planck-js
Version:
2D JavaScript/TypeScript physics engine for cross-platform HTML5 game development
542 lines (441 loc) • 15.3 kB
text/typescript
/*
* Planck.js
*
* Copyright (c) Erin Catto, Ali Shakiba
*
* This source code is licensed under the MIT license found in the
* LICENSE file in the root directory of this source tree.
*/
import { options } from "../../util/options";
import { SettingsInternal as Settings } from "../../Settings";
import { Vec2, Vec2Value } from "../../common/Vec2";
import { Vec3 } from "../../common/Vec3";
import { Mat33 } from "../../common/Mat33";
import { Rot } from "../../common/Rot";
import { Joint, JointOpt, JointDef } from "../Joint";
import { Body } from "../Body";
import { TimeStep } from "../Solver";
/** @internal */ const _CONSTRUCTOR_FACTORY = typeof CONSTRUCTOR_FACTORY === "undefined" ? false : CONSTRUCTOR_FACTORY;
/** @internal */ const math_abs = Math.abs;
/** @internal */ const math_PI = Math.PI;
/**
* Weld joint definition. You need to specify local anchor points where they are
* attached and the relative body angle. The position of the anchor points is
* important for computing the reaction torque.
*/
export interface WeldJointOpt extends JointOpt {
/**
* The mass-spring-damper frequency in Hertz. Rotation only. Disable softness
* with a value of 0.
*/
frequencyHz?: number;
/**
* The damping ratio. 0 = no damping, 1 = critical damping.
*/
dampingRatio?: number;
/**
* The bodyB angle minus bodyA angle in the reference state (radians).
*/
referenceAngle?: number;
}
/**
* Weld joint definition. You need to specify local anchor points where they are
* attached and the relative body angle. The position of the anchor points is
* important for computing the reaction torque.
*/
export interface WeldJointDef extends JointDef, WeldJointOpt {
/**
* The local anchor point relative to bodyA's origin.
*/
localAnchorA: Vec2Value;
/**
* The local anchor point relative to bodyB's origin.
*/
localAnchorB: Vec2Value;
/** @internal */ anchorA?: Vec2Value;
/** @internal */ anchorB?: Vec2Value;
}
/** @internal */ const DEFAULTS = {
frequencyHz : 0.0,
dampingRatio : 0.0,
};
declare module "./WeldJoint" {
/** @hidden @deprecated Use new keyword. */
// @ts-expect-error
function WeldJoint(def: WeldJointDef): WeldJoint;
/** @hidden @deprecated Use new keyword. */
// @ts-expect-error
function WeldJoint(def: WeldJointOpt, bodyA: Body, bodyB: Body, anchor: Vec2Value): WeldJoint;
}
/**
* A weld joint essentially glues two bodies together. A weld joint may distort
* somewhat because the island constraint solver is approximate.
*/
// @ts-expect-error
export class WeldJoint extends Joint {
static TYPE = "weld-joint" as const;
/** @internal */ m_type: "weld-joint";
/** @internal */ m_localAnchorA: Vec2;
/** @internal */ m_localAnchorB: Vec2;
/** @internal */ m_referenceAngle: number;
/** @internal */ m_frequencyHz: number;
/** @internal */ m_dampingRatio: number;
/** @internal */ m_impulse: Vec3;
/** @internal */ m_bias: number;
/** @internal */ m_gamma: number;
// Solver temp
/** @internal */ m_rA: Vec2;
/** @internal */ m_rB: Vec2;
/** @internal */ m_localCenterA: Vec2;
/** @internal */ m_localCenterB: Vec2;
/** @internal */ m_invMassA: number;
/** @internal */ m_invMassB: number;
/** @internal */ m_invIA: number;
/** @internal */ m_invIB: number;
/** @internal */ m_mass: Mat33;
constructor(def: WeldJointDef);
constructor(def: WeldJointOpt, bodyA: Body, bodyB: Body, anchor?: Vec2Value);
constructor(def: WeldJointDef, bodyA?: Body, bodyB?: Body, anchor?: Vec2Value) {
// @ts-ignore
if (_CONSTRUCTOR_FACTORY && !(this instanceof WeldJoint)) {
return new WeldJoint(def, bodyA, bodyB, anchor);
}
def = options(def, DEFAULTS);
super(def, bodyA, bodyB);
bodyA = this.m_bodyA;
bodyB = this.m_bodyB;
this.m_type = WeldJoint.TYPE;
this.m_localAnchorA = Vec2.clone(anchor ? bodyA.getLocalPoint(anchor) : def.localAnchorA || Vec2.zero());
this.m_localAnchorB = Vec2.clone(anchor ? bodyB.getLocalPoint(anchor) : def.localAnchorB || Vec2.zero());
this.m_referenceAngle = Number.isFinite(def.referenceAngle) ? def.referenceAngle : bodyB.getAngle() - bodyA.getAngle();
this.m_frequencyHz = def.frequencyHz;
this.m_dampingRatio = def.dampingRatio;
this.m_impulse = new Vec3();
this.m_bias = 0.0;
this.m_gamma = 0.0;
// Solver temp
// todo: do we need to initialize?
// this.m_rA;
// this.m_rB;
// this.m_localCenterA;
// this.m_localCenterB;
// this.m_invMassA;
// this.m_invMassB;
// this.m_invIA;
// this.m_invIB;
this.m_mass = new Mat33();
// Point-to-point constraint
// C = p2 - p1
// Cdot = v2 - v1
// / = v2 + cross(w2, r2) - v1 - cross(w1, r1)
// J = [-I -r1_skew I r2_skew ]
// Identity used:
// w k % (rx i + ry j) = w * (-ry i + rx j)
// Angle constraint
// C = angle2 - angle1 - referenceAngle
// Cdot = w2 - w1
// J = [0 0 -1 0 0 1]
// K = invI1 + invI2
}
/** @internal */
_serialize(): object {
return {
type: this.m_type,
bodyA: this.m_bodyA,
bodyB: this.m_bodyB,
collideConnected: this.m_collideConnected,
frequencyHz: this.m_frequencyHz,
dampingRatio: this.m_dampingRatio,
localAnchorA: this.m_localAnchorA,
localAnchorB: this.m_localAnchorB,
referenceAngle: this.m_referenceAngle,
};
}
/** @internal */
static _deserialize(data: any, world: any, restore: any): WeldJoint {
data = {...data};
data.bodyA = restore(Body, data.bodyA, world);
data.bodyB = restore(Body, data.bodyB, world);
const joint = new WeldJoint(data);
return joint;
}
/** @hidden */
_reset(def: Partial<WeldJointDef>): void {
if (def.anchorA) {
this.m_localAnchorA.setVec2(this.m_bodyA.getLocalPoint(def.anchorA));
} else if (def.localAnchorA) {
this.m_localAnchorA.setVec2(def.localAnchorA);
}
if (def.anchorB) {
this.m_localAnchorB.setVec2(this.m_bodyB.getLocalPoint(def.anchorB));
} else if (def.localAnchorB) {
this.m_localAnchorB.setVec2(def.localAnchorB);
}
if (Number.isFinite(def.frequencyHz)) {
this.m_frequencyHz = def.frequencyHz;
}
if (Number.isFinite(def.dampingRatio)) {
this.m_dampingRatio = def.dampingRatio;
}
}
/**
* The local anchor point relative to bodyA's origin.
*/
getLocalAnchorA(): Vec2 {
return this.m_localAnchorA;
}
/**
* The local anchor point relative to bodyB's origin.
*/
getLocalAnchorB(): Vec2 {
return this.m_localAnchorB;
}
/**
* Get the reference angle.
*/
getReferenceAngle(): number {
return this.m_referenceAngle;
}
/**
* Set frequency in Hz.
*/
setFrequency(hz: number): void {
this.m_frequencyHz = hz;
}
/**
* Get frequency in Hz.
*/
getFrequency(): number {
return this.m_frequencyHz;
}
/**
* Set damping ratio.
*/
setDampingRatio(ratio: number): void {
this.m_dampingRatio = ratio;
}
/**
* Get damping ratio.
*/
getDampingRatio(): number {
return this.m_dampingRatio;
}
/**
* Get the anchor point on bodyA in world coordinates.
*/
getAnchorA(): Vec2 {
return this.m_bodyA.getWorldPoint(this.m_localAnchorA);
}
/**
* Get the anchor point on bodyB in world coordinates.
*/
getAnchorB(): Vec2 {
return this.m_bodyB.getWorldPoint(this.m_localAnchorB);
}
/**
* Get the reaction force on bodyB at the joint anchor in Newtons.
*/
getReactionForce(inv_dt: number): Vec2 {
return Vec2.neo(this.m_impulse.x, this.m_impulse.y).mul(inv_dt);
}
/**
* Get the reaction torque on bodyB in N*m.
