planck-js
Version:
2D JavaScript/TypeScript physics engine for cross-platform HTML5 game development
401 lines (331 loc) • 11.2 kB
text/typescript
/*
* Planck.js
*
* Copyright (c) Erin Catto, Ali Shakiba
*
* This source code is licensed under the MIT license found in the
* LICENSE file in the root directory of this source tree.
*/
import { options } from "../../util/options";
import { clamp } from "../../common/Math";
import { Vec2, Vec2Value } from "../../common/Vec2";
import { Mat22 } from "../../common/Mat22";
import { Rot } from "../../common/Rot";
import { Joint, JointOpt, JointDef } from "../Joint";
import { Body } from "../Body";
import { TimeStep } from "../Solver";
/** @internal */ const _ASSERT = typeof ASSERT === "undefined" ? false : ASSERT;
/** @internal */ const _CONSTRUCTOR_FACTORY = typeof CONSTRUCTOR_FACTORY === "undefined" ? false : CONSTRUCTOR_FACTORY;
/**
* Friction joint definition.
*/
export interface FrictionJointOpt extends JointOpt {
/**
* The maximum friction force in N.
*/
maxForce?: number;
/**
* The maximum friction torque in N-m.
*/
maxTorque?: number;
}
/**
* Friction joint definition.
*/
export interface FrictionJointDef extends JointDef, FrictionJointOpt {
/**
* The local anchor point relative to bodyA's origin.
*/
localAnchorA: Vec2Value;
/**
* The local anchor point relative to bodyB's origin.
*/
localAnchorB: Vec2Value;
/** @internal */ anchorA?: Vec2Value;
/** @internal */ anchorB?: Vec2Value;
}
/** @internal */ const DEFAULTS = {
maxForce : 0.0,
maxTorque : 0.0,
};
declare module "./FrictionJoint" {
/** @hidden @deprecated Use new keyword. */
// @ts-expect-error
function FrictionJoint(def: FrictionJointDef): FrictionJoint;
/** @hidden @deprecated Use new keyword. */
// @ts-expect-error
function FrictionJoint(def: FrictionJointOpt, bodyA: Body, bodyB: Body, anchor: Vec2Value): FrictionJoint;
}
/**
* Friction joint. This is used for top-down friction. It provides 2D
* translational friction and angular friction.
*/
// @ts-expect-error
export class FrictionJoint extends Joint {
static TYPE = "friction-joint" as const;
/** @internal */ m_type: "friction-joint";
/** @internal */ m_localAnchorA: Vec2;
/** @internal */ m_localAnchorB: Vec2;
// Solver shared
/** @internal */ m_linearImpulse: Vec2;
/** @internal */ m_angularImpulse: number;
/** @internal */ m_maxForce: number;
/** @internal */ m_maxTorque: number;
// Solver temp
/** @internal */ m_rA: Vec2;
/** @internal */ m_rB: Vec2;
/** @internal */ m_localCenterA: Vec2;
/** @internal */ m_localCenterB: Vec2;
/** @internal */ m_invMassA: number;
/** @internal */ m_invMassB: number;
/** @internal */ m_invIA: number;
/** @internal */ m_invIB: number;
/** @internal */ m_linearMass: Mat22;
/** @internal */ m_angularMass: number;
constructor(def: FrictionJointDef);
/**
* @param anchor Anchor in global coordination.
*/
constructor(def: FrictionJointOpt, bodyA: Body, bodyB: Body, anchor?: Vec2Value);
constructor(def: FrictionJointDef, bodyA?: Body, bodyB?: Body, anchor?: Vec2Value) {
// @ts-ignore
if (_CONSTRUCTOR_FACTORY && !(this instanceof FrictionJoint)) {
return new FrictionJoint(def, bodyA, bodyB, anchor);
}
def = options(def, DEFAULTS);
super(def, bodyA, bodyB);
bodyA = this.m_bodyA;
bodyB = this.m_bodyB;
this.m_type = FrictionJoint.TYPE;
this.m_localAnchorA = Vec2.clone(anchor ? bodyA.getLocalPoint(anchor) : def.localAnchorA || Vec2.zero());
this.m_localAnchorB = Vec2.clone(anchor ? bodyB.getLocalPoint(anchor) : def.localAnchorB || Vec2.zero());
// Solver shared
this.m_linearImpulse = Vec2.zero();
this.m_angularImpulse = 0.0;
this.m_maxForce = def.maxForce;
this.m_maxTorque = def.maxTorque;
// Point-to-point constraint
// Cdot = v2 - v1
// = v2 + cross(w2, r2) - v1 - cross(w1, r1)
// J = [-I -r1_skew I r2_skew ]
// Identity used:
// w k % (rx i + ry j) = w * (-ry i + rx j)
// Angle constraint
// Cdot = w2 - w1
// J = [0 0 -1 0 0 1]
// K = invI1 + invI2
}
/** @internal */
_serialize(): object {
return {
type: this.m_type,
bodyA: this.m_bodyA,
bodyB: this.m_bodyB,
collideConnected: this.m_collideConnected,
maxForce: this.m_maxForce,
maxTorque: this.m_maxTorque,
localAnchorA: this.m_localAnchorA,
localAnchorB: this.m_localAnchorB,
};
}
/** @internal */
static _deserialize(data: any, world: any, restore: any): FrictionJoint {
data = {...data};
data.bodyA = restore(Body, data.bodyA, world);
data.bodyB = restore(Body, data.bodyB, world);
const joint = new FrictionJoint(data);
return joint;
}
/** @hidden */
_reset(def: Partial<FrictionJointDef>): void {
if (def.anchorA) {
this.m_localAnchorA.setVec2(this.m_bodyA.getLocalPoint(def.anchorA));
} else if (def.localAnchorA) {
this.m_localAnchorA.setVec2(def.localAnchorA);
}
if (def.anchorB) {
this.m_localAnchorB.setVec2(this.m_bodyB.getLocalPoint(def.anchorB));
} else if (def.localAnchorB) {
this.m_localAnchorB.setVec2(def.localAnchorB);
}
if (Number.isFinite(def.maxForce)) {
this.m_maxForce = def.maxForce;
}
if (Number.isFinite(def.maxTorque)) {
this.m_maxTorque = def.maxTorque;
}
}
/**
* The local anchor point relative to bodyA's origin.
*/
getLocalAnchorA(): Vec2 {
return this.m_localAnchorA;
}
/**
* The local anchor point relative to bodyB's origin.
*/
getLocalAnchorB(): Vec2 {
return this.m_localAnchorB;
}
/**
* Set the maximum friction force in N.
*/
setMaxForce(force: number): void {
if (_ASSERT) console.assert(Number.isFinite(force) && force >= 0.0);
this.m_maxForce = force;
}
/**
* Get the maximum friction force in N.
*/
getMaxForce(): number {
return this.m_maxForce;
}
/**
* Set the maximum friction torque in N*m.
*/
setMaxTorque(torque: number): void {
if (_ASSERT) console.assert(Number.isFinite(torque) && torque >= 0.0);
this.m_maxTorque = torque;
}
/**
* Get the maximum friction torque in N*m.
*/
getMaxTorque(): number {
return this.m_maxTorque;
}
/**
* Get the anchor point on bodyA in world coordinates.
*/
getAnchorA(): Vec2 {
return this.m_bodyA.getWorldPoint(this.m_localAnchorA);
}
/**
* Get the anchor point on bodyB in world coordinates.
*/
getAnchorB(): Vec2 {
return this.m_bodyB.getWorldPoint(this.m_localAnchorB);
}
/**
* Get the reaction force on bodyB at the joint anchor in Newtons.
*/
getReactionForce(inv_dt: number): Vec2 {
return Vec2.mulNumVec2(inv_dt, this.m_linearImpulse);
}
/**
* Get the reaction torque on bodyB in N*m.
*/
getReactionTorque(inv_dt: number): number {
return inv_dt * this.m_angularImpulse;
}
initVelocityConstraints(step: TimeStep): void {
this.m_localCenterA = this.m_bodyA.m_sweep.localCenter;
this.m_localCenterB = this.m_bodyB.m_sweep.localCenter;
this.m_invMassA = this.m_bodyA.m_invMass;
this.m_invMassB = this.m_bodyB.m_invMass;
this.m_invIA = this.m_bodyA.m_invI;
this.m_invIB = this.m_bodyB.m_invI;
const aA = this.m_bodyA.c_position.a;
const vA = this.m_bodyA.c_velocity.v;
let wA = this.m_bodyA.c_velocity.w;
const aB = this.m_bodyB.c_position.a;
const vB = this.m_bodyB.c_velocity.v;
let wB = this.m_bodyB.c_velocity.w;
const qA = Rot.neo(aA);
const qB = Rot.neo(aB);
// Compute the effective mass matrix.
this.m_rA = Rot.mulVec2(qA, Vec2.sub(this.m_localAnchorA, this.m_localCenterA));
this.m_rB = Rot.mulVec2(qB, Vec2.sub(this.m_localAnchorB, this.m_localCenterB));
// J = [-I -r1_skew I r2_skew]
// [ 0 -1 0 1]
// r_skew = [-ry; rx]
// Matlab
// K = [ mA+r1y^2*iA+mB+r2y^2*iB, -r1y*iA*r1x-r2y*iB*r2x, -r1y*iA-r2y*iB]
// [ -r1y*iA*r1x-r2y*iB*r2x, mA+r1x^2*iA+mB+r2x^2*iB, r1x*iA+r2x*iB]
// [ -r1y*iA-r2y*iB, r1x*iA+r2x*iB, iA+iB]
const mA = this.m_invMassA;
const mB = this.m_invMassB;
const iA = this.m_invIA;
const iB = this.m_invIB;
const K = new Mat22();
K.ex.x = mA + mB + iA * this.m_rA.y * this.m_rA.y + iB * this.m_rB.y
* this.m_rB.y;
K.ex.y = -iA * this.m_rA.x * this.m_rA.y - iB * this.m_rB.x * this.m_rB.y;
K.ey.x = K.ex.y;
K.ey.y = mA + mB + iA * this.m_rA.x * this.m_rA.x + iB * this.m_rB.x
* this.m_rB.x;
this.m_linearMass = K.getInverse();
this.m_angularMass = iA + iB;
if (this.m_angularMass > 0.0) {
this.m_angularMass = 1.0 / this.m_angularMass;
}
if (step.warmStarting) {
// Scale impulses to support a variable time step.
this.m_linearImpulse.mul(step.dtRatio);
this.m_angularImpulse *= step.dtRatio;
const P = Vec2.neo(this.m_linearImpulse.x, this.m_linearImpulse.y);
vA.subMul(mA, P);
wA -= iA * (Vec2.crossVec2Vec2(this.m_rA, P) + this.m_angularImpulse);
vB.addMul(mB, P);
wB += iB * (Vec2.crossVec2Vec2(this.m_rB, P) + this.m_angularImpulse);
} else {
this.m_linearImpulse.setZero();
this.m_angularImpulse = 0.0;
}
this.m_bodyA.c_velocity.v = vA;
this.m_bodyA.c_velocity.w = wA;
this.m_bodyB.c_velocity.v = vB;
this.m_bodyB.c_velocity.w = wB;
}
solveVelocityConstraints(step: TimeStep): void {
const vA = this.m_bodyA.c_velocity.v;
let wA = this.m_bodyA.c_velocity.w;
const vB = this.m_bodyB.c_velocity.v;
let wB = this.m_bodyB.c_velocity.w;
const mA = this.m_invMassA;
const mB = this.m_invMassB;
const iA = this.m_invIA;
const iB = this.m_invIB;
const h = step.dt;
// Solve angular friction
{
const Cdot = wB - wA;
let impulse = -this.m_angularMass * Cdot;
const oldImpulse = this.m_angularImpulse;
const maxImpulse = h * this.m_maxTorque;
this.m_angularImpulse = clamp(this.m_angularImpulse + impulse, -maxImpulse, maxImpulse);
impulse = this.m_angularImpulse - oldImpulse;
wA -= iA * impulse;
wB += iB * impulse;
}
// Solve linear friction
{
const Cdot = Vec2.sub(
Vec2.add(vB, Vec2.crossNumVec2(wB, this.m_rB)),
Vec2.add(vA, Vec2.crossNumVec2(wA, this.m_rA))
);
let impulse = Vec2.neg(Mat22.mulVec2(this.m_linearMass, Cdot));
const oldImpulse = this.m_linearImpulse;
this.m_linearImpulse.add(impulse);
const maxImpulse = h * this.m_maxForce;
if (this.m_linearImpulse.lengthSquared() > maxImpulse * maxImpulse) {
this.m_linearImpulse.normalize();
this.m_linearImpulse.mul(maxImpulse);
}
impulse = Vec2.sub(this.m_linearImpulse, oldImpulse);
vA.subMul(mA, impulse);
wA -= iA * Vec2.crossVec2Vec2(this.m_rA, impulse);
vB.addMul(mB, impulse);
wB += iB * Vec2.crossVec2Vec2(this.m_rB, impulse);
}
this.m_bodyA.c_velocity.v = vA;
this.m_bodyA.c_velocity.w = wA;
this.m_bodyB.c_velocity.v = vB;
this.m_bodyB.c_velocity.w = wB;
}
/**
* This returns true if the position errors are within tolerance.
*/
solvePositionConstraints(step: TimeStep): boolean {
return true;
}
}