planck-js
Version:
2D JavaScript/TypeScript physics engine for cross-platform HTML5 game development
440 lines (366 loc) • 12.5 kB
text/typescript
/*
* Planck.js
*
* Copyright (c) Erin Catto, Ali Shakiba
*
* This source code is licensed under the MIT license found in the
* LICENSE file in the root directory of this source tree.
*/
import { options } from "../../util/options";
import { clamp } from "../../common/Math";
import { Vec2, Vec2Value } from "../../common/Vec2";
import { Mat22 } from "../../common/Mat22";
import { Rot } from "../../common/Rot";
import { Joint, JointOpt, JointDef } from "../Joint";
import { Body } from "../Body";
import { TimeStep } from "../Solver";
/** @internal */ const _ASSERT = typeof ASSERT === "undefined" ? false : ASSERT;
/** @internal */ const _CONSTRUCTOR_FACTORY = typeof CONSTRUCTOR_FACTORY === "undefined" ? false : CONSTRUCTOR_FACTORY;
/**
* Motor joint definition.
*/
export interface MotorJointOpt extends JointOpt {
/**
* The bodyB angle minus bodyA angle in radians.
*/
angularOffset?: number;
/**
* The maximum motor force in N.
*/
maxForce?: number;
/**
* The maximum motor torque in N-m.
*/
maxTorque?: number;
/**
* Position correction factor in the range [0,1].
*/
correctionFactor?: number;
/**
* Position of bodyB minus the position of bodyA, in bodyA's frame, in meters.
*/
linearOffset?: Vec2Value;
}
/**
* Motor joint definition.
*/
export interface MotorJointDef extends JointDef, MotorJointOpt {
}
/** @internal */ const DEFAULTS = {
maxForce : 1.0,
maxTorque : 1.0,
correctionFactor : 0.3
};
declare module "./MotorJoint" {
/** @hidden @deprecated Use new keyword. */
// @ts-expect-error
function MotorJoint(def: MotorJointDef): MotorJoint;
/** @hidden @deprecated Use new keyword. */
// @ts-expect-error
function MotorJoint(def: MotorJointOpt, bodyA: Body, bodyB: Body): MotorJoint;
}
/**
* A motor joint is used to control the relative motion between two bodies. A
* typical usage is to control the movement of a dynamic body with respect to
* the ground.
*/
// @ts-expect-error
export class MotorJoint extends Joint {
static TYPE = "motor-joint" as const;
/** @internal */ m_type: "motor-joint";
/** @internal */ m_linearOffset: Vec2;
/** @internal */ m_angularOffset: number;
/** @internal */ m_linearImpulse: Vec2;
/** @internal */ m_angularImpulse: number;
/** @internal */ m_maxForce: number;
/** @internal */ m_maxTorque: number;
/** @internal */ m_correctionFactor: number;
// Solver temp
/** @internal */ m_rA: Vec2;
/** @internal */ m_rB: Vec2;
/** @internal */ m_localCenterA: Vec2;
/** @internal */ m_localCenterB: Vec2;
/** @internal */ m_linearError: Vec2;
/** @internal */ m_angularError: number;
/** @internal */ m_invMassA: number;
/** @internal */ m_invMassB: number;
/** @internal */ m_invIA: number;
/** @internal */ m_invIB: number;
/** @internal */ m_linearMass: Mat22;
/** @internal */ m_angularMass: number;
constructor(def: MotorJointDef);
constructor(def: MotorJointOpt, bodyA: Body, bodyB: Body);
constructor(def: MotorJointDef | MotorJointOpt, bodyA?: Body, bodyB?: Body) {
// @ts-ignore
if (_CONSTRUCTOR_FACTORY && !(this instanceof MotorJoint)) {
return new MotorJoint(def, bodyA, bodyB);
}
def = options(def, DEFAULTS);
super(def, bodyA, bodyB);
bodyA = this.m_bodyA;
bodyB = this.m_bodyB;
this.m_type = MotorJoint.TYPE;
this.m_linearOffset = Vec2.isValid(def.linearOffset) ? Vec2.clone(def.linearOffset) : bodyA.getLocalPoint(bodyB.getPosition());
this.m_angularOffset = Number.isFinite(def.angularOffset) ? def.angularOffset : bodyB.getAngle() - bodyA.getAngle();
this.m_linearImpulse = Vec2.zero();
this.m_angularImpulse = 0.0;
this.m_maxForce = def.maxForce;
this.m_maxTorque = def.maxTorque;
this.m_correctionFactor = def.correctionFactor;
// Point-to-point constraint
// Cdot = v2 - v1
// = v2 + cross(w2, r2) - v1 - cross(w1, r1)
// J = [-I -r1_skew I r2_skew ]
// Identity used:
// w k % (rx i + ry j) = w * (-ry i + rx j)
//
// r1 = offset - c1
// r2 = -c2
// Angle constraint
// Cdot = w2 - w1
// J = [0 0 -1 0 0 1]
// K = invI1 + invI2
}
/** @internal */
_serialize(): object {
return {
type: this.m_type,
bodyA: this.m_bodyA,
bodyB: this.m_bodyB,
collideConnected: this.m_collideConnected,
maxForce: this.m_maxForce,
maxTorque: this.m_maxTorque,
correctionFactor: this.m_correctionFactor,
linearOffset: this.m_linearOffset,
angularOffset: this.m_angularOffset,
};
}
/** @internal */
static _deserialize(data: any, world: any, restore: any): MotorJoint {
data = {...data};
data.bodyA = restore(Body, data.bodyA, world);
data.bodyB = restore(Body, data.bodyB, world);
const joint = new MotorJoint(data);
return joint;
}
/** @hidden */
_reset(def: Partial<MotorJointDef>): void {
if (Number.isFinite(def.angularOffset)) {
this.m_angularOffset = def.angularOffset;
}
if (Number.isFinite(def.maxForce)) {
this.m_maxForce = def.maxForce;
}
if (Number.isFinite(def.maxTorque)) {
this.m_maxTorque = def.maxTorque;
}
if (Number.isFinite(def.correctionFactor)) {
this.m_correctionFactor = def.correctionFactor;
}
if (Vec2.isValid(def.linearOffset)) {
this.m_linearOffset.set(def.linearOffset);
}
}
/**
* Set the maximum friction force in N.
*/
setMaxForce(force: number): void {
if (_ASSERT) console.assert(Number.isFinite(force) && force >= 0.0);
this.m_maxForce = force;
}
/**
* Get the maximum friction force in N.
*/
getMaxForce(): number {
return this.m_maxForce;
}
/**
* Set the maximum friction torque in N*m.
*/
setMaxTorque(torque: number): void {
if (_ASSERT) console.assert(Number.isFinite(torque) && torque >= 0.0);
this.m_maxTorque = torque;
}
/**
* Get the maximum friction torque in N*m.
*/
getMaxTorque(): number {
return this.m_maxTorque;
}
/**
* Set the position correction factor in the range [0,1].
*/
setCorrectionFactor(factor: number): void {
if (_ASSERT) console.assert(Number.isFinite(factor) && 0.0 <= factor && factor <= 1.0);
this.m_correctionFactor = factor;
}
/**
* Get the position correction factor in the range [0,1].
*/
getCorrectionFactor(): number {
return this.m_correctionFactor;
}
/**
* Set/get the target linear offset, in frame A, in meters.
*/
setLinearOffset(linearOffset: Vec2Value): void {
if (linearOffset.x != this.m_linearOffset.x || linearOffset.y != this.m_linearOffset.y) {
this.m_bodyA.setAwake(true);
this.m_bodyB.setAwake(true);
this.m_linearOffset.set(linearOffset);
}
}
getLinearOffset(): Vec2 {
return this.m_linearOffset;
}
/**
* Set/get the target angular offset, in radians.
*/
setAngularOffset(angularOffset: number): void {
if (angularOffset != this.m_angularOffset) {
this.m_bodyA.setAwake(true);
this.m_bodyB.setAwake(true);
this.m_angularOffset = angularOffset;
}
}
getAngularOffset(): number {
return this.m_angularOffset;
}
/**
* Get the anchor point on bodyA in world coordinates.
*/
getAnchorA(): Vec2 {
return this.m_bodyA.getPosition();
}
/**
* Get the anchor point on bodyB in world coordinates.
*/
getAnchorB(): Vec2 {
return this.m_bodyB.getPosition();
}
/**
* Get the reaction force on bodyB at the joint anchor in Newtons.
*/
getReactionForce(inv_dt: number): Vec2 {
return Vec2.mulNumVec2(inv_dt, this.m_linearImpulse);
}
/**
* Get the reaction torque on bodyB in N*m.
*/
getReactionTorque(inv_dt: number): number {
return inv_dt * this.m_angularImpulse;
}
initVelocityConstraints(step: TimeStep): void {
this.m_localCenterA = this.m_bodyA.m_sweep.localCenter;
this.m_localCenterB = this.m_bodyB.m_sweep.localCenter;
this.m_invMassA = this.m_bodyA.m_invMass;
this.m_invMassB = this.m_bodyB.m_invMass;
this.m_invIA = this.m_bodyA.m_invI;
this.m_invIB = this.m_bodyB.m_invI;
const cA = this.m_bodyA.c_position.c;
const aA = this.m_bodyA.c_position.a;
const vA = this.m_bodyA.c_velocity.v;
let wA = this.m_bodyA.c_velocity.w;
const cB = this.m_bodyB.c_position.c;
const aB = this.m_bodyB.c_position.a;
const vB = this.m_bodyB.c_velocity.v;
let wB = this.m_bodyB.c_velocity.w;
const qA = Rot.neo(aA);
const qB = Rot.neo(aB);
// Compute the effective mass matrix.
this.m_rA = Rot.mulVec2(qA, Vec2.sub(this.m_linearOffset, this.m_localCenterA));
this.m_rB = Rot.mulVec2(qB, Vec2.neg(this.m_localCenterB));
// J = [-I -r1_skew I r2_skew]
// r_skew = [-ry; rx]
// Matlab
// K = [ mA+r1y^2*iA+mB+r2y^2*iB, -r1y*iA*r1x-r2y*iB*r2x, -r1y*iA-r2y*iB]
// [ -r1y*iA*r1x-r2y*iB*r2x, mA+r1x^2*iA+mB+r2x^2*iB, r1x*iA+r2x*iB]
// [ -r1y*iA-r2y*iB, r1x*iA+r2x*iB, iA+iB]
const mA = this.m_invMassA;
const mB = this.m_invMassB;
const iA = this.m_invIA;
const iB = this.m_invIB;
// Upper 2 by 2 of K for point to point
const K = new Mat22();
K.ex.x = mA + mB + iA * this.m_rA.y * this.m_rA.y + iB * this.m_rB.y * this.m_rB.y;
K.ex.y = -iA * this.m_rA.x * this.m_rA.y - iB * this.m_rB.x * this.m_rB.y;
K.ey.x = K.ex.y;
K.ey.y = mA + mB + iA * this.m_rA.x * this.m_rA.x + iB * this.m_rB.x * this.m_rB.x;
this.m_linearMass = K.getInverse();
this.m_angularMass = iA + iB;
if (this.m_angularMass > 0.0) {
this.m_angularMass = 1.0 / this.m_angularMass;
}
this.m_linearError = Vec2.zero();
this.m_linearError.addCombine(1, cB, 1, this.m_rB);
this.m_linearError.subCombine(1, cA, 1, this.m_rA);
this.m_angularError = aB - aA - this.m_angularOffset;
if (step.warmStarting) {
// Scale impulses to support a variable time step.
this.m_linearImpulse.mul(step.dtRatio);
this.m_angularImpulse *= step.dtRatio;
const P = Vec2.neo(this.m_linearImpulse.x, this.m_linearImpulse.y);
vA.subMul(mA, P);
wA -= iA * (Vec2.crossVec2Vec2(this.m_rA, P) + this.m_angularImpulse);
vB.addMul(mB, P);
wB += iB * (Vec2.crossVec2Vec2(this.m_rB, P) + this.m_angularImpulse);
} else {
this.m_linearImpulse.setZero();
this.m_angularImpulse = 0.0;
}
this.m_bodyA.c_velocity.v = vA;
this.m_bodyA.c_velocity.w = wA;
this.m_bodyB.c_velocity.v = vB;
this.m_bodyB.c_velocity.w = wB;
}
solveVelocityConstraints(step: TimeStep): void {
const vA = this.m_bodyA.c_velocity.v;
let wA = this.m_bodyA.c_velocity.w;
const vB = this.m_bodyB.c_velocity.v;
let wB = this.m_bodyB.c_velocity.w;
const mA = this.m_invMassA;
const mB = this.m_invMassB;
const iA = this.m_invIA;
const iB = this.m_invIB;
const h = step.dt;
const inv_h = step.inv_dt;
// Solve angular friction
{
const Cdot = wB - wA + inv_h * this.m_correctionFactor * this.m_angularError;
let impulse = -this.m_angularMass * Cdot;
const oldImpulse = this.m_angularImpulse;
const maxImpulse = h * this.m_maxTorque;
this.m_angularImpulse = clamp(this.m_angularImpulse + impulse, -maxImpulse, maxImpulse);
impulse = this.m_angularImpulse - oldImpulse;
wA -= iA * impulse;
wB += iB * impulse;
}
// Solve linear friction
{
const Cdot = Vec2.zero();
Cdot.addCombine(1, vB, 1, Vec2.crossNumVec2(wB, this.m_rB));
Cdot.subCombine(1, vA, 1, Vec2.crossNumVec2(wA, this.m_rA));
Cdot.addMul(inv_h * this.m_correctionFactor, this.m_linearError);
let impulse = Vec2.neg(Mat22.mulVec2(this.m_linearMass, Cdot));
const oldImpulse = Vec2.clone(this.m_linearImpulse);
this.m_linearImpulse.add(impulse);
const maxImpulse = h * this.m_maxForce;
this.m_linearImpulse.clamp(maxImpulse);
impulse = Vec2.sub(this.m_linearImpulse, oldImpulse);
vA.subMul(mA, impulse);
wA -= iA * Vec2.crossVec2Vec2(this.m_rA, impulse);
vB.addMul(mB, impulse);
wB += iB * Vec2.crossVec2Vec2(this.m_rB, impulse);
}
this.m_bodyA.c_velocity.v = vA;
this.m_bodyA.c_velocity.w = wA;
this.m_bodyB.c_velocity.v = vB;
this.m_bodyB.c_velocity.w = wB;
}
/**
* This returns true if the position errors are within tolerance.
*/
solvePositionConstraints(step: TimeStep): boolean {
return true;
}
}