planck-js
Version:
2D JavaScript/TypeScript physics engine for cross-platform HTML5 game development
677 lines (564 loc) • 19.7 kB
text/typescript
/*
* Planck.js
*
* Copyright (c) Erin Catto, Ali Shakiba
*
* This source code is licensed under the MIT license found in the
* LICENSE file in the root directory of this source tree.
*/
import { options } from "../../util/options";
import { SettingsInternal as Settings } from "../../Settings";
import { clamp } from "../../common/Math";
import { Vec2, Vec2Value } from "../../common/Vec2";
import { Rot } from "../../common/Rot";
import { Joint, JointOpt, JointDef } from "../Joint";
import { Body } from "../Body";
import { TimeStep } from "../Solver";
/** @internal */ const _CONSTRUCTOR_FACTORY = typeof CONSTRUCTOR_FACTORY === "undefined" ? false : CONSTRUCTOR_FACTORY;
/** @internal */ const math_abs = Math.abs;
/** @internal */ const math_PI = Math.PI;
/**
* Wheel joint definition. This requires defining a line of motion using an axis
* and an anchor point. The definition uses local anchor points and a local axis
* so that the initial configuration can violate the constraint slightly. The
* joint translation is zero when the local anchor points coincide in world
* space. Using local anchors and a local axis helps when saving and loading a
* game.
*/
export interface WheelJointOpt extends JointOpt {
/**
* Enable/disable the joint motor.
*/
enableMotor?: boolean;
/**
* The maximum motor torque, usually in N-m.
*/
maxMotorTorque?: number;
/**
* The desired motor speed in radians per second.
*/
motorSpeed?: number;
/**
* Suspension frequency, zero indicates no suspension.
*/
frequencyHz?: number;
/**
* Suspension damping ratio, one indicates critical damping.
*/
dampingRatio?: number;
}
/**
* Wheel joint definition. This requires defining a line of motion using an axis
* and an anchor point. The definition uses local anchor points and a local axis
* so that the initial configuration can violate the constraint slightly. The
* joint translation is zero when the local anchor points coincide in world
* space. Using local anchors and a local axis helps when saving and loading a
* game.
*/
export interface WheelJointDef extends JointDef, WheelJointOpt {
/**
* The local anchor point relative to bodyA's origin.
*/
localAnchorA: Vec2Value;
/**
* The local anchor point relative to bodyB's origin.
*/
localAnchorB: Vec2Value;
/**
* The local translation axis in bodyA.
*/
localAxisA: Vec2Value;
/** @internal renamed to localAxisA */
localAxis?: Vec2Value;
/** @internal */ anchorA?: Vec2Value;
/** @internal */ anchorB?: Vec2Value;
}
/** @internal */ const DEFAULTS = {
enableMotor : false,
maxMotorTorque : 0.0,
motorSpeed : 0.0,
frequencyHz : 2.0,
dampingRatio : 0.7,
};
declare module "./WheelJoint" {
/** @hidden @deprecated Use new keyword. */
// @ts-expect-error
function WheelJoint(def: WheelJointDef): WheelJoint;
/** @hidden @deprecated Use new keyword. */
// @ts-expect-error
function WheelJoint(def: WheelJointOpt, bodyA: Body, bodyB: Body, anchor: Vec2Value, axis: Vec2Value): WheelJoint;
}
/**
* A wheel joint. This joint provides two degrees of freedom: translation along
* an axis fixed in bodyA and rotation in the plane. In other words, it is a
* point to line constraint with a rotational motor and a linear spring/damper.
* This joint is designed for vehicle suspensions.
*/
// @ts-expect-error
export class WheelJoint extends Joint {
static TYPE = "wheel-joint" as const;
/** @internal */ m_type: "wheel-joint";
/** @internal */ m_localAnchorA: Vec2;
/** @internal */ m_localAnchorB: Vec2;
/** @internal */ m_localXAxisA: Vec2;
/** @internal */ m_localYAxisA: Vec2;
/** @internal */ m_mass: number;
/** @internal */ m_impulse: number;
/** @internal */ m_motorMass: number;
/** @internal */ m_motorImpulse: number;
/** @internal */ m_springMass: number;
/** @internal */ m_springImpulse: number;
/** @internal */ m_maxMotorTorque: number;
/** @internal */ m_motorSpeed: number;
/** @internal */ m_enableMotor: boolean;
/** @internal */ m_frequencyHz: number;
/** @internal */ m_dampingRatio: number;
/** @internal */ m_bias: number;
/** @internal */ m_gamma: number;
// Solver temp
/** @internal */ m_localCenterA: Vec2;
/** @internal */ m_localCenterB: Vec2;
/** @internal */ m_invMassA: number;
/** @internal */ m_invMassB: number;
/** @internal */ m_invIA: number;
/** @internal */ m_invIB: number;
/** @internal */ m_ax: Vec2;
/** @internal */ m_ay: Vec2;
/** @internal */ m_sAx: number;
/** @internal */ m_sBx: number;
/** @internal */ m_sAy: number;
/** @internal */ m_sBy: number;
constructor(def: WheelJointDef);
constructor(def: WheelJointOpt, bodyA: Body, bodyB: Body, anchor?: Vec2Value, axis?: Vec2Value);
constructor(def: WheelJointDef, bodyA?: Body, bodyB?: Body, anchor?: Vec2Value, axis?: Vec2Value) {
// @ts-ignore
if (_CONSTRUCTOR_FACTORY && !(this instanceof WheelJoint)) {
return new WheelJoint(def, bodyA, bodyB, anchor, axis);
}
def = options(def, DEFAULTS);
super(def, bodyA, bodyB);
bodyA = this.m_bodyA;
bodyB = this.m_bodyB;
this.m_ax = Vec2.zero();
this.m_ay = Vec2.zero();
this.m_type = WheelJoint.TYPE;
this.m_localAnchorA = Vec2.clone(anchor ? bodyA.getLocalPoint(anchor) : def.localAnchorA || Vec2.zero());
this.m_localAnchorB = Vec2.clone(anchor ? bodyB.getLocalPoint(anchor) : def.localAnchorB || Vec2.zero());
if (Vec2.isValid(axis)) {
this.m_localXAxisA = bodyA.getLocalVector(axis);
} else if (Vec2.isValid(def.localAxisA)) {
this.m_localXAxisA = Vec2.clone(def.localAxisA);
} else if (Vec2.isValid(def.localAxis)) {
// localAxis is renamed to localAxisA, this is for backward compatibility
this.m_localXAxisA = Vec2.clone(def.localAxis);
} else {
this.m_localXAxisA = Vec2.neo(1.0, 0.0);
}
this.m_localYAxisA = Vec2.crossNumVec2(1.0, this.m_localXAxisA);
this.m_mass = 0.0;
this.m_impulse = 0.0;
this.m_motorMass = 0.0;
this.m_motorImpulse = 0.0;
this.m_springMass = 0.0;
this.m_springImpulse = 0.0;
this.m_maxMotorTorque = def.maxMotorTorque;
this.m_motorSpeed = def.motorSpeed;
this.m_enableMotor = def.enableMotor;
this.m_frequencyHz = def.frequencyHz;
this.m_dampingRatio = def.dampingRatio;
this.m_bias = 0.0;
this.m_gamma = 0.0;
// Linear constraint (point-to-line)
// d = pB - pA = xB + rB - xA - rA
// C = dot(ay, d)
// Cdot = dot(d, cross(wA, ay)) + dot(ay, vB + cross(wB, rB) - vA - cross(wA,
// rA))
// = -dot(ay, vA) - dot(cross(d + rA, ay), wA) + dot(ay, vB) + dot(cross(rB,
// ay), vB)
// J = [-ay, -cross(d + rA, ay), ay, cross(rB, ay)]
// Spring linear constraint
// C = dot(ax, d)
// Cdot = = -dot(ax, vA) - dot(cross(d + rA, ax), wA) + dot(ax, vB) +
// dot(cross(rB, ax), vB)
// J = [-ax -cross(d+rA, ax) ax cross(rB, ax)]
// Motor rotational constraint
// Cdot = wB - wA
// J = [0 0 -1 0 0 1]
}
/** @internal */
_serialize(): object {
return {
type: this.m_type,
bodyA: this.m_bodyA,
bodyB: this.m_bodyB,
collideConnected: this.m_collideConnected,
enableMotor: this.m_enableMotor,
maxMotorTorque: this.m_maxMotorTorque,
motorSpeed: this.m_motorSpeed,
frequencyHz: this.m_frequencyHz,
dampingRatio: this.m_dampingRatio,
localAnchorA: this.m_localAnchorA,
localAnchorB: this.m_localAnchorB,
localAxisA: this.m_localXAxisA,
};
}
/** @internal */
static _deserialize(data: any, world: any, restore: any): WheelJoint {
data = {...data};
data.bodyA = restore(Body, data.bodyA, world);
data.bodyB = restore(Body, data.bodyB, world);
const joint = new WheelJoint(data);
return joint;
}
/** @hidden */
_reset(def: Partial<WheelJointDef>): void {
if (def.anchorA) {
this.m_localAnchorA.setVec2(this.m_bodyA.getLocalPoint(def.anchorA));
} else if (def.localAnchorA) {
this.m_localAnchorA.setVec2(def.localAnchorA);
}
if (def.anchorB) {
this.m_localAnchorB.setVec2(this.m_bodyB.getLocalPoint(def.anchorB));
} else if (def.localAnchorB) {
this.m_localAnchorB.setVec2(def.localAnchorB);
}
if (def.localAxisA) {
this.m_localXAxisA.setVec2(def.localAxisA);
this.m_localYAxisA.setVec2(Vec2.crossNumVec2(1.0, def.localAxisA));
}
if (def.enableMotor !== undefined) {
this.m_enableMotor = def.enableMotor;
}
if (Number.isFinite(def.maxMotorTorque)) {
this.m_maxMotorTorque = def.maxMotorTorque;
}
if (Number.isFinite(def.motorSpeed)) {
this.m_motorSpeed = def.motorSpeed;
}
if (Number.isFinite(def.frequencyHz)) {
this.m_frequencyHz = def.frequencyHz;
}
if (Number.isFinite(def.dampingRatio)) {
this.m_dampingRatio = def.dampingRatio;
}
}
/**
* The local anchor point relative to bodyA's origin.
*/
getLocalAnchorA(): Vec2 {
return this.m_localAnchorA;
}
/**
* The local anchor point relative to bodyB's origin.
*/
getLocalAnchorB(): Vec2 {
return this.m_localAnchorB;
}
/**
* The local joint axis relative to bodyA.
*/
getLocalAxisA(): Vec2 {
return this.m_localXAxisA;
}
/**
* Get the current joint translation, usually in meters.
*/
getJointTranslation(): number {
const bA = this.m_bodyA;
const bB = this.m_bodyB;
const pA = bA.getWorldPoint(this.m_localAnchorA);
const pB = bB.getWorldPoint(this.m_localAnchorB);
const d = Vec2.sub(pB, pA);
const axis = bA.getWorldVector(this.m_localXAxisA);
const translation = Vec2.dot(d, axis);
return translation;
}
/**
* Get the current joint translation speed, usually in meters per second.
*/
getJointSpeed(): number {
const wA = this.m_bodyA.m_angularVelocity;
const wB = this.m_bodyB.m_angularVelocity;
return wB - wA;
}
/**
* Is the joint motor enabled?
*/
isMotorEnabled(): boolean {
return this.m_enableMotor;
}
/**
* Enable/disable the joint motor.
*/
enableMotor(flag: boolean): void {
if (flag == this.m_enableMotor) return;
this.m_bodyA.setAwake(true);
this.m_bodyB.setAwake(true);
this.m_enableMotor = flag;
}
/**
* Set the motor speed, usually in radians per second.
*/
setMotorSpeed(speed: number): void {
if (speed == this.m_motorSpeed) return;
this.m_bodyA.setAwake(true);
this.m_bodyB.setAwake(true);
this.m_motorSpeed = speed;
}
/**
* Get the motor speed, usually in radians per second.
*/
getMotorSpeed(): number {
return this.m_motorSpeed;
}
/**
* Set/Get the maximum motor force, usually in N-m.
*/
setMaxMotorTorque(torque: number): void {
if (torque == this.m_maxMotorTorque) return;
this.m_bodyA.setAwake(true);
this.m_bodyB.setAwake(true);
this.m_maxMotorTorque = torque;
}
getMaxMotorTorque(): number {
return this.m_maxMotorTorque;
}
/**
* Get the current motor torque given the inverse time step, usually in N-m.
*/
getMotorTorque(inv_dt: number): number {
return inv_dt * this.m_motorImpulse;
}
/**
* Set/Get the spring frequency in hertz. Setting the frequency to zero disables
* the spring.
*/
setSpringFrequencyHz(hz: number): void {
this.m_frequencyHz = hz;
}
getSpringFrequencyHz(): number {
return this.m_frequencyHz;
}
/**
* Set/Get the spring damping ratio
*/
setSpringDampingRatio(ratio: number): void {
this.m_dampingRatio = ratio;
}
getSpringDampingRatio(): number {
return this.m_dampingRatio;
}
/**
* Get the anchor point on bodyA in world coordinates.
*/
getAnchorA(): Vec2 {
return this.m_bodyA.getWorldPoint(this.m_localAnchorA);
}
/**
* Get the anchor point on bodyB in world coordinates.
*/
getAnchorB(): Vec2 {
return this.m_bodyB.getWorldPoint(this.m_localAnchorB);
}
/**
* Get the reaction force on bodyB at the joint anchor in Newtons.
*/
getReactionForce(inv_dt: number): Vec2 {
return Vec2.combine(this.m_impulse, this.m_ay, this.m_springImpulse, this.m_ax).mul(inv_dt);
}
/**
* Get the reaction torque on bodyB in N*m.
*/
getReactionTorque(inv_dt: number): number {
return inv_dt * this.m_motorImpulse;
}
initVelocityConstraints(step: TimeStep): void {
this.m_localCenterA = this.m_bodyA.m_sweep.localCenter;
this.m_localCenterB = this.m_bodyB.m_sweep.localCenter;
this.m_invMassA = this.m_bodyA.m_invMass;
this.m_invMassB = this.m_bodyB.m_invMass;
this.m_invIA = this.m_bodyA.m_invI;
this.m_invIB = this.m_bodyB.m_invI;
const mA = this.m_invMassA;
const mB = this.m_invMassB;
const iA = this.m_invIA;
const iB = this.m_invIB;
const cA = this.m_bodyA.c_position.c;
const aA = this.m_bodyA.c_position.a;
const vA = this.m_bodyA.c_velocity.v;
let wA = this.m_bodyA.c_velocity.w;
const cB = this.m_bodyB.c_position.c;
const aB = this.m_bodyB.c_position.a;
const vB = this.m_bodyB.c_velocity.v;
let wB = this.m_bodyB.c_velocity.w;
const qA = Rot.neo(aA);
const qB = Rot.neo(aB);
// Compute the effective masses.
const rA = Rot.mulVec2(qA, Vec2.sub(this.m_localAnchorA, this.m_localCenterA));
const rB = Rot.mulVec2(qB, Vec2.sub(this.m_localAnchorB, this.m_localCenterB));
const d = Vec2.zero();
d.addCombine(1, cB, 1, rB);
d.subCombine(1, cA, 1, rA);
// Point to line constraint
{
this.m_ay = Rot.mulVec2(qA, this.m_localYAxisA);
this.m_sAy = Vec2.crossVec2Vec2(Vec2.add(d, rA), this.m_ay);
this.m_sBy = Vec2.crossVec2Vec2(rB, this.m_ay);
this.m_mass = mA + mB + iA * this.m_sAy * this.m_sAy + iB * this.m_sBy
* this.m_sBy;
if (this.m_mass > 0.0) {
this.m_mass = 1.0 / this.m_mass;
}
}
// Spring constraint
this.m_springMass = 0.0;
this.m_bias = 0.0;
this.m_gamma = 0.0;
if (this.m_frequencyHz > 0.0) {
this.m_ax = Rot.mulVec2(qA, this.m_localXAxisA);
this.m_sAx = Vec2.crossVec2Vec2(Vec2.add(d, rA), this.m_ax);
this.m_sBx = Vec2.crossVec2Vec2(rB, this.m_ax);
const invMass = mA + mB + iA * this.m_sAx * this.m_sAx + iB * this.m_sBx
* this.m_sBx;
if (invMass > 0.0) {
this.m_springMass = 1.0 / invMass;
const C = Vec2.dot(d, this.m_ax);
// Frequency
const omega = 2.0 * math_PI * this.m_frequencyHz;
// Damping coefficient
const damp = 2.0 * this.m_springMass * this.m_dampingRatio * omega;
// Spring stiffness
const k = this.m_springMass * omega * omega;
// magic formulas
const h = step.dt;
this.m_gamma = h * (damp + h * k);
if (this.m_gamma > 0.0) {
this.m_gamma = 1.0 / this.m_gamma;
}
this.m_bias = C * h * k * this.m_gamma;
this.m_springMass = invMass + this.m_gamma;
if (this.m_springMass > 0.0) {
this.m_springMass = 1.0 / this.m_springMass;
}
}
} else {
this.m_springImpulse = 0.0;
}
// Rotational motor
if (this.m_enableMotor) {
this.m_motorMass = iA + iB;
if (this.m_motorMass > 0.0) {
this.m_motorMass = 1.0 / this.m_motorMass;
}
} else {
this.m_motorMass = 0.0;
this.m_motorImpulse = 0.0;
}
if (step.warmStarting) {
// Account for variable time step.
this.m_impulse *= step.dtRatio;
this.m_springImpulse *= step.dtRatio;
this.m_motorImpulse *= step.dtRatio;
const P = Vec2.combine(this.m_impulse, this.m_ay, this.m_springImpulse, this.m_ax);
const LA = this.m_impulse * this.m_sAy + this.m_springImpulse * this.m_sAx + this.m_motorImpulse;
const LB = this.m_impulse * this.m_sBy + this.m_springImpulse * this.m_sBx + this.m_motorImpulse;
vA.subMul(this.m_invMassA, P);
wA -= this.m_invIA * LA;
vB.addMul(this.m_invMassB, P);
wB += this.m_invIB * LB;
} else {
this.m_impulse = 0.0;
this.m_springImpulse = 0.0;
this.m_motorImpulse = 0.0;
}
this.m_bodyA.c_velocity.v.setVec2(vA);
this.m_bodyA.c_velocity.w = wA;
this.m_bodyB.c_velocity.v.setVec2(vB);
this.m_bodyB.c_velocity.w = wB;
}
solveVelocityConstraints(step: TimeStep): void {
const mA = this.m_invMassA;
const mB = this.m_invMassB;
const iA = this.m_invIA;
const iB = this.m_invIB;
const vA = this.m_bodyA.c_velocity.v;
let wA = this.m_bodyA.c_velocity.w;
const vB = this.m_bodyB.c_velocity.v;
let wB = this.m_bodyB.c_velocity.w;
// Solve spring constraint
{
const Cdot = Vec2.dot(this.m_ax, vB) - Vec2.dot(this.m_ax, vA) + this.m_sBx * wB - this.m_sAx * wA;
const impulse = -this.m_springMass * (Cdot + this.m_bias + this.m_gamma * this.m_springImpulse);
this.m_springImpulse += impulse;
const P = Vec2.mulNumVec2(impulse, this.m_ax);
const LA = impulse * this.m_sAx;
const LB = impulse * this.m_sBx;
vA.subMul(mA, P);
wA -= iA * LA;
vB.addMul(mB, P);
wB += iB * LB;
}
// Solve rotational motor constraint
{
const Cdot = wB - wA - this.m_motorSpeed;
let impulse = -this.m_motorMass * Cdot;
const oldImpulse = this.m_motorImpulse;
const maxImpulse = step.dt * this.m_maxMotorTorque;
this.m_motorImpulse = clamp(this.m_motorImpulse + impulse, -maxImpulse, maxImpulse);
impulse = this.m_motorImpulse - oldImpulse;
wA -= iA * impulse;
wB += iB * impulse;
}
// Solve point to line constraint
{
const Cdot = Vec2.dot(this.m_ay, vB) - Vec2.dot(this.m_ay, vA) + this.m_sBy * wB - this.m_sAy * wA;
const impulse = -this.m_mass * Cdot;
this.m_impulse += impulse;
const P = Vec2.mulNumVec2(impulse, this.m_ay);
const LA = impulse * this.m_sAy;
const LB = impulse * this.m_sBy;
vA.subMul(mA, P);
wA -= iA * LA;
vB.addMul(mB, P);
wB += iB * LB;
}
this.m_bodyA.c_velocity.v.setVec2(vA);
this.m_bodyA.c_velocity.w = wA;
this.m_bodyB.c_velocity.v.setVec2(vB);
this.m_bodyB.c_velocity.w = wB;
}
/**
* This returns true if the position errors are within tolerance.
*/
solvePositionConstraints(step: TimeStep): boolean {
const cA = this.m_bodyA.c_position.c;
let aA = this.m_bodyA.c_position.a;
const cB = this.m_bodyB.c_position.c;
let aB = this.m_bodyB.c_position.a;
const qA = Rot.neo(aA);
const qB = Rot.neo(aB);
const rA = Rot.mulVec2(qA, Vec2.sub(this.m_localAnchorA, this.m_localCenterA));
const rB = Rot.mulVec2(qB, Vec2.sub(this.m_localAnchorB, this.m_localCenterB));
const d = Vec2.zero();
d.addCombine(1, cB, 1, rB);
d.subCombine(1, cA, 1, rA);
const ay = Rot.mulVec2(qA, this.m_localYAxisA);
const sAy = Vec2.crossVec2Vec2(Vec2.add(d, rA), ay);
const sBy = Vec2.crossVec2Vec2(rB, ay);
const C = Vec2.dot(d, ay);
const k = this.m_invMassA + this.m_invMassB + this.m_invIA * this.m_sAy * this.m_sAy + this.m_invIB * this.m_sBy * this.m_sBy;
const impulse = k != 0.0 ? -C / k : 0.0;
const P = Vec2.mulNumVec2(impulse, ay);
const LA = impulse * sAy;
const LB = impulse * sBy;
cA.subMul(this.m_invMassA, P);
aA -= this.m_invIA * LA;
cB.addMul(this.m_invMassB, P);
aB += this.m_invIB * LB;
this.m_bodyA.c_position.c.setVec2(cA);
this.m_bodyA.c_position.a = aA;
this.m_bodyB.c_position.c.setVec2(cB);
this.m_bodyB.c_position.a = aB;
return math_abs(C) <= Settings.linearSlop;
}
}