*/
getReactionTorque(inv_dt: number): number {
return inv_dt * this.m_impulse.z;
}
initVelocityConstraints(step: TimeStep): void {
this.m_localCenterA = this.m_bodyA.m_sweep.localCenter;
this.m_localCenterB = this.m_bodyB.m_sweep.localCenter;
this.m_invMassA = this.m_bodyA.m_invMass;
this.m_invMassB = this.m_bodyB.m_invMass;
this.m_invIA = this.m_bodyA.m_invI;
this.m_invIB = this.m_bodyB.m_invI;
const aA = this.m_bodyA.c_position.a;
const vA = this.m_bodyA.c_velocity.v;
let wA = this.m_bodyA.c_velocity.w;
const aB = this.m_bodyB.c_position.a;
const vB = this.m_bodyB.c_velocity.v;
let wB = this.m_bodyB.c_velocity.w;
const qA = Rot.neo(aA);
const qB = Rot.neo(aB);
this.m_rA = Rot.mulVec2(qA, Vec2.sub(this.m_localAnchorA, this.m_localCenterA));
this.m_rB = Rot.mulVec2(qB, Vec2.sub(this.m_localAnchorB, this.m_localCenterB));
// J = [-I -r1_skew I r2_skew]
// [ 0 -1 0 1]
// r_skew = [-ry; rx]
// Matlab
// K = [ mA+r1y^2*iA+mB+r2y^2*iB, -r1y*iA*r1x-r2y*iB*r2x, -r1y*iA-r2y*iB]
// [ -r1y*iA*r1x-r2y*iB*r2x, mA+r1x^2*iA+mB+r2x^2*iB, r1x*iA+r2x*iB]
// [ -r1y*iA-r2y*iB, r1x*iA+r2x*iB, iA+iB]
const mA = this.m_invMassA;
const mB = this.m_invMassB;
const iA = this.m_invIA;
const iB = this.m_invIB;
const K = new Mat33();
K.ex.x = mA + mB + this.m_rA.y * this.m_rA.y * iA + this.m_rB.y * this.m_rB.y
* iB;
K.ey.x = -this.m_rA.y * this.m_rA.x * iA - this.m_rB.y * this.m_rB.x * iB;
K.ez.x = -this.m_rA.y * iA - this.m_rB.y * iB;
K.ex.y = K.ey.x;
K.ey.y = mA + mB + this.m_rA.x * this.m_rA.x * iA + this.m_rB.x * this.m_rB.x
* iB;
K.ez.y = this.m_rA.x * iA + this.m_rB.x * iB;
K.ex.z = K.ez.x;
K.ey.z = K.ez.y;
K.ez.z = iA + iB;
if (this.m_frequencyHz > 0.0) {
K.getInverse22(this.m_mass);
let invM = iA + iB;
const m = invM > 0.0 ? 1.0 / invM : 0.0;
const C = aB - aA - this.m_referenceAngle;
// Frequency
const omega = 2.0 * math_PI * this.m_frequencyHz;
// Damping coefficient
const d = 2.0 * m * this.m_dampingRatio * omega;
// Spring stiffness
const k = m * omega * omega;
// magic formulas
const h = step.dt;
this.m_gamma = h * (d + h * k);
this.m_gamma = this.m_gamma != 0.0 ? 1.0 / this.m_gamma : 0.0;
this.m_bias = C * h * k * this.m_gamma;
invM += this.m_gamma;
this.m_mass.ez.z = invM != 0.0 ? 1.0 / invM : 0.0;
} else if (K.ez.z == 0.0) {
K.getInverse22(this.m_mass);
this.m_gamma = 0.0;
this.m_bias = 0.0;
} else {
K.getSymInverse33(this.m_mass);
this.m_gamma = 0.0;
this.m_bias = 0.0;
}
if (step.warmStarting) {
// Scale impulses to support a variable time step.
this.m_impulse.mul(step.dtRatio);
const P = Vec2.neo(this.m_impulse.x, this.m_impulse.y);
vA.subMul(mA, P);
wA -= iA * (Vec2.crossVec2Vec2(this.m_rA, P) + this.m_impulse.z);
vB.addMul(mB, P);
wB += iB * (Vec2.crossVec2Vec2(this.m_rB, P) + this.m_impulse.z);
} else {
this.m_impulse.setZero();
}
this.m_bodyA.c_velocity.v = vA;
this.m_bodyA.c_velocity.w = wA;
this.m_bodyB.c_velocity.v = vB;
this.m_bodyB.c_velocity.w = wB;
}
solveVelocityConstraints(step: TimeStep): void {
const vA = this.m_bodyA.c_velocity.v;
let wA = this.m_bodyA.c_velocity.w;
const vB = this.m_bodyB.c_velocity.v;
let wB = this.m_bodyB.c_velocity.w;
const mA = this.m_invMassA;
const mB = this.m_invMassB;
const iA = this.m_invIA;
const iB = this.m_invIB;
if (this.m_frequencyHz > 0.0) {
const Cdot2 = wB - wA;
const impulse2 = -this.m_mass.ez.z * (Cdot2 + this.m_bias + this.m_gamma * this.m_impulse.z);
this.m_impulse.z += impulse2;
wA -= iA * impulse2;
wB += iB * impulse2;
const Cdot1 = Vec2.zero();
Cdot1.addCombine(1, vB, 1, Vec2.crossNumVec2(wB, this.m_rB));
Cdot1.subCombine(1, vA, 1, Vec2.crossNumVec2(wA, this.m_rA));
const impulse1 = Vec2.neg(Mat33.mulVec2(this.m_mass, Cdot1));
this.m_impulse.x += impulse1.x;
this.m_impulse.y += impulse1.y;
const P = Vec2.clone(impulse1);
vA.subMul(mA, P);
wA -= iA * Vec2.crossVec2Vec2(this.m_rA, P);
vB.addMul(mB, P);
wB += iB * Vec2.crossVec2Vec2(this.m_rB, P);
} else {
const Cdot1 = Vec2.zero();
Cdot1.addCombine(1, vB, 1, Vec2.crossNumVec2(wB, this.m_rB));
Cdot1.subCombine(1, vA, 1, Vec2.crossNumVec2(wA, this.m_rA));
const Cdot2 = wB - wA;
const Cdot = new Vec3(Cdot1.x, Cdot1.y, Cdot2);
const impulse = Vec3.neg(Mat33.mulVec3(this.m_mass, Cdot));
this.m_impulse.add(impulse);
const P = Vec2.neo(impulse.x, impulse.y);
vA.subMul(mA, P);
wA -= iA * (Vec2.crossVec2Vec2(this.m_rA, P) + impulse.z);
vB.addMul(mB, P);
wB += iB * (Vec2.crossVec2Vec2(this.m_rB, P) + impulse.z);
}
this.m_bodyA.c_velocity.v = vA;
this.m_bodyA.c_velocity.w = wA;
this.m_bodyB.c_velocity.v = vB;
this.m_bodyB.c_velocity.w = wB;
}
/**
* This returns true if the position errors are within tolerance.
*/
solvePositionConstraints(step: TimeStep): boolean {
const cA = this.m_bodyA.c_position.c;
let aA = this.m_bodyA.c_position.a;
const cB = this.m_bodyB.c_position.c;
let aB = this.m_bodyB.c_position.a;
const qA = Rot.neo(aA);
const qB = Rot.neo(aB);
const mA = this.m_invMassA;
const mB = this.m_invMassB;
const iA = this.m_invIA;
const iB = this.m_invIB;
const rA = Rot.mulVec2(qA, Vec2.sub(this.m_localAnchorA, this.m_localCenterA));
const rB = Rot.mulVec2(qB, Vec2.sub(this.m_localAnchorB, this.m_localCenterB));
let positionError: number;
let angularError: number;
const K = new Mat33();
K.ex.x = mA + mB + rA.y * rA.y * iA + rB.y * rB.y * iB;
K.ey.x = -rA.y * rA.x * iA - rB.y * rB.x * iB;
K.ez.x = -rA.y * iA - rB.y * iB;
K.ex.y = K.ey.x;
K.ey.y = mA + mB + rA.x * rA.x * iA + rB.x * rB.x * iB;
K.ez.y = rA.x * iA + rB.x * iB;
K.ex.z = K.ez.x;
K.ey.z = K.ez.y;
K.ez.z = iA + iB;
if (this.m_frequencyHz > 0.0) {
const C1 = Vec2.zero();
C1.addCombine(1, cB, 1, rB);
C1.subCombine(1, cA, 1, rA);
positionError = C1.length();
angularError = 0.0;
const P = Vec2.neg(K.solve22(C1));
cA.subMul(mA, P);
aA -= iA * Vec2.crossVec2Vec2(rA, P);
cB.addMul(mB, P);
aB += iB * Vec2.crossVec2Vec2(rB, P);
} else {
const C1 = Vec2.zero();
C1.addCombine(1, cB, 1, rB);
C1.subCombine(1, cA, 1, rA);
const C2 = aB - aA - this.m_referenceAngle;
positionError = C1.length();
angularError = math_abs(C2);
const C = new Vec3(C1.x, C1.y, C2);
let impulse = new Vec3();
if (K.ez.z > 0.0) {
impulse = Vec3.neg(K.solve33(C));
} else {
const impulse2 = Vec2.neg(K.solve22(C1));
impulse.set(impulse2.x, impulse2.y, 0.0);
}
const P = Vec2.neo(impulse.x, impulse.y);
cA.subMul(mA, P);
aA -= iA * (Vec2.crossVec2Vec2(rA, P) + impulse.z);
cB.addMul(mB, P);
aB += iB * (Vec2.crossVec2Vec2(rB, P) + impulse.z);
}
this.m_bodyA.c_position.c = cA;
this.m_bodyA.c_position.a = aA;
this.m_bodyB.c_position.c = cB;
this.m_bodyB.c_position.a = aB;
return positionError <= Settings.linearSlop && angularError <= Settings.angularSlop;
}
}