UNPKG

planck-js

Version:

2D JavaScript/TypeScript physics engine for cross-platform HTML5 game development

899 lines (774 loc) 27.9 kB
/* * Planck.js * * Copyright (c) Erin Catto, Ali Shakiba * * This source code is licensed under the MIT license found in the * LICENSE file in the root directory of this source tree. */ import { options } from "../../util/options"; import { SettingsInternal as Settings } from "../../Settings"; import { clamp } from "../../common/Math"; import { Vec2, Vec2Value } from "../../common/Vec2"; import { Vec3 } from "../../common/Vec3"; import { Mat22 } from "../../common/Mat22"; import { Mat33 } from "../../common/Mat33"; import { Rot } from "../../common/Rot"; import { Joint, JointOpt, JointDef } from "../Joint"; import { Body } from "../Body"; import { TimeStep } from "../Solver"; /** @internal */ const _ASSERT = typeof ASSERT === "undefined" ? false : ASSERT; /** @internal */ const _CONSTRUCTOR_FACTORY = typeof CONSTRUCTOR_FACTORY === "undefined" ? false : CONSTRUCTOR_FACTORY; /** @internal */ const math_abs = Math.abs; /** @internal */ const math_max = Math.max; /** @internal */ const math_min = Math.min; /** @internal */ enum LimitState { inactiveLimit = 0, atLowerLimit = 1, atUpperLimit = 2, equalLimits = 3, } /** * Prismatic joint definition. This requires defining a line of motion using an * axis and an anchor point. The definition uses local anchor points and a local * axis so that the initial configuration can violate the constraint slightly. * The joint translation is zero when the local anchor points coincide in world * space. Using local anchors and a local axis helps when saving and loading a * game. */ export interface PrismaticJointOpt extends JointOpt { /** * Enable/disable the joint limit. */ enableLimit?: boolean; /** * The lower translation limit, usually in meters. */ lowerTranslation?: number; /** * The upper translation limit, usually in meters. */ upperTranslation?: number; /** * Enable/disable the joint motor. */ enableMotor?: boolean; /** * The maximum motor torque, usually in N-m. */ maxMotorForce?: number; /** * The desired motor speed in radians per second. */ motorSpeed?: number; } /** * Prismatic joint definition. This requires defining a line of motion using an * axis and an anchor point. The definition uses local anchor points and a local * axis so that the initial configuration can violate the constraint slightly. * The joint translation is zero when the local anchor points coincide in world * space. Using local anchors and a local axis helps when saving and loading a * game. */ export interface PrismaticJointDef extends JointDef, PrismaticJointOpt { /** * The local anchor point relative to bodyA's origin. */ localAnchorA: Vec2Value; /** * The local anchor point relative to bodyB's origin. */ localAnchorB: Vec2Value; /** * The local translation unit axis in bodyA. */ localAxisA: Vec2Value; /** * referenceAngle The constrained angle between the bodies: * bodyB_angle - bodyA_angle. */ referenceAngle?: number; /** @internal */ anchorA?: Vec2Value; /** @internal */ anchorB?: Vec2Value; } /** @internal */ const DEFAULTS = { enableLimit : false, lowerTranslation : 0.0, upperTranslation : 0.0, enableMotor : false, maxMotorForce : 0.0, motorSpeed : 0.0 }; declare module "./PrismaticJoint" { /** @hidden @deprecated Use new keyword. */ // @ts-expect-error function PrismaticJoint(def: PrismaticJointDef): PrismaticJoint; /** @hidden @deprecated Use new keyword. */ // @ts-expect-error function PrismaticJoint(def: PrismaticJointOpt, bodyA: Body, bodyB: Body, anchor: Vec2Value, axis: Vec2Value): PrismaticJoint; } /** * A prismatic joint. This joint provides one degree of freedom: translation * along an axis fixed in bodyA. Relative rotation is prevented. You can use a * joint limit to restrict the range of motion and a joint motor to drive the * motion or to model joint friction. */ // @ts-expect-error export class PrismaticJoint extends Joint { static TYPE = "prismatic-joint" as const; /** @internal */ m_type: "prismatic-joint"; /** @internal */ m_localAnchorA: Vec2; /** @internal */ m_localAnchorB: Vec2; /** @internal */ m_localXAxisA: Vec2; /** @internal */ m_localYAxisA: Vec2; /** @internal */ m_referenceAngle: number; /** @internal */ m_impulse: Vec3; /** @internal */ m_motorMass: number; /** @internal */ m_motorImpulse: number; /** @internal */ m_lowerTranslation: number; /** @internal */ m_upperTranslation: number; /** @internal */ m_maxMotorForce: number; /** @internal */ m_motorSpeed: number; /** @internal */ m_enableLimit: boolean; /** @internal */ m_enableMotor: boolean; /** @internal */ m_limitState: number; // TODO enum /** @internal */ m_axis: Vec2; /** @internal */ m_perp: Vec2; // Solver temp /** @internal */ m_localCenterA: Vec2; /** @internal */ m_localCenterB: Vec2; /** @internal */ m_invMassA: number; /** @internal */ m_invMassB: number; /** @internal */ m_invIA: number; /** @internal */ m_invIB: number; /** @internal */ m_s1: number; /** @internal */ m_s2: number; /** @internal */ m_a1: number; /** @internal */ m_a2: number; /** @internal */ m_K: Mat33; constructor(def: PrismaticJointDef); constructor(def: PrismaticJointOpt, bodyA: Body, bodyB: Body, anchor?: Vec2Value, axis?: Vec2Value); constructor(def: PrismaticJointDef, bodyA?: Body, bodyB?: Body, anchor?: Vec2Value, axis?: Vec2Value) { // @ts-ignore if (_CONSTRUCTOR_FACTORY && !(this instanceof PrismaticJoint)) { return new PrismaticJoint(def, bodyA, bodyB, anchor, axis); } def = options(def, DEFAULTS); super(def, bodyA, bodyB); bodyA = this.m_bodyA; bodyB = this.m_bodyB; this.m_type = PrismaticJoint.TYPE; this.m_localAnchorA = Vec2.clone(anchor ? bodyA.getLocalPoint(anchor) : def.localAnchorA || Vec2.zero()); this.m_localAnchorB = Vec2.clone(anchor ? bodyB.getLocalPoint(anchor) : def.localAnchorB || Vec2.zero()); this.m_localXAxisA = Vec2.clone(axis ? bodyA.getLocalVector(axis) : def.localAxisA || Vec2.neo(1.0, 0.0)); this.m_localXAxisA.normalize(); this.m_localYAxisA = Vec2.crossNumVec2(1.0, this.m_localXAxisA); this.m_referenceAngle = Number.isFinite(def.referenceAngle) ? def.referenceAngle : bodyB.getAngle() - bodyA.getAngle(); this.m_impulse = new Vec3(); this.m_motorMass = 0.0; this.m_motorImpulse = 0.0; this.m_lowerTranslation = def.lowerTranslation; this.m_upperTranslation = def.upperTranslation; this.m_maxMotorForce = def.maxMotorForce; this.m_motorSpeed = def.motorSpeed; this.m_enableLimit = def.enableLimit; this.m_enableMotor = def.enableMotor; this.m_limitState = LimitState.inactiveLimit; this.m_axis = Vec2.zero(); this.m_perp = Vec2.zero(); this.m_K = new Mat33(); // Linear constraint (point-to-line) // d = p2 - p1 = x2 + r2 - x1 - r1 // C = dot(perp, d) // Cdot = dot(d, cross(w1, perp)) + dot(perp, v2 + cross(w2, r2) - v1 - // cross(w1, r1)) // = -dot(perp, v1) - dot(cross(d + r1, perp), w1) + dot(perp, v2) + // dot(cross(r2, perp), v2) // J = [-perp, -cross(d + r1, perp), perp, cross(r2,perp)] // // Angular constraint // C = a2 - a1 + a_initial // Cdot = w2 - w1 // J = [0 0 -1 0 0 1] // // K = J * invM * JT // // J = [-a -s1 a s2] // [0 -1 0 1] // a = perp // s1 = cross(d + r1, a) = cross(p2 - x1, a) // s2 = cross(r2, a) = cross(p2 - x2, a) // Motor/Limit linear constraint // C = dot(ax1, d) // Cdot = = -dot(ax1, v1) - dot(cross(d + r1, ax1), w1) + dot(ax1, v2) + // dot(cross(r2, ax1), v2) // J = [-ax1 -cross(d+r1,ax1) ax1 cross(r2,ax1)] // Block Solver // We develop a block solver that includes the joint limit. This makes the // limit stiff (inelastic) even // when the mass has poor distribution (leading to large torques about the // joint anchor points). // // The Jacobian has 3 rows: // J = [-uT -s1 uT s2] // linear // [0 -1 0 1] // angular // [-vT -a1 vT a2] // limit // // u = perp // v = axis // s1 = cross(d + r1, u), s2 = cross(r2, u) // a1 = cross(d + r1, v), a2 = cross(r2, v) // M * (v2 - v1) = JT * df // J * v2 = bias // // v2 = v1 + invM * JT * df // J * (v1 + invM * JT * df) = bias // K * df = bias - J * v1 = -Cdot // K = J * invM * JT // Cdot = J * v1 - bias // // Now solve for f2. // df = f2 - f1 // K * (f2 - f1) = -Cdot // f2 = invK * (-Cdot) + f1 // // Clamp accumulated limit impulse. // lower: f2(3) = max(f2(3), 0) // upper: f2(3) = min(f2(3), 0) // // Solve for correct f2(1:2) // K(1:2, 1:2) * f2(1:2) = -Cdot(1:2) - K(1:2,3) * f2(3) + K(1:2,1:3) * f1 // = -Cdot(1:2) - K(1:2,3) * f2(3) + K(1:2,1:2) * f1(1:2) + K(1:2,3) * f1(3) // K(1:2, 1:2) * f2(1:2) = -Cdot(1:2) - K(1:2,3) * (f2(3) - f1(3)) + // K(1:2,1:2) * f1(1:2) // f2(1:2) = invK(1:2,1:2) * (-Cdot(1:2) - K(1:2,3) * (f2(3) - f1(3))) + // f1(1:2) // // Now compute impulse to be applied: // df = f2 - f1 } /** @internal */ _serialize(): object { return { type: this.m_type, bodyA: this.m_bodyA, bodyB: this.m_bodyB, collideConnected: this.m_collideConnected, lowerTranslation: this.m_lowerTranslation, upperTranslation: this.m_upperTranslation, maxMotorForce: this.m_maxMotorForce, motorSpeed: this.m_motorSpeed, enableLimit: this.m_enableLimit, enableMotor: this.m_enableMotor, localAnchorA: this.m_localAnchorA, localAnchorB: this.m_localAnchorB, localAxisA: this.m_localXAxisA, referenceAngle: this.m_referenceAngle, }; } /** @internal */ static _deserialize(data: any, world: any, restore: any): PrismaticJoint { data = {...data}; data.bodyA = restore(Body, data.bodyA, world); data.bodyB = restore(Body, data.bodyB, world); data.localAxisA = Vec2.clone(data.localAxisA); const joint = new PrismaticJoint(data); return joint; } /** @hidden */ _reset(def: Partial<PrismaticJointDef>): void { if (def.anchorA) { this.m_localAnchorA.setVec2(this.m_bodyA.getLocalPoint(def.anchorA)); } else if (def.localAnchorA) { this.m_localAnchorA.setVec2(def.localAnchorA); } if (def.anchorB) { this.m_localAnchorB.setVec2(this.m_bodyB.getLocalPoint(def.anchorB)); } else if (def.localAnchorB) { this.m_localAnchorB.setVec2(def.localAnchorB); } if (def.localAxisA) { this.m_localXAxisA.setVec2(def.localAxisA); this.m_localYAxisA.setVec2(Vec2.crossNumVec2(1.0, def.localAxisA)); } if (Number.isFinite(def.referenceAngle)) { this.m_referenceAngle = def.referenceAngle; } if (typeof def.enableLimit !== "undefined") { this.m_enableLimit = !!def.enableLimit; } if (Number.isFinite(def.lowerTranslation)) { this.m_lowerTranslation = def.lowerTranslation; } if (Number.isFinite(def.upperTranslation)) { this.m_upperTranslation = def.upperTranslation; } if (typeof def.enableMotor !== "undefined") { this.m_enableMotor = !!def.enableMotor; } if (Number.isFinite(def.maxMotorForce)) { this.m_maxMotorForce = def.maxMotorForce; } if (Number.isFinite(def.motorSpeed)) { this.m_motorSpeed = def.motorSpeed; } } /** * The local anchor point relative to bodyA's origin. */ getLocalAnchorA(): Vec2 { return this.m_localAnchorA; } /** * The local anchor point relative to bodyB's origin. */ getLocalAnchorB(): Vec2 { return this.m_localAnchorB; } /** * The local joint axis relative to bodyA. */ getLocalAxisA(): Vec2 { return this.m_localXAxisA; } /** * Get the reference angle. */ getReferenceAngle(): number { return this.m_referenceAngle; } /** * Get the current joint translation, usually in meters. */ getJointTranslation(): number { const pA = this.m_bodyA.getWorldPoint(this.m_localAnchorA); const pB = this.m_bodyB.getWorldPoint(this.m_localAnchorB); const d = Vec2.sub(pB, pA); const axis = this.m_bodyA.getWorldVector(this.m_localXAxisA); const translation = Vec2.dot(d, axis); return translation; } /** * Get the current joint translation speed, usually in meters per second. */ getJointSpeed(): number { const bA = this.m_bodyA; const bB = this.m_bodyB; const rA = Rot.mulVec2(bA.m_xf.q, Vec2.sub(this.m_localAnchorA, bA.m_sweep.localCenter)); const rB = Rot.mulVec2(bB.m_xf.q, Vec2.sub(this.m_localAnchorB, bB.m_sweep.localCenter)); const p1 = Vec2.add(bA.m_sweep.c, rA); const p2 = Vec2.add(bB.m_sweep.c, rB); const d = Vec2.sub(p2, p1); const axis = Rot.mulVec2(bA.m_xf.q, this.m_localXAxisA); const vA = bA.m_linearVelocity; const vB = bB.m_linearVelocity; const wA = bA.m_angularVelocity; const wB = bB.m_angularVelocity; const speed = Vec2.dot(d, Vec2.crossNumVec2(wA, axis)) + Vec2.dot(axis, Vec2.sub(Vec2.addCrossNumVec2(vB, wB, rB), Vec2.addCrossNumVec2(vA, wA, rA))); return speed; } /** * Is the joint limit enabled? */ isLimitEnabled(): boolean { return this.m_enableLimit; } /** * Enable/disable the joint limit. */ enableLimit(flag: boolean): void { if (flag != this.m_enableLimit) { this.m_bodyA.setAwake(true); this.m_bodyB.setAwake(true); this.m_enableLimit = flag; this.m_impulse.z = 0.0; } } /** * Get the lower joint limit, usually in meters. */ getLowerLimit(): number { return this.m_lowerTranslation; } /** * Get the upper joint limit, usually in meters. */ getUpperLimit(): number { return this.m_upperTranslation; } /** * Set the joint limits, usually in meters. */ setLimits(lower: number, upper: number): void { if (_ASSERT) console.assert(lower <= upper); if (lower != this.m_lowerTranslation || upper != this.m_upperTranslation) { this.m_bodyA.setAwake(true); this.m_bodyB.setAwake(true); this.m_lowerTranslation = lower; this.m_upperTranslation = upper; this.m_impulse.z = 0.0; } } /** * Is the joint motor enabled? */ isMotorEnabled(): boolean { return this.m_enableMotor; } /** * Enable/disable the joint motor. */ enableMotor(flag: boolean): void { if (flag == this.m_enableMotor) return; this.m_bodyA.setAwake(true); this.m_bodyB.setAwake(true); this.m_enableMotor = flag; } /** * Set the motor speed, usually in meters per second. */ setMotorSpeed(speed: number): void { if (speed == this.m_motorSpeed) return; this.m_bodyA.setAwake(true); this.m_bodyB.setAwake(true); this.m_motorSpeed = speed; } /** * Set the maximum motor force, usually in N. */ setMaxMotorForce(force: number): void { if (force == this.m_maxMotorForce) return; this.m_bodyA.setAwake(true); this.m_bodyB.setAwake(true); this.m_maxMotorForce = force; } getMaxMotorForce(): number { return this.m_maxMotorForce; } /** * Get the motor speed, usually in meters per second. */ getMotorSpeed(): number { return this.m_motorSpeed; } /** * Get the current motor force given the inverse time step, usually in N. */ getMotorForce(inv_dt: number): number { return inv_dt * this.m_motorImpulse; } /** * Get the anchor point on bodyA in world coordinates. */ getAnchorA(): Vec2 { return this.m_bodyA.getWorldPoint(this.m_localAnchorA); } /** * Get the anchor point on bodyB in world coordinates. */ getAnchorB(): Vec2 { return this.m_bodyB.getWorldPoint(this.m_localAnchorB); } /** * Get the reaction force on bodyB at the joint anchor in Newtons. */ getReactionForce(inv_dt: number): Vec2 { return Vec2.combine(this.m_impulse.x, this.m_perp, this.m_motorImpulse + this.m_impulse.z, this.m_axis).mul(inv_dt); } /** * Get the reaction torque on bodyB in N*m. */ getReactionTorque(inv_dt: number): number { return inv_dt * this.m_impulse.y; } initVelocityConstraints(step: TimeStep): void { this.m_localCenterA = this.m_bodyA.m_sweep.localCenter; this.m_localCenterB = this.m_bodyB.m_sweep.localCenter; this.m_invMassA = this.m_bodyA.m_invMass; this.m_invMassB = this.m_bodyB.m_invMass; this.m_invIA = this.m_bodyA.m_invI; this.m_invIB = this.m_bodyB.m_invI; const cA = this.m_bodyA.c_position.c; const aA = this.m_bodyA.c_position.a; const vA = this.m_bodyA.c_velocity.v; let wA = this.m_bodyA.c_velocity.w; const cB = this.m_bodyB.c_position.c; const aB = this.m_bodyB.c_position.a; const vB = this.m_bodyB.c_velocity.v; let wB = this.m_bodyB.c_velocity.w; const qA = Rot.neo(aA); const qB = Rot.neo(aB); // Compute the effective masses. const rA = Rot.mulVec2(qA, Vec2.sub(this.m_localAnchorA, this.m_localCenterA)); const rB = Rot.mulVec2(qB, Vec2.sub(this.m_localAnchorB, this.m_localCenterB)); const d = Vec2.zero(); d.addCombine(1, cB, 1, rB); d.subCombine(1, cA, 1, rA); const mA = this.m_invMassA; const mB = this.m_invMassB; const iA = this.m_invIA; const iB = this.m_invIB; // Compute motor Jacobian and effective mass. { this.m_axis = Rot.mulVec2(qA, this.m_localXAxisA); this.m_a1 = Vec2.crossVec2Vec2(Vec2.add(d, rA), this.m_axis); this.m_a2 = Vec2.crossVec2Vec2(rB, this.m_axis); this.m_motorMass = mA + mB + iA * this.m_a1 * this.m_a1 + iB * this.m_a2 * this.m_a2; if (this.m_motorMass > 0.0) { this.m_motorMass = 1.0 / this.m_motorMass; } } // Prismatic constraint. { this.m_perp = Rot.mulVec2(qA, this.m_localYAxisA); this.m_s1 = Vec2.crossVec2Vec2(Vec2.add(d, rA), this.m_perp); this.m_s2 = Vec2.crossVec2Vec2(rB, this.m_perp); const s1test = Vec2.crossVec2Vec2(rA, this.m_perp); const k11 = mA + mB + iA * this.m_s1 * this.m_s1 + iB * this.m_s2 * this.m_s2; const k12 = iA * this.m_s1 + iB * this.m_s2; const k13 = iA * this.m_s1 * this.m_a1 + iB * this.m_s2 * this.m_a2; let k22 = iA + iB; if (k22 == 0.0) { // For bodies with fixed rotation. k22 = 1.0; } const k23 = iA * this.m_a1 + iB * this.m_a2; const k33 = mA + mB + iA * this.m_a1 * this.m_a1 + iB * this.m_a2 * this.m_a2; this.m_K.ex.set(k11, k12, k13); this.m_K.ey.set(k12, k22, k23); this.m_K.ez.set(k13, k23, k33); } // Compute motor and limit terms. if (this.m_enableLimit) { const jointTranslation = Vec2.dot(this.m_axis, d); if (math_abs(this.m_upperTranslation - this.m_lowerTranslation) < 2.0 * Settings.linearSlop) { this.m_limitState = LimitState.equalLimits; } else if (jointTranslation <= this.m_lowerTranslation) { if (this.m_limitState != LimitState.atLowerLimit) { this.m_limitState = LimitState.atLowerLimit; this.m_impulse.z = 0.0; } } else if (jointTranslation >= this.m_upperTranslation) { if (this.m_limitState != LimitState.atUpperLimit) { this.m_limitState = LimitState.atUpperLimit; this.m_impulse.z = 0.0; } } else { this.m_limitState = LimitState.inactiveLimit; this.m_impulse.z = 0.0; } } else { this.m_limitState = LimitState.inactiveLimit; this.m_impulse.z = 0.0; } if (this.m_enableMotor == false) { this.m_motorImpulse = 0.0; } if (step.warmStarting) { // Account for variable time step. this.m_impulse.mul(step.dtRatio); this.m_motorImpulse *= step.dtRatio; const P = Vec2.combine(this.m_impulse.x, this.m_perp, this.m_motorImpulse + this.m_impulse.z, this.m_axis); const LA = this.m_impulse.x * this.m_s1 + this.m_impulse.y + (this.m_motorImpulse + this.m_impulse.z) * this.m_a1; const LB = this.m_impulse.x * this.m_s2 + this.m_impulse.y + (this.m_motorImpulse + this.m_impulse.z) * this.m_a2; vA.subMul(mA, P); wA -= iA * LA; vB.addMul(mB, P); wB += iB * LB; } else { this.m_impulse.setZero(); this.m_motorImpulse = 0.0; } this.m_bodyA.c_velocity.v.setVec2(vA); this.m_bodyA.c_velocity.w = wA; this.m_bodyB.c_velocity.v.setVec2(vB); this.m_bodyB.c_velocity.w = wB; } solveVelocityConstraints(step: TimeStep): void { const vA = this.m_bodyA.c_velocity.v; let wA = this.m_bodyA.c_velocity.w; const vB = this.m_bodyB.c_velocity.v; let wB = this.m_bodyB.c_velocity.w; const mA = this.m_invMassA; const mB = this.m_invMassB; const iA = this.m_invIA; const iB = this.m_invIB; // Solve linear motor constraint. if (this.m_enableMotor && this.m_limitState != LimitState.equalLimits) { const Cdot = Vec2.dot(this.m_axis, Vec2.sub(vB, vA)) + this.m_a2 * wB - this.m_a1 * wA; let impulse = this.m_motorMass * (this.m_motorSpeed - Cdot); const oldImpulse = this.m_motorImpulse; const maxImpulse = step.dt * this.m_maxMotorForce; this.m_motorImpulse = clamp(this.m_motorImpulse + impulse, -maxImpulse, maxImpulse); impulse = this.m_motorImpulse - oldImpulse; const P = Vec2.mulNumVec2(impulse, this.m_axis); const LA = impulse * this.m_a1; const LB = impulse * this.m_a2; vA.subMul(mA, P); wA -= iA * LA; vB.addMul(mB, P); wB += iB * LB; } const Cdot1 = Vec2.zero(); Cdot1.x += Vec2.dot(this.m_perp, vB) + this.m_s2 * wB; Cdot1.x -= Vec2.dot(this.m_perp, vA) + this.m_s1 * wA; Cdot1.y = wB - wA; if (this.m_enableLimit && this.m_limitState != LimitState.inactiveLimit) { // Solve prismatic and limit constraint in block form. let Cdot2 = 0; Cdot2 += Vec2.dot(this.m_axis, vB) + this.m_a2 * wB; Cdot2 -= Vec2.dot(this.m_axis, vA) + this.m_a1 * wA; const Cdot = new Vec3(Cdot1.x, Cdot1.y, Cdot2); const f1 = Vec3.clone(this.m_impulse); let df = this.m_K.solve33(Vec3.neg(Cdot)); this.m_impulse.add(df); if (this.m_limitState == LimitState.atLowerLimit) { this.m_impulse.z = math_max(this.m_impulse.z, 0.0); } else if (this.m_limitState == LimitState.atUpperLimit) { this.m_impulse.z = math_min(this.m_impulse.z, 0.0); } // f2(1:2) = invK(1:2,1:2) * (-Cdot(1:2) - K(1:2,3) * (f2(3) - f1(3))) + // f1(1:2) const b = Vec2.combine(-1, Cdot1, -(this.m_impulse.z - f1.z), Vec2.neo(this.m_K.ez.x, this.m_K.ez.y)); const f2r = Vec2.add(this.m_K.solve22(b), Vec2.neo(f1.x, f1.y)); this.m_impulse.x = f2r.x; this.m_impulse.y = f2r.y; df = Vec3.sub(this.m_impulse, f1); const P = Vec2.combine(df.x, this.m_perp, df.z, this.m_axis); const LA = df.x * this.m_s1 + df.y + df.z * this.m_a1; const LB = df.x * this.m_s2 + df.y + df.z * this.m_a2; vA.subMul(mA, P); wA -= iA * LA; vB.addMul(mB, P); wB += iB * LB; } else { // Limit is inactive, just solve the prismatic constraint in block form. const df = this.m_K.solve22(Vec2.neg(Cdot1)); this.m_impulse.x += df.x; this.m_impulse.y += df.y; const P = Vec2.mulNumVec2(df.x, this.m_perp); const LA = df.x * this.m_s1 + df.y; const LB = df.x * this.m_s2 + df.y; vA.subMul(mA, P); wA -= iA * LA; vB.addMul(mB, P); wB += iB * LB; } this.m_bodyA.c_velocity.v = vA; this.m_bodyA.c_velocity.w = wA; this.m_bodyB.c_velocity.v = vB; this.m_bodyB.c_velocity.w = wB; } /** * This returns true if the position errors are within tolerance. */ solvePositionConstraints(step: TimeStep): boolean { const cA = this.m_bodyA.c_position.c; let aA = this.m_bodyA.c_position.a; const cB = this.m_bodyB.c_position.c; let aB = this.m_bodyB.c_position.a; const qA = Rot.neo(aA); const qB = Rot.neo(aB); const mA = this.m_invMassA; const mB = this.m_invMassB; const iA = this.m_invIA; const iB = this.m_invIB; // Compute fresh Jacobians const rA = Rot.mulVec2(qA, Vec2.sub(this.m_localAnchorA, this.m_localCenterA)); const rB = Rot.mulVec2(qB, Vec2.sub(this.m_localAnchorB, this.m_localCenterB)); const d = Vec2.sub(Vec2.add(cB, rB), Vec2.add(cA, rA)); const axis = Rot.mulVec2(qA, this.m_localXAxisA); const a1 = Vec2.crossVec2Vec2(Vec2.add(d, rA), axis); const a2 = Vec2.crossVec2Vec2(rB, axis); const perp = Rot.mulVec2(qA, this.m_localYAxisA); const s1 = Vec2.crossVec2Vec2(Vec2.add(d, rA), perp); const s2 = Vec2.crossVec2Vec2(rB, perp); let impulse = new Vec3(); const C1 = Vec2.zero(); C1.x = Vec2.dot(perp, d); C1.y = aB - aA - this.m_referenceAngle; let linearError = math_abs(C1.x); const angularError = math_abs(C1.y); const linearSlop = Settings.linearSlop; const maxLinearCorrection = Settings.maxLinearCorrection; let active = false; // bool let C2 = 0.0; if (this.m_enableLimit) { const translation = Vec2.dot(axis, d); if (math_abs(this.m_upperTranslation - this.m_lowerTranslation) < 2.0 * linearSlop) { // Prevent large angular corrections C2 = clamp(translation, -maxLinearCorrection, maxLinearCorrection); linearError = math_max(linearError, math_abs(translation)); active = true; } else if (translation <= this.m_lowerTranslation) { // Prevent large linear corrections and allow some slop. C2 = clamp(translation - this.m_lowerTranslation + linearSlop, -maxLinearCorrection, 0.0); linearError = Math .max(linearError, this.m_lowerTranslation - translation); active = true; } else if (translation >= this.m_upperTranslation) { // Prevent large linear corrections and allow some slop. C2 = clamp(translation - this.m_upperTranslation - linearSlop, 0.0, maxLinearCorrection); linearError = Math .max(linearError, translation - this.m_upperTranslation); active = true; } } if (active) { const k11 = mA + mB + iA * s1 * s1 + iB * s2 * s2; const k12 = iA * s1 + iB * s2; const k13 = iA * s1 * a1 + iB * s2 * a2; let k22 = iA + iB; if (k22 == 0.0) { // For fixed rotation k22 = 1.0; } const k23 = iA * a1 + iB * a2; const k33 = mA + mB + iA * a1 * a1 + iB * a2 * a2; const K = new Mat33(); K.ex.set(k11, k12, k13); K.ey.set(k12, k22, k23); K.ez.set(k13, k23, k33); const C = new Vec3(); C.x = C1.x; C.y = C1.y; C.z = C2; impulse = K.solve33(Vec3.neg(C)); } else { const k11 = mA + mB + iA * s1 * s1 + iB * s2 * s2; const k12 = iA * s1 + iB * s2; let k22 = iA + iB; if (k22 == 0.0) { k22 = 1.0; } const K = new Mat22(); K.ex.setNum(k11, k12); K.ey.setNum(k12, k22); const impulse1 = K.solve(Vec2.neg(C1)); impulse.x = impulse1.x; impulse.y = impulse1.y; impulse.z = 0.0; } const P = Vec2.combine(impulse.x, perp, impulse.z, axis); const LA = impulse.x * s1 + impulse.y + impulse.z * a1; const LB = impulse.x * s2 + impulse.y + impulse.z * a2; cA.subMul(mA, P); aA -= iA * LA; cB.addMul(mB, P); aB += iB * LB; this.m_bodyA.c_position.c = cA; this.m_bodyA.c_position.a = aA; this.m_bodyB.c_position.c = cB; this.m_bodyB.c_position.a = aB; return linearError <= Settings.linearSlop && angularError <= Settings.angularSlop; } }