planck-js
Version:
2D JavaScript/TypeScript physics engine for cross-platform HTML5 game development
455 lines (380 loc) • 14 kB
text/typescript
/*
* Planck.js
*
* Copyright (c) Erin Catto, Ali Shakiba
*
* This source code is licensed under the MIT license found in the
* LICENSE file in the root directory of this source tree.
*/
import { options } from "../../util/options";
import { SettingsInternal as Settings } from "../../Settings";
import { clamp } from "../../common/Math";
import { Vec2, Vec2Value } from "../../common/Vec2";
import { Rot } from "../../common/Rot";
import { Joint, JointOpt, JointDef } from "../Joint";
import { Body } from "../Body";
import { TimeStep } from "../Solver";
/** @internal */ const _CONSTRUCTOR_FACTORY = typeof CONSTRUCTOR_FACTORY === "undefined" ? false : CONSTRUCTOR_FACTORY;
/** @internal */ const math_abs = Math.abs;
/** @internal */ const math_PI = Math.PI;
/**
* Distance joint definition. This requires defining an anchor point on both
* bodies and the non-zero length of the distance joint. The definition uses
* local anchor points so that the initial configuration can violate the
* constraint slightly. This helps when saving and loading a game. Warning: Do
* not use a zero or short length.
*/
export interface DistanceJointOpt extends JointOpt {
/**
* The mass-spring-damper frequency in Hertz. A value of 0 disables softness.
*/
frequencyHz?: number;
/**
* The damping ratio. 0 = no damping, 1 = critical damping.
*/
dampingRatio?: number;
/**
* Distance length.
*/
length?: number;
}
/**
* Distance joint definition. This requires defining an anchor point on both
* bodies and the non-zero length of the distance joint. The definition uses
* local anchor points so that the initial configuration can violate the
* constraint slightly. This helps when saving and loading a game. Warning: Do
* not use a zero or short length.
*/
export interface DistanceJointDef extends JointDef, DistanceJointOpt {
/**
* The local anchor point relative to bodyA's origin.
*/
localAnchorA: Vec2Value;
/**
* The local anchor point relative to bodyB's origin.
*/
localAnchorB: Vec2Value;
/** @internal */ anchorA?: Vec2Value;
/** @internal */ anchorB?: Vec2Value;
}
/** @internal */ const DEFAULTS = {
frequencyHz : 0.0,
dampingRatio : 0.0
};
declare module "./DistanceJoint" {
/** @hidden @deprecated Use new keyword. */
// @ts-expect-error
function DistanceJoint(def: DistanceJointDef): DistanceJoint;
/** @hidden @deprecated Use new keyword. */
// @ts-expect-error
function DistanceJoint(def: DistanceJointOpt, bodyA: Body, bodyB: Body, anchorA: Vec2Value, anchorB: Vec2Value): DistanceJoint;
}
/**
* A distance joint constrains two points on two bodies to remain at a fixed
* distance from each other. You can view this as a massless, rigid rod.
*/
// @ts-expect-error
export class DistanceJoint extends Joint {
static TYPE = "distance-joint" as const;
// Solver shared
/** @internal */ m_localAnchorA: Vec2;
/** @internal */ m_localAnchorB: Vec2;
/** @internal */ m_length: number;
/** @internal */ m_frequencyHz: number;
/** @internal */ m_dampingRatio: number;
/** @internal */ m_impulse: number;
/** @internal */ m_gamma: number;
/** @internal */ m_bias: number;
// Solver temp
/** @internal */ m_u: Vec2;
/** @internal */ m_rA: Vec2;
/** @internal */ m_rB: Vec2;
/** @internal */ m_localCenterA: Vec2;
/** @internal */ m_localCenterB: Vec2;
/** @internal */ m_invMassA: number;
/** @internal */ m_invMassB: number;
/** @internal */ m_invIA: number;
/** @internal */ m_invIB: number;
/** @internal */ m_mass: number;
/**
* @param def DistanceJoint definition.
*/
constructor(def: DistanceJointDef);
/**
* @param anchorA Anchor A in global coordination.
* @param anchorB Anchor B in global coordination.
*/
constructor(def: DistanceJointOpt, bodyA: Body, bodyB: Body, anchorA?: Vec2Value, anchorB?: Vec2Value);
constructor(def: DistanceJointDef, bodyA?: Body, bodyB?: Body, anchorA?: Vec2Value, anchorB?: Vec2Value) {
// @ts-ignore
if (_CONSTRUCTOR_FACTORY && !(this instanceof DistanceJoint)) {
return new DistanceJoint(def, bodyA, bodyB, anchorA, anchorB);
}
// order of constructor arguments is changed in v0.2
if (bodyB && anchorA && ("m_type" in anchorA) && ("x" in bodyB) && ("y" in bodyB)) {
const temp = bodyB;
bodyB = anchorA as any as Body;
anchorA = temp as any as Vec2;
}
def = options(def, DEFAULTS);
super(def, bodyA, bodyB);
bodyA = this.m_bodyA;
bodyB = this.m_bodyB;
this.m_type = DistanceJoint.TYPE;
// Solver shared
this.m_localAnchorA = Vec2.clone(anchorA ? bodyA.getLocalPoint(anchorA) : def.localAnchorA || Vec2.zero());
this.m_localAnchorB = Vec2.clone(anchorB ? bodyB.getLocalPoint(anchorB) : def.localAnchorB || Vec2.zero());
this.m_length = Number.isFinite(def.length) ? def.length :
Vec2.distance(bodyA.getWorldPoint(this.m_localAnchorA), bodyB.getWorldPoint(this.m_localAnchorB));
this.m_frequencyHz = def.frequencyHz;
this.m_dampingRatio = def.dampingRatio;
this.m_impulse = 0.0;
this.m_gamma = 0.0;
this.m_bias = 0.0;
// 1-D constrained system
// m (v2 - v1) = lambda
// v2 + (beta/h) * x1 + gamma * lambda = 0, gamma has units of inverse mass.
// x2 = x1 + h * v2
// 1-D mass-damper-spring system
// m (v2 - v1) + h * d * v2 + h * k *
// C = norm(p2 - p1) - L
// u = (p2 - p1) / norm(p2 - p1)
// Cdot = dot(u, v2 + cross(w2, r2) - v1 - cross(w1, r1))
// J = [-u -cross(r1, u) u cross(r2, u)]
// K = J * invM * JT
// = invMass1 + invI1 * cross(r1, u)^2 + invMass2 + invI2 * cross(r2, u)^2
}
/** @internal */
_serialize(): object {
return {
type: this.m_type,
bodyA: this.m_bodyA,
bodyB: this.m_bodyB,
collideConnected: this.m_collideConnected,
frequencyHz: this.m_frequencyHz,
dampingRatio: this.m_dampingRatio,
localAnchorA: this.m_localAnchorA,
localAnchorB: this.m_localAnchorB,
length: this.m_length,
impulse: this.m_impulse,
gamma: this.m_gamma,
bias: this.m_bias,
};
}
/** @internal */
static _deserialize(data: any, world: any, restore: any): DistanceJoint {
data = {...data};
data.bodyA = restore(Body, data.bodyA, world);
data.bodyB = restore(Body, data.bodyB, world);
const joint = new DistanceJoint(data);
return joint;
}
/** @hidden */
_reset(def: Partial<DistanceJointDef>): void {
if (def.anchorA) {
this.m_localAnchorA.setVec2(this.m_bodyA.getLocalPoint(def.anchorA));
} else if (def.localAnchorA) {
this.m_localAnchorA.setVec2(def.localAnchorA);
}
if (def.anