playcanvas
Version:
PlayCanvas WebGL game engine
86 lines (83 loc) • 3.1 kB
JavaScript
import { SphereGeometry } from './sphere-geometry.js';
/**
* A procedural dome-shaped geometry.
*
* Typically, you would:
*
* 1. Create a DomeGeometry instance.
* 2. Generate a {@link Mesh} from the geometry.
* 3. Create a {@link MeshInstance} referencing the mesh.
* 4. Create an {@link Entity} with a {@link RenderComponent} and assign the {@link MeshInstance} to it.
* 5. Add the entity to the {@link Scene}.
*
* ```javascript
* // Create a mesh instance
* const geometry = new pc.DomeGeometry();
* const mesh = pc.Mesh.fromGeometry(app.graphicsDevice, geometry);
* const material = new pc.StandardMaterial();
* const meshInstance = new pc.MeshInstance(mesh, material);
*
* // Create an entity
* const entity = new pc.Entity();
* entity.addComponent('render', {
* meshInstances: [meshInstance]
* });
*
* // Add the entity to the scene hierarchy
* app.scene.root.addChild(entity);
* ```
*
* @category Graphics
*/ class DomeGeometry extends SphereGeometry {
/**
* Create a new DomeGeometry instance.
*
* By default, the constructor creates a dome with a radius of 0.5, 16 latitude bands and 16
* longitude bands. The dome is created with UVs in the range of 0 to 1.
*
* @param {object} [opts] - Options object.
* @param {number} [opts.latitudeBands] - The number of divisions along the latitudinal axis of
* the sphere. Defaults to 16.
* @param {number} [opts.longitudeBands] - The number of divisions along the longitudinal axis of
* the sphere. Defaults to 16.
* @example
* const geometry = new pc.DomeGeometry({
* latitudeBands: 32,
* longitudeBands: 32
* });
*/ constructor(opts = {}){
// create a sphere geometry
const radius = 0.5; // the math and constants are based on a unit sphere
const latitudeBands = opts.latitudeBands ?? 16;
const longitudeBands = opts.longitudeBands ?? 16;
super({
radius,
latitudeBands,
longitudeBands
});
// post-process the geometry to flatten the bottom hemisphere
const bottomLimit = 0.1; // flatten bottom y-coordinate
const curvatureRadius = 0.95; // normalized distance from the center that is completely flat
const curvatureRadiusSq = curvatureRadius * curvatureRadius; // derived values
const positions = this.positions;
for(let i = 0; i < positions.length; i += 3){
const x = positions[i] / radius;
let y = positions[i + 1] / radius;
const z = positions[i + 2] / radius;
// flatten the lower hemisphere
if (y < 0) {
// scale vertices on the bottom
y *= 0.3;
// flatten the center
if (x * x + z * z < curvatureRadiusSq) {
y = -0.1;
}
}
// adjust y to have the center at the flat bottom
y += bottomLimit;
y *= radius;
positions[i + 1] = y;
}
}
}
export { DomeGeometry };