planck-js
Version:
2D JavaScript/TypeScript physics engine for cross-platform HTML5 game development
381 lines (316 loc) • 11.1 kB
text/typescript
/*
* Planck.js
*
* Copyright (c) Erin Catto, Ali Shakiba
*
* This source code is licensed under the MIT license found in the
* LICENSE file in the root directory of this source tree.
*/
import { options } from "../../util/options";
import { SettingsInternal as Settings } from "../../Settings";
import { clamp } from "../../common/Math";
import { Vec2, Vec2Value } from "../../common/Vec2";
import { Rot } from "../../common/Rot";
import { Joint, JointOpt, JointDef } from "../Joint";
import { Body } from "../Body";
import { TimeStep } from "../Solver";
/** @internal */ const _CONSTRUCTOR_FACTORY = typeof CONSTRUCTOR_FACTORY === "undefined" ? false : CONSTRUCTOR_FACTORY;
/** @internal */ const math_min = Math.min;
/** @internal */ enum LimitState {
inactiveLimit = 0,
atLowerLimit = 1,
atUpperLimit = 2,
equalLimits = 3,
}
/**
* Rope joint definition. This requires two body anchor points and a maximum
* lengths. Note: by default the connected objects will not collide. see
* collideConnected in JointDef.
*/
export interface RopeJointOpt extends JointOpt {
/**
* The maximum length of the rope.
* Warning: this must be larger than linearSlop or the joint will have no effect.
*/
maxLength?: number;
}
/**
* Rope joint definition. This requires two body anchor points and a maximum
* lengths. Note: by default the connected objects will not collide. see
* collideConnected in JointDef.
*/
export interface RopeJointDef extends JointDef, RopeJointOpt {
/**
* The local anchor point relative to bodyA's origin.
*/
localAnchorA: Vec2Value;
/**
* The local anchor point relative to bodyB's origin.
*/
localAnchorB: Vec2Value;
}
/** @internal */ const DEFAULTS = {
maxLength : 0.0,
};
declare module "./RopeJoint" {
/** @hidden @deprecated Use new keyword. */
// @ts-expect-error
function RopeJoint(def: RopeJointDef): RopeJoint;
/** @hidden @deprecated Use new keyword. */
// @ts-expect-error
function RopeJoint(def: RopeJointOpt, bodyA: Body, bodyB: Body, anchor: Vec2Value): RopeJoint;
}
/**
* A rope joint enforces a maximum distance between two points on two bodies. It
* has no other effect.
*
* Warning: if you attempt to change the maximum length during the simulation
* you will get some non-physical behavior.
*
* A model that would allow you to dynamically modify the length would have some
* sponginess, so I chose not to implement it that way. See {@link DistanceJoint} if you
* want to dynamically control length.
*/
// @ts-expect-error
export class RopeJoint extends Joint {
static TYPE = "rope-joint" as const;
/** @internal */ m_type: "rope-joint";
/** @internal */ m_localAnchorA: Vec2;
/** @internal */ m_localAnchorB: Vec2;
/** @internal */ m_maxLength: number;
/** @internal */ m_mass: number;
/** @internal */ m_impulse: number;
/** @internal */ m_length: number;
/** @internal */ m_state: number; // TODO enum
// Solver temp
/** @internal */ m_u: Vec2;
/** @internal */ m_rA: Vec2;
/** @internal */ m_rB: Vec2;
/** @internal */ m_localCenterA: Vec2;
/** @internal */ m_localCenterB: Vec2;
/** @internal */ m_invMassA: number;
/** @internal */ m_invMassB: number;
/** @internal */ m_invIA: number;
/** @internal */ m_invIB: number;
constructor(def: RopeJointDef);
constructor(def: RopeJointOpt, bodyA: Body, bodyB: Body, anchor?: Vec2Value);
constructor(def: RopeJointDef, bodyA?: Body, bodyB?: Body, anchor?: Vec2Value) {
// @ts-ignore
if (_CONSTRUCTOR_FACTORY && !(this instanceof RopeJoint)) {
return new RopeJoint(def, bodyA, bodyB, anchor);
}
def = options(def, DEFAULTS);
super(def, bodyA, bodyB);
bodyA = this.m_bodyA;
bodyB = this.m_bodyB;
this.m_type = RopeJoint.TYPE;
this.m_localAnchorA = Vec2.clone(anchor ? bodyA.getLocalPoint(anchor) : def.localAnchorA || Vec2.neo(-1.0, 0.0));
this.m_localAnchorB = Vec2.clone(anchor ? bodyB.getLocalPoint(anchor) : def.localAnchorB || Vec2.neo(1.0, 0.0));
this.m_maxLength = def.maxLength;
this.m_mass = 0.0;
this.m_impulse = 0.0;
this.m_length = 0.0;
this.m_state = LimitState.inactiveLimit;
// Limit:
// C = norm(pB - pA) - L
// u = (pB - pA) / norm(pB - pA)
// Cdot = dot(u, vB + cross(wB, rB) - vA - cross(wA, rA))
// J = [-u -cross(rA, u) u cross(rB, u)]
// K = J * invM * JT
// = invMassA + invIA * cross(rA, u)^2 + invMassB + invIB * cross(rB, u)^2
}
/** @internal */
_serialize(): object {
return {
type: this.m_type,
bodyA: this.m_bodyA,
bodyB: this.m_bodyB,
collideConnected: this.m_collideConnected,
localAnchorA: this.m_localAnchorA,
localAnchorB: this.m_localAnchorB,
maxLength: this.m_maxLength,
};
}
/** @internal */
static _deserialize(data: any, world: any, restore: any): RopeJoint {
data = {...data};
data.bodyA = restore(Body, data.bodyA, world);
data.bodyB = restore(Body, data.bodyB, world);
const joint = new RopeJoint(data);
return joint;
}
/** @hidden */
_reset(def: Partial<RopeJointDef>): void {
if (Number.isFinite(def.maxLength)) {
this.m_maxLength = def.maxLength;
}
}
/**
* The local anchor point relative to bodyA's origin.
*/
getLocalAnchorA(): Vec2 {
return this.m_localAnchorA;
}
/**
* The local anchor point relative to bodyB's origin.
*/
getLocalAnchorB(): Vec2 {
return this.m_localAnchorB;
}
/**
* Set the maximum length of the rope.
*/
setMaxLength(length: number): void {
this.m_maxLength = length;
}
/**
* Get the maximum length of the rope.
*/
getMaxLength(): number {
return this.m_maxLength;
}
getLimitState(): number {
// TODO LimitState
return this.m_state;
}
/**
* Get the anchor point on bodyA in world coordinates.
*/
getAnchorA(): Vec2 {
return this.m_bodyA.getWorldPoint(this.m_localAnchorA);
}
/**
* Get the anchor point on bodyB in world coordinates.
*/
getAnchorB(): Vec2 {
return this.m_bodyB.getWorldPoint(this.m_localAnchorB);
}
/**
* Get the reaction force on bodyB at the joint anchor in Newtons.
*/
getReactionForce(inv_dt: number): Vec2 {
return Vec2.mulNumVec2(this.m_impulse, this.m_u).mul(inv_dt);
}
/**
* Get the reaction torque on bodyB in N*m.
*/
getReactionTorque(inv_dt: number): number {
return 0.0;
}
initVelocityConstraints(step: TimeStep): void {
this.m_localCenterA = this.m_bodyA.m_sweep.localCenter;
this.m_localCenterB = this.m_bodyB.m_sweep.localCenter;
this.m_invMassA = this.m_bodyA.m_invMass;
this.m_invMassB = this.m_bodyB.m_invMass;
this.m_invIA = this.m_bodyA.m_invI;
this.m_invIB = this.m_bodyB.m_invI;
const cA = this.m_bodyA.c_position.c;
const aA = this.m_bodyA.c_position.a;
const vA = this.m_bodyA.c_velocity.v;
let wA = this.m_bodyA.c_velocity.w;
const cB = this.m_bodyB.c_position.c;
const aB = this.m_bodyB.c_position.a;
const vB = this.m_bodyB.c_velocity.v;
let wB = this.m_bodyB.c_velocity.w;
const qA = Rot.neo(aA);
const qB = Rot.neo(aB);
this.m_rA = Rot.mulSub(qA, this.m_localAnchorA, this.m_localCenterA);
this.m_rB = Rot.mulSub(qB, this.m_localAnchorB, this.m_localCenterB);
this.m_u = Vec2.zero();
this.m_u.addCombine(1, cB, 1, this.m_rB);
this.m_u.subCombine(1, cA, 1, this.m_rA);
this.m_length = this.m_u.length();
const C = this.m_length - this.m_maxLength;
if (C > 0.0) {
this.m_state = LimitState.atUpperLimit;
} else {
this.m_state = LimitState.inactiveLimit;
}
if (this.m_length > Settings.linearSlop) {
this.m_u.mul(1.0 / this.m_length);
} else {
this.m_u.setZero();
this.m_mass = 0.0;
this.m_impulse = 0.0;
return;
}
// Compute effective mass.
const crA = Vec2.crossVec2Vec2(this.m_rA, this.m_u);
const crB = Vec2.crossVec2Vec2(this.m_rB, this.m_u);
const invMass = this.m_invMassA + this.m_invIA * crA * crA + this.m_invMassB + this.m_invIB * crB * crB;
this.m_mass = invMass != 0.0 ? 1.0 / invMass : 0.0;
if (step.warmStarting) {
// Scale the impulse to support a variable time step.
this.m_impulse *= step.dtRatio;
const P = Vec2.mulNumVec2(this.m_impulse, this.m_u);
vA.subMul(this.m_invMassA, P);
wA -= this.m_invIA * Vec2.crossVec2Vec2(this.m_rA, P);
vB.addMul(this.m_invMassB, P);
wB += this.m_invIB * Vec2.crossVec2Vec2(this.m_rB, P);
} else {
this.m_impulse = 0.0;
}
this.m_bodyA.c_velocity.v.setVec2(vA);
this.m_bodyA.c_velocity.w = wA;
this.m_bodyB.c_velocity.v.setVec2(vB);
this.m_bodyB.c_velocity.w = wB;
}
solveVelocityConstraints(step: TimeStep): void {
const vA = this.m_bodyA.c_velocity.v;
let wA = this.m_bodyA.c_velocity.w;
const vB = this.m_bodyB.c_velocity.v;
let wB = this.m_bodyB.c_velocity.w;
// Cdot = dot(u, v + cross(w, r))
const vpA = Vec2.addCrossNumVec2(vA, wA, this.m_rA);
const vpB = Vec2.addCrossNumVec2(vB, wB, this.m_rB);
const C = this.m_length - this.m_maxLength;
let Cdot = Vec2.dot(this.m_u, Vec2.sub(vpB, vpA));
// Predictive constraint.
if (C < 0.0) {
Cdot += step.inv_dt * C;
}
let impulse = -this.m_mass * Cdot;
const oldImpulse = this.m_impulse;
this.m_impulse = math_min(0.0, this.m_impulse + impulse);
impulse = this.m_impulse - oldImpulse;
const P = Vec2.mulNumVec2(impulse, this.m_u);
vA.subMul(this.m_invMassA, P);
wA -= this.m_invIA * Vec2.crossVec2Vec2(this.m_rA, P);
vB.addMul(this.m_invMassB, P);
wB += this.m_invIB * Vec2.crossVec2Vec2(this.m_rB, P);
this.m_bodyA.c_velocity.v = vA;
this.m_bodyA.c_velocity.w = wA;
this.m_bodyB.c_velocity.v = vB;
this.m_bodyB.c_velocity.w = wB;
}
/**
* This returns true if the position errors are within tolerance.
*/
solvePositionConstraints(step: TimeStep): boolean {
const cA = this.m_bodyA.c_position.c;
let aA = this.m_bodyA.c_position.a;
const cB = this.m_bodyB.c_position.c;
let aB = this.m_bodyB.c_position.a;
const qA = Rot.neo(aA);
const qB = Rot.neo(aB);
const rA = Rot.mulSub(qA, this.m_localAnchorA, this.m_localCenterA);
const rB = Rot.mulSub(qB, this.m_localAnchorB, this.m_localCenterB);
const u = Vec2.zero();
u.addCombine(1, cB, 1, rB);
u.subCombine(1, cA, 1, rA);
const length = u.normalize();
let C = length - this.m_maxLength;
C = clamp(C, 0.0, Settings.maxLinearCorrection);
const impulse = -this.m_mass * C;
const P = Vec2.mulNumVec2(impulse, u);
cA.subMul(this.m_invMassA, P);
aA -= this.m_invIA * Vec2.crossVec2Vec2(rA, P);
cB.addMul(this.m_invMassB, P);
aB += this.m_invIB * Vec2.crossVec2Vec2(rB, P);
this.m_bodyA.c_position.c.setVec2(cA);
this.m_bodyA.c_position.a = aA;
this.m_bodyB.c_position.c.setVec2(cB);
this.m_bodyB.c_position.a = aB;
return length - this.m_maxLength < Settings.linearSlop;
}
}