UNPKG

playcanvas

Version:

PlayCanvas WebGL game engine

1,122 lines (1,119 loc) 38.4 kB
import { math } from './math.js'; import { Vec2 } from './vec2.js'; import { Vec3 } from './vec3.js'; import { Vec4 } from './vec4.js'; /** * @import { Quat } from './quat.js' */ const _halfSize = new Vec2(); const x = new Vec3(); const y = new Vec3(); const z = new Vec3(); const scale = new Vec3(); /** * A 4x4 matrix. * * @category Math */ class Mat4 { /** * Create a new Mat4 instance. It is initialized to the identity matrix. */ constructor(){ /** * Matrix elements in the form of a flat array. * * @type {Float32Array} */ this.data = new Float32Array(16); // Create an identity matrix. Note that a new Float32Array has all elements set // to zero by default, so we only need to set the relevant elements to one. this.data[0] = this.data[5] = this.data[10] = this.data[15] = 1; } // Static function which evaluates perspective projection matrix half size at the near plane static _getPerspectiveHalfSize(halfSize, fov, aspect, znear, fovIsHorizontal) { if (fovIsHorizontal) { halfSize.x = znear * Math.tan(fov * Math.PI / 360); halfSize.y = halfSize.x / aspect; } else { halfSize.y = znear * Math.tan(fov * Math.PI / 360); halfSize.x = halfSize.y * aspect; } } /** * Adds the specified 4x4 matrices together and stores the result in the current instance. * * @param {Mat4} lhs - The 4x4 matrix used as the first operand of the addition. * @param {Mat4} rhs - The 4x4 matrix used as the second operand of the addition. * @returns {Mat4} Self for chaining. * @example * const m = new pc.Mat4(); * * m.add2(pc.Mat4.IDENTITY, pc.Mat4.ONE); * * console.log("The result of the addition is: " + m.toString()); */ add2(lhs, rhs) { const a = lhs.data, b = rhs.data, r = this.data; r[0] = a[0] + b[0]; r[1] = a[1] + b[1]; r[2] = a[2] + b[2]; r[3] = a[3] + b[3]; r[4] = a[4] + b[4]; r[5] = a[5] + b[5]; r[6] = a[6] + b[6]; r[7] = a[7] + b[7]; r[8] = a[8] + b[8]; r[9] = a[9] + b[9]; r[10] = a[10] + b[10]; r[11] = a[11] + b[11]; r[12] = a[12] + b[12]; r[13] = a[13] + b[13]; r[14] = a[14] + b[14]; r[15] = a[15] + b[15]; return this; } /** * Adds the specified 4x4 matrix to the current instance. * * @param {Mat4} rhs - The 4x4 matrix used as the second operand of the addition. * @returns {Mat4} Self for chaining. * @example * const m = new pc.Mat4(); * * m.add(pc.Mat4.ONE); * * console.log("The result of the addition is: " + m.toString()); */ add(rhs) { return this.add2(this, rhs); } /** * Creates a duplicate of the specified matrix. * * @returns {this} A duplicate matrix. * @example * const src = new pc.Mat4().setFromEulerAngles(10, 20, 30); * const dst = src.clone(); * console.log("The two matrices are " + (src.equals(dst) ? "equal" : "different")); */ clone() { /** @type {this} */ const cstr = this.constructor; return new cstr().copy(this); } /** * Copies the contents of a source 4x4 matrix to a destination 4x4 matrix. * * @param {Mat4} rhs - A 4x4 matrix to be copied. * @returns {Mat4} Self for chaining. * @example * const src = new pc.Mat4().setFromEulerAngles(10, 20, 30); * const dst = new pc.Mat4(); * dst.copy(src); * console.log("The two matrices are " + (src.equals(dst) ? "equal" : "different")); */ copy(rhs) { const src = rhs.data, dst = this.data; dst[0] = src[0]; dst[1] = src[1]; dst[2] = src[2]; dst[3] = src[3]; dst[4] = src[4]; dst[5] = src[5]; dst[6] = src[6]; dst[7] = src[7]; dst[8] = src[8]; dst[9] = src[9]; dst[10] = src[10]; dst[11] = src[11]; dst[12] = src[12]; dst[13] = src[13]; dst[14] = src[14]; dst[15] = src[15]; return this; } /** * Reports whether two matrices are equal. * * @param {Mat4} rhs - The other matrix. * @returns {boolean} True if the matrices are equal and false otherwise. * @example * const a = new pc.Mat4().setFromEulerAngles(10, 20, 30); * const b = new pc.Mat4(); * console.log("The two matrices are " + (a.equals(b) ? "equal" : "different")); */ equals(rhs) { const l = this.data, r = rhs.data; return l[0] === r[0] && l[1] === r[1] && l[2] === r[2] && l[3] === r[3] && l[4] === r[4] && l[5] === r[5] && l[6] === r[6] && l[7] === r[7] && l[8] === r[8] && l[9] === r[9] && l[10] === r[10] && l[11] === r[11] && l[12] === r[12] && l[13] === r[13] && l[14] === r[14] && l[15] === r[15]; } /** * Reports whether the specified matrix is the identity matrix. * * @returns {boolean} True if the matrix is identity and false otherwise. * @example * const m = new pc.Mat4(); * console.log("The matrix is " + (m.isIdentity() ? "identity" : "not identity")); */ isIdentity() { const m = this.data; return m[0] === 1 && m[1] === 0 && m[2] === 0 && m[3] === 0 && m[4] === 0 && m[5] === 1 && m[6] === 0 && m[7] === 0 && m[8] === 0 && m[9] === 0 && m[10] === 1 && m[11] === 0 && m[12] === 0 && m[13] === 0 && m[14] === 0 && m[15] === 1; } /** * Multiplies the specified 4x4 matrices together and stores the result in the current * instance. * * @param {Mat4} lhs - The 4x4 matrix used as the first multiplicand of the operation. * @param {Mat4} rhs - The 4x4 matrix used as the second multiplicand of the operation. * @returns {Mat4} Self for chaining. * @example * const a = new pc.Mat4().setFromEulerAngles(10, 20, 30); * const b = new pc.Mat4().setFromAxisAngle(pc.Vec3.UP, 180); * const r = new pc.Mat4(); * * // r = a * b * r.mul2(a, b); * * console.log("The result of the multiplication is: " + r.toString()); */ mul2(lhs, rhs) { const a = lhs.data; const b = rhs.data; const r = this.data; const a00 = a[0]; const a01 = a[1]; const a02 = a[2]; const a03 = a[3]; const a10 = a[4]; const a11 = a[5]; const a12 = a[6]; const a13 = a[7]; const a20 = a[8]; const a21 = a[9]; const a22 = a[10]; const a23 = a[11]; const a30 = a[12]; const a31 = a[13]; const a32 = a[14]; const a33 = a[15]; let b0, b1, b2, b3; b0 = b[0]; b1 = b[1]; b2 = b[2]; b3 = b[3]; r[0] = a00 * b0 + a10 * b1 + a20 * b2 + a30 * b3; r[1] = a01 * b0 + a11 * b1 + a21 * b2 + a31 * b3; r[2] = a02 * b0 + a12 * b1 + a22 * b2 + a32 * b3; r[3] = a03 * b0 + a13 * b1 + a23 * b2 + a33 * b3; b0 = b[4]; b1 = b[5]; b2 = b[6]; b3 = b[7]; r[4] = a00 * b0 + a10 * b1 + a20 * b2 + a30 * b3; r[5] = a01 * b0 + a11 * b1 + a21 * b2 + a31 * b3; r[6] = a02 * b0 + a12 * b1 + a22 * b2 + a32 * b3; r[7] = a03 * b0 + a13 * b1 + a23 * b2 + a33 * b3; b0 = b[8]; b1 = b[9]; b2 = b[10]; b3 = b[11]; r[8] = a00 * b0 + a10 * b1 + a20 * b2 + a30 * b3; r[9] = a01 * b0 + a11 * b1 + a21 * b2 + a31 * b3; r[10] = a02 * b0 + a12 * b1 + a22 * b2 + a32 * b3; r[11] = a03 * b0 + a13 * b1 + a23 * b2 + a33 * b3; b0 = b[12]; b1 = b[13]; b2 = b[14]; b3 = b[15]; r[12] = a00 * b0 + a10 * b1 + a20 * b2 + a30 * b3; r[13] = a01 * b0 + a11 * b1 + a21 * b2 + a31 * b3; r[14] = a02 * b0 + a12 * b1 + a22 * b2 + a32 * b3; r[15] = a03 * b0 + a13 * b1 + a23 * b2 + a33 * b3; return this; } /** * Multiplies the specified 4x4 matrices together and stores the result in the current * instance. This function assumes the matrices are affine transformation matrices, where the * upper left 3x3 elements are a rotation matrix, and the bottom left 3 elements are * translation. The rightmost column is assumed to be [0, 0, 0, 1]. The parameters are not * verified to be in the expected format. This function is faster than general * {@link Mat4#mul2}. * * @param {Mat4} lhs - The affine transformation 4x4 matrix used as the first multiplicand of * the operation. * @param {Mat4} rhs - The affine transformation 4x4 matrix used as the second multiplicand of * the operation. * @returns {Mat4} Self for chaining. */ mulAffine2(lhs, rhs) { const a = lhs.data; const b = rhs.data; const r = this.data; const a00 = a[0]; const a01 = a[1]; const a02 = a[2]; const a10 = a[4]; const a11 = a[5]; const a12 = a[6]; const a20 = a[8]; const a21 = a[9]; const a22 = a[10]; const a30 = a[12]; const a31 = a[13]; const a32 = a[14]; let b0, b1, b2; b0 = b[0]; b1 = b[1]; b2 = b[2]; r[0] = a00 * b0 + a10 * b1 + a20 * b2; r[1] = a01 * b0 + a11 * b1 + a21 * b2; r[2] = a02 * b0 + a12 * b1 + a22 * b2; r[3] = 0; b0 = b[4]; b1 = b[5]; b2 = b[6]; r[4] = a00 * b0 + a10 * b1 + a20 * b2; r[5] = a01 * b0 + a11 * b1 + a21 * b2; r[6] = a02 * b0 + a12 * b1 + a22 * b2; r[7] = 0; b0 = b[8]; b1 = b[9]; b2 = b[10]; r[8] = a00 * b0 + a10 * b1 + a20 * b2; r[9] = a01 * b0 + a11 * b1 + a21 * b2; r[10] = a02 * b0 + a12 * b1 + a22 * b2; r[11] = 0; b0 = b[12]; b1 = b[13]; b2 = b[14]; r[12] = a00 * b0 + a10 * b1 + a20 * b2 + a30; r[13] = a01 * b0 + a11 * b1 + a21 * b2 + a31; r[14] = a02 * b0 + a12 * b1 + a22 * b2 + a32; r[15] = 1; return this; } /** * Multiplies the current instance by the specified 4x4 matrix. * * @param {Mat4} rhs - The 4x4 matrix used as the second multiplicand of the operation. * @returns {Mat4} Self for chaining. * @example * const a = new pc.Mat4().setFromEulerAngles(10, 20, 30); * const b = new pc.Mat4().setFromAxisAngle(pc.Vec3.UP, 180); * * // a = a * b * a.mul(b); * * console.log("The result of the multiplication is: " + a.toString()); */ mul(rhs) { return this.mul2(this, rhs); } /** * Transforms a 3-dimensional point by a 4x4 matrix. * * @param {Vec3} vec - The 3-dimensional point to be transformed. * @param {Vec3} [res] - An optional 3-dimensional point to receive the result of the * transformation. * @returns {Vec3} The input point v transformed by the current instance. * @example * // Create a 3-dimensional point * const v = new pc.Vec3(1, 2, 3); * * // Create a 4x4 rotation matrix * const m = new pc.Mat4().setFromEulerAngles(10, 20, 30); * * const tv = m.transformPoint(v); */ transformPoint(vec, res = new Vec3()) { const m = this.data; const { x, y, z } = vec; res.x = x * m[0] + y * m[4] + z * m[8] + m[12]; res.y = x * m[1] + y * m[5] + z * m[9] + m[13]; res.z = x * m[2] + y * m[6] + z * m[10] + m[14]; return res; } /** * Transforms a 3-dimensional vector by a 4x4 matrix. * * @param {Vec3} vec - The 3-dimensional vector to be transformed. * @param {Vec3} [res] - An optional 3-dimensional vector to receive the result of the * transformation. * @returns {Vec3} The input vector v transformed by the current instance. * @example * // Create a 3-dimensional vector * const v = new pc.Vec3(1, 2, 3); * * // Create a 4x4 rotation matrix * const m = new pc.Mat4().setFromEulerAngles(10, 20, 30); * * const tv = m.transformVector(v); */ transformVector(vec, res = new Vec3()) { const m = this.data; const { x, y, z } = vec; res.x = x * m[0] + y * m[4] + z * m[8]; res.y = x * m[1] + y * m[5] + z * m[9]; res.z = x * m[2] + y * m[6] + z * m[10]; return res; } /** * Transforms a 4-dimensional vector by a 4x4 matrix. * * @param {Vec4} vec - The 4-dimensional vector to be transformed. * @param {Vec4} [res] - An optional 4-dimensional vector to receive the result of the * transformation. * @returns {Vec4} The input vector v transformed by the current instance. * @example * // Create an input 4-dimensional vector * const v = new pc.Vec4(1, 2, 3, 4); * * // Create an output 4-dimensional vector * const result = new pc.Vec4(); * * // Create a 4x4 rotation matrix * const m = new pc.Mat4().setFromEulerAngles(10, 20, 30); * * m.transformVec4(v, result); */ transformVec4(vec, res = new Vec4()) { const m = this.data; const { x, y, z, w } = vec; res.x = x * m[0] + y * m[4] + z * m[8] + w * m[12]; res.y = x * m[1] + y * m[5] + z * m[9] + w * m[13]; res.z = x * m[2] + y * m[6] + z * m[10] + w * m[14]; res.w = x * m[3] + y * m[7] + z * m[11] + w * m[15]; return res; } /** * Sets the specified matrix to a viewing matrix derived from an eye point, a target point and * an up vector. The matrix maps the target point to the negative z-axis and the eye point to * the origin, so that when you use a typical projection matrix, the center of the scene maps * to the center of the viewport. Similarly, the direction described by the up vector projected * onto the viewing plane is mapped to the positive y-axis so that it points upward in the * viewport. The up vector must not be parallel to the line of sight from the eye to the * reference point. * * @param {Vec3} position - 3-d vector holding view position. * @param {Vec3} target - 3-d vector holding reference point. * @param {Vec3} up - 3-d vector holding the up direction. * @returns {Mat4} Self for chaining. * @example * const position = new pc.Vec3(10, 10, 10); * const target = new pc.Vec3(0, 0, 0); * const up = new pc.Vec3(0, 1, 0); * const m = new pc.Mat4().setLookAt(position, target, up); */ setLookAt(position, target, up) { z.sub2(position, target).normalize(); y.copy(up).normalize(); x.cross(y, z).normalize(); y.cross(z, x); const r = this.data; r[0] = x.x; r[1] = x.y; r[2] = x.z; r[3] = 0; r[4] = y.x; r[5] = y.y; r[6] = y.z; r[7] = 0; r[8] = z.x; r[9] = z.y; r[10] = z.z; r[11] = 0; r[12] = position.x; r[13] = position.y; r[14] = position.z; r[15] = 1; return this; } /** * Sets the specified matrix to a perspective projection matrix. The function's parameters * define the shape of a frustum. * * @param {number} left - The x-coordinate for the left edge of the camera's projection plane * in eye space. * @param {number} right - The x-coordinate for the right edge of the camera's projection plane * in eye space. * @param {number} bottom - The y-coordinate for the bottom edge of the camera's projection * plane in eye space. * @param {number} top - The y-coordinate for the top edge of the camera's projection plane in * eye space. * @param {number} znear - The near clip plane in eye coordinates. * @param {number} zfar - The far clip plane in eye coordinates. * @returns {Mat4} Self for chaining. * @example * // Create a 4x4 perspective projection matrix * const f = pc.Mat4().setFrustum(-2, 2, -1, 1, 1, 1000); * @ignore */ setFrustum(left, right, bottom, top, znear, zfar) { const temp1 = 2 * znear; const temp2 = right - left; const temp3 = top - bottom; const temp4 = zfar - znear; const r = this.data; r[0] = temp1 / temp2; r[1] = 0; r[2] = 0; r[3] = 0; r[4] = 0; r[5] = temp1 / temp3; r[6] = 0; r[7] = 0; r[8] = (right + left) / temp2; r[9] = (top + bottom) / temp3; r[10] = (-zfar - znear) / temp4; r[11] = -1; r[12] = 0; r[13] = 0; r[14] = -temp1 * zfar / temp4; r[15] = 0; return this; } /** * Sets the specified matrix to a perspective projection matrix. The function's parameters * define the shape of a frustum. * * @param {number} fov - The frustum's field of view in degrees. The fovIsHorizontal parameter * controls whether this is a vertical or horizontal field of view. By default, it's a vertical * field of view. * @param {number} aspect - The aspect ratio of the frustum's projection plane * (width / height). * @param {number} znear - The near clip plane in eye coordinates. * @param {number} zfar - The far clip plane in eye coordinates. * @param {boolean} [fovIsHorizontal] - Set to true to treat the fov as horizontal (x-axis) and * false for vertical (y-axis). Defaults to false. * @returns {Mat4} Self for chaining. * @example * // Create a 4x4 perspective projection matrix * const persp = pc.Mat4().setPerspective(45, 16 / 9, 1, 1000); */ setPerspective(fov, aspect, znear, zfar, fovIsHorizontal) { Mat4._getPerspectiveHalfSize(_halfSize, fov, aspect, znear, fovIsHorizontal); return this.setFrustum(-_halfSize.x, _halfSize.x, -_halfSize.y, _halfSize.y, znear, zfar); } /** * Sets the specified matrix to an orthographic projection matrix. The function's parameters * define the shape of a cuboid-shaped frustum. * * @param {number} left - The x-coordinate for the left edge of the camera's projection plane * in eye space. * @param {number} right - The x-coordinate for the right edge of the camera's projection plane * in eye space. * @param {number} bottom - The y-coordinate for the bottom edge of the camera's projection * plane in eye space. * @param {number} top - The y-coordinate for the top edge of the camera's projection plane in * eye space. * @param {number} near - The near clip plane in eye coordinates. * @param {number} far - The far clip plane in eye coordinates. * @returns {Mat4} Self for chaining. * @example * // Create a 4x4 orthographic projection matrix * const ortho = pc.Mat4().ortho(-2, 2, -2, 2, 1, 1000); */ setOrtho(left, right, bottom, top, near, far) { const r = this.data; r[0] = 2 / (right - left); r[1] = 0; r[2] = 0; r[3] = 0; r[4] = 0; r[5] = 2 / (top - bottom); r[6] = 0; r[7] = 0; r[8] = 0; r[9] = 0; r[10] = -2 / (far - near); r[11] = 0; r[12] = -(right + left) / (right - left); r[13] = -(top + bottom) / (top - bottom); r[14] = -(far + near) / (far - near); r[15] = 1; return this; } /** * Sets the specified matrix to a rotation matrix equivalent to a rotation around an axis. The * axis must be normalized (unit length) and the angle must be specified in degrees. * * @param {Vec3} axis - The normalized axis vector around which to rotate. * @param {number} angle - The angle of rotation in degrees. * @returns {Mat4} Self for chaining. * @example * // Create a 4x4 rotation matrix * const rm = new pc.Mat4().setFromAxisAngle(pc.Vec3.UP, 90); */ setFromAxisAngle(axis, angle) { angle *= math.DEG_TO_RAD; const { x, y, z } = axis; const c = Math.cos(angle); const s = Math.sin(angle); const t = 1 - c; const tx = t * x; const ty = t * y; const m = this.data; m[0] = tx * x + c; m[1] = tx * y + s * z; m[2] = tx * z - s * y; m[3] = 0; m[4] = tx * y - s * z; m[5] = ty * y + c; m[6] = ty * z + s * x; m[7] = 0; m[8] = tx * z + s * y; m[9] = ty * z - x * s; m[10] = t * z * z + c; m[11] = 0; m[12] = 0; m[13] = 0; m[14] = 0; m[15] = 1; return this; } /** * Sets the specified matrix to a translation matrix. * * @param {number} x - The x-component of the translation. * @param {number} y - The y-component of the translation. * @param {number} z - The z-component of the translation. * @returns {Mat4} Self for chaining. * @example * // Create a 4x4 translation matrix * const tm = new pc.Mat4().setTranslate(10, 10, 10); * @ignore */ setTranslate(x, y, z) { const m = this.data; m[0] = 1; m[1] = 0; m[2] = 0; m[3] = 0; m[4] = 0; m[5] = 1; m[6] = 0; m[7] = 0; m[8] = 0; m[9] = 0; m[10] = 1; m[11] = 0; m[12] = x; m[13] = y; m[14] = z; m[15] = 1; return this; } /** * Sets the specified matrix to a scale matrix. * * @param {number} x - The x-component of the scale. * @param {number} y - The y-component of the scale. * @param {number} z - The z-component of the scale. * @returns {Mat4} Self for chaining. * @example * // Create a 4x4 scale matrix * const sm = new pc.Mat4().setScale(10, 10, 10); * @ignore */ setScale(x, y, z) { const m = this.data; m[0] = x; m[1] = 0; m[2] = 0; m[3] = 0; m[4] = 0; m[5] = y; m[6] = 0; m[7] = 0; m[8] = 0; m[9] = 0; m[10] = z; m[11] = 0; m[12] = 0; m[13] = 0; m[14] = 0; m[15] = 1; return this; } /** * Sets the specified matrix to a matrix transforming a normalized view volume (in range of * -1 .. 1) to their position inside a viewport (in range of 0 .. 1). This encapsulates a * scaling to the size of the viewport and a translation to the position of the viewport. * * @param {number} x - The x-component of the position of the viewport (in 0..1 range). * @param {number} y - The y-component of the position of the viewport (in 0..1 range). * @param {number} width - The width of the viewport (in 0..1 range). * @param {number} height - The height of the viewport (in 0..1 range). * @returns {Mat4} Self for chaining. * @example * // Create a 4x4 viewport matrix which scales normalized view volume to full texture viewport * const vm = new pc.Mat4().setViewport(0, 0, 1, 1); * @ignore */ setViewport(x, y, width, height) { const m = this.data; m[0] = width * 0.5; m[1] = 0; m[2] = 0; m[3] = 0; m[4] = 0; m[5] = height * 0.5; m[6] = 0; m[7] = 0; m[8] = 0; m[9] = 0; m[10] = 0.5; m[11] = 0; m[12] = x + width * 0.5; m[13] = y + height * 0.5; m[14] = 0.5; m[15] = 1; return this; } /** * Sets the matrix to a reflection matrix, which can be used as a mirror transformation by the * plane. * * @param {Vec3} normal - The normal of the plane to reflect by. * @param {number} distance - The distance of plane to reflect by. * @returns {Mat4} Self for chaining. */ setReflection(normal, distance) { const a = normal.x; const b = normal.y; const c = normal.z; const data = this.data; data[0] = 1.0 - 2 * a * a; data[1] = -2 * a * b; data[2] = -2 * a * c; data[3] = 0; data[4] = -2 * a * b; data[5] = 1.0 - 2 * b * b; data[6] = -2 * b * c; data[7] = 0; data[8] = -2 * a * c; data[9] = -2 * b * c; data[10] = 1.0 - 2 * c * c; data[11] = 0; data[12] = -2 * a * distance; data[13] = -2 * b * distance; data[14] = -2 * c * distance; data[15] = 1; return this; } /** * Sets the matrix to the inverse of a source matrix. * * @param {Mat4} [src] - The matrix to invert. If not set, the matrix is inverted in-place. * @returns {Mat4} Self for chaining. * @example * // Create a 4x4 rotation matrix of 180 degrees around the y-axis * const rot = new pc.Mat4().setFromAxisAngle(pc.Vec3.UP, 180); * * // Invert in place * rot.invert(); */ invert(src = this) { const s = src.data; const a00 = s[0]; const a01 = s[1]; const a02 = s[2]; const a03 = s[3]; const a10 = s[4]; const a11 = s[5]; const a12 = s[6]; const a13 = s[7]; const a20 = s[8]; const a21 = s[9]; const a22 = s[10]; const a23 = s[11]; const a30 = s[12]; const a31 = s[13]; const a32 = s[14]; const a33 = s[15]; const b00 = a00 * a11 - a01 * a10; const b01 = a00 * a12 - a02 * a10; const b02 = a00 * a13 - a03 * a10; const b03 = a01 * a12 - a02 * a11; const b04 = a01 * a13 - a03 * a11; const b05 = a02 * a13 - a03 * a12; const b06 = a20 * a31 - a21 * a30; const b07 = a20 * a32 - a22 * a30; const b08 = a20 * a33 - a23 * a30; const b09 = a21 * a32 - a22 * a31; const b10 = a21 * a33 - a23 * a31; const b11 = a22 * a33 - a23 * a32; const det = b00 * b11 - b01 * b10 + b02 * b09 + b03 * b08 - b04 * b07 + b05 * b06; if (det === 0) { this.setIdentity(); } else { const invDet = 1 / det; const t = this.data; t[0] = (a11 * b11 - a12 * b10 + a13 * b09) * invDet; t[1] = (-a01 * b11 + a02 * b10 - a03 * b09) * invDet; t[2] = (a31 * b05 - a32 * b04 + a33 * b03) * invDet; t[3] = (-a21 * b05 + a22 * b04 - a23 * b03) * invDet; t[4] = (-a10 * b11 + a12 * b08 - a13 * b07) * invDet; t[5] = (a00 * b11 - a02 * b08 + a03 * b07) * invDet; t[6] = (-a30 * b05 + a32 * b02 - a33 * b01) * invDet; t[7] = (a20 * b05 - a22 * b02 + a23 * b01) * invDet; t[8] = (a10 * b10 - a11 * b08 + a13 * b06) * invDet; t[9] = (-a00 * b10 + a01 * b08 - a03 * b06) * invDet; t[10] = (a30 * b04 - a31 * b02 + a33 * b00) * invDet; t[11] = (-a20 * b04 + a21 * b02 - a23 * b00) * invDet; t[12] = (-a10 * b09 + a11 * b07 - a12 * b06) * invDet; t[13] = (a00 * b09 - a01 * b07 + a02 * b06) * invDet; t[14] = (-a30 * b03 + a31 * b01 - a32 * b00) * invDet; t[15] = (a20 * b03 - a21 * b01 + a22 * b00) * invDet; } return this; } /** * Sets matrix data from an array. * * @param {number[]} src - Source array. Must have 16 values. * @returns {Mat4} Self for chaining. */ set(src) { const dst = this.data; dst[0] = src[0]; dst[1] = src[1]; dst[2] = src[2]; dst[3] = src[3]; dst[4] = src[4]; dst[5] = src[5]; dst[6] = src[6]; dst[7] = src[7]; dst[8] = src[8]; dst[9] = src[9]; dst[10] = src[10]; dst[11] = src[11]; dst[12] = src[12]; dst[13] = src[13]; dst[14] = src[14]; dst[15] = src[15]; return this; } /** * Sets the specified matrix to the identity matrix. * * @returns {Mat4} Self for chaining. * @example * m.setIdentity(); * console.log("The matrix is " + (m.isIdentity() ? "identity" : "not identity")); */ setIdentity() { const m = this.data; m[0] = 1; m[1] = 0; m[2] = 0; m[3] = 0; m[4] = 0; m[5] = 1; m[6] = 0; m[7] = 0; m[8] = 0; m[9] = 0; m[10] = 1; m[11] = 0; m[12] = 0; m[13] = 0; m[14] = 0; m[15] = 1; return this; } /** * Sets the specified matrix to the concatenation of a translation, a quaternion rotation and a * scale. * * @param {Vec3} t - A 3-d vector translation. * @param {Quat} r - A quaternion rotation. * @param {Vec3} s - A 3-d vector scale. * @returns {Mat4} Self for chaining. * @example * const t = new pc.Vec3(10, 20, 30); * const r = new pc.Quat(); * const s = new pc.Vec3(2, 2, 2); * * const m = new pc.Mat4(); * m.setTRS(t, r, s); */ setTRS(t, r, s) { const qx = r.x; const qy = r.y; const qz = r.z; const qw = r.w; const sx = s.x; const sy = s.y; const sz = s.z; const x2 = qx + qx; const y2 = qy + qy; const z2 = qz + qz; const xx = qx * x2; const xy = qx * y2; const xz = qx * z2; const yy = qy * y2; const yz = qy * z2; const zz = qz * z2; const wx = qw * x2; const wy = qw * y2; const wz = qw * z2; const m = this.data; m[0] = (1 - (yy + zz)) * sx; m[1] = (xy + wz) * sx; m[2] = (xz - wy) * sx; m[3] = 0; m[4] = (xy - wz) * sy; m[5] = (1 - (xx + zz)) * sy; m[6] = (yz + wx) * sy; m[7] = 0; m[8] = (xz + wy) * sz; m[9] = (yz - wx) * sz; m[10] = (1 - (xx + yy)) * sz; m[11] = 0; m[12] = t.x; m[13] = t.y; m[14] = t.z; m[15] = 1; return this; } /** * Sets the matrix to the transpose of a source matrix. * * @param {Mat4} [src] - The matrix to transpose. If not set, the matrix is transposed in-place. * @returns {Mat4} Self for chaining. * @example * const m = new pc.Mat4(); * * // Transpose in place * m.transpose(); */ transpose(src = this) { const s = src.data; const t = this.data; if (s === t) { let tmp; tmp = s[1]; t[1] = s[4]; t[4] = tmp; tmp = s[2]; t[2] = s[8]; t[8] = tmp; tmp = s[3]; t[3] = s[12]; t[12] = tmp; tmp = s[6]; t[6] = s[9]; t[9] = tmp; tmp = s[7]; t[7] = s[13]; t[13] = tmp; tmp = s[11]; t[11] = s[14]; t[14] = tmp; } else { t[0] = s[0]; t[1] = s[4]; t[2] = s[8]; t[3] = s[12]; t[4] = s[1]; t[5] = s[5]; t[6] = s[9]; t[7] = s[13]; t[8] = s[2]; t[9] = s[6]; t[10] = s[10]; t[11] = s[14]; t[12] = s[3]; t[13] = s[7]; t[14] = s[11]; t[15] = s[15]; } return this; } /** * Extracts the translational component from the specified 4x4 matrix. * * @param {Vec3} [t] - The vector to receive the translation of the matrix. * @returns {Vec3} The translation of the specified 4x4 matrix. * @example * // Create a 4x4 matrix * const m = new pc.Mat4(); * * // Query the translation component * const t = new pc.Vec3(); * m.getTranslation(t); */ getTranslation(t = new Vec3()) { return t.set(this.data[12], this.data[13], this.data[14]); } /** * Extracts the x-axis from the specified 4x4 matrix. * * @param {Vec3} [x] - The vector to receive the x axis of the matrix. * @returns {Vec3} The x-axis of the specified 4x4 matrix. * @example * // Create a 4x4 matrix * const m = new pc.Mat4(); * * // Query the x-axis component * const x = new pc.Vec3(); * m.getX(x); */ getX(x = new Vec3()) { return x.set(this.data[0], this.data[1], this.data[2]); } /** * Extracts the y-axis from the specified 4x4 matrix. * * @param {Vec3} [y] - The vector to receive the y axis of the matrix. * @returns {Vec3} The y-axis of the specified 4x4 matrix. * @example * // Create a 4x4 matrix * const m = new pc.Mat4(); * * // Query the y-axis component * const y = new pc.Vec3(); * m.getY(y); */ getY(y = new Vec3()) { return y.set(this.data[4], this.data[5], this.data[6]); } /** * Extracts the z-axis from the specified 4x4 matrix. * * @param {Vec3} [z] - The vector to receive the z axis of the matrix. * @returns {Vec3} The z-axis of the specified 4x4 matrix. * @example * // Create a 4x4 matrix * const m = new pc.Mat4(); * * // Query the z-axis component * const z = new pc.Vec3(); * m.getZ(z); */ getZ(z = new Vec3()) { return z.set(this.data[8], this.data[9], this.data[10]); } /** * Extracts the scale component from the specified 4x4 matrix. * * @param {Vec3} [scale] - Vector to receive the scale. * @returns {Vec3} The scale in X, Y and Z of the specified 4x4 matrix. * @example * // Query the scale component * const scale = m.getScale(); */ getScale(scale = new Vec3()) { this.getX(x); this.getY(y); this.getZ(z); scale.set(x.length(), y.length(), z.length()); return scale; } /** * -1 if the the matrix has an odd number of negative scales (mirrored); 1 otherwise. * * @type {number} * @ignore */ get scaleSign() { this.getX(x); this.getY(y); this.getZ(z); x.cross(x, y); return x.dot(z) < 0 ? -1 : 1; } /** * Sets the specified matrix to a rotation matrix defined by Euler angles. The Euler angles are * specified in XYZ order and in degrees. * * @param {number} ex - Angle to rotate around X axis in degrees. * @param {number} ey - Angle to rotate around Y axis in degrees. * @param {number} ez - Angle to rotate around Z axis in degrees. * @returns {Mat4} Self for chaining. * @example * const m = new pc.Mat4(); * m.setFromEulerAngles(45, 90, 180); */ setFromEulerAngles(ex, ey, ez) { // http://en.wikipedia.org/wiki/Rotation_matrix#Conversion_from_and_to_axis-angle // The 3D space is right-handed, so the rotation around each axis will be counterclockwise // for an observer placed so that the axis goes in his or her direction (Right-hand rule). ex *= math.DEG_TO_RAD; ey *= math.DEG_TO_RAD; ez *= math.DEG_TO_RAD; // Solution taken from http://en.wikipedia.org/wiki/Euler_angles#Matrix_orientation const s1 = Math.sin(-ex); const c1 = Math.cos(-ex); const s2 = Math.sin(-ey); const c2 = Math.cos(-ey); const s3 = Math.sin(-ez); const c3 = Math.cos(-ez); const m = this.data; // Set rotation elements m[0] = c2 * c3; m[1] = -c2 * s3; m[2] = s2; m[3] = 0; m[4] = c1 * s3 + c3 * s1 * s2; m[5] = c1 * c3 - s1 * s2 * s3; m[6] = -c2 * s1; m[7] = 0; m[8] = s1 * s3 - c1 * c3 * s2; m[9] = c3 * s1 + c1 * s2 * s3; m[10] = c1 * c2; m[11] = 0; m[12] = 0; m[13] = 0; m[14] = 0; m[15] = 1; return this; } /** * Extracts the Euler angles equivalent to the rotational portion of the specified matrix. The * returned Euler angles are in XYZ order an in degrees. * * @param {Vec3} [eulers] - A 3-d vector to receive the Euler angles. * @returns {Vec3} A 3-d vector containing the Euler angles. * @example * // Create a 4x4 rotation matrix of 45 degrees around the y-axis * const m = new pc.Mat4().setFromAxisAngle(pc.Vec3.UP, 45); * * const eulers = m.getEulerAngles(); */ getEulerAngles(eulers = new Vec3()) { this.getScale(scale); const sx = scale.x; const sy = scale.y; const sz = scale.z; if (sx === 0 || sy === 0 || sz === 0) { return eulers.set(0, 0, 0); } const m = this.data; const y = Math.asin(-m[2] / sx); const halfPi = Math.PI * 0.5; let x, z; if (y < halfPi) { if (y > -halfPi) { x = Math.atan2(m[6] / sy, m[10] / sz); z = Math.atan2(m[1] / sx, m[0] / sx); } else { // Not a unique solution z = 0; x = -Math.atan2(m[4] / sy, m[5] / sy); } } else { // Not a unique solution z = 0; x = Math.atan2(m[4] / sy, m[5] / sy); } return eulers.set(x, y, z).mulScalar(math.RAD_TO_DEG); } /** * Converts the specified matrix to string form. * * @returns {string} The matrix in string form. * @example * const m = new pc.Mat4(); * // Outputs [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1] * console.log(m.toString()); */ toString() { return `[${this.data.join(', ')}]`; } static{ /** * A constant matrix set to the identity. * * @type {Mat4} * @readonly */ this.IDENTITY = Object.freeze(new Mat4()); } static{ /** * A constant matrix with all elements set to 0. * * @type {Mat4} * @readonly */ this.ZERO = Object.freeze(new Mat4().set([ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ])); } } export { Mat4 };