z); uvs.push(u, 1 - v); } } for(let lat = 0; lat < latitudeBands; ++lat){ for(let lon = 0; lon < longitudeBands; ++lon){ const first = lat * (longitudeBands + 1) + lon; const second = first + longitudeBands + 1; indices.push(first + 1, second, first); indices.push(first + 1, second + 1, second); } } this.positions = positions; this.normals = normals; this.uvs = uvs; this.uvs1 = uvs; // UV1 = UV0 for sphere this.indices = indices; if (opts.calculateTangents) { this.tangents = calculateTangents(positions, normals, uvs, indices); } } } export { SphereGeometry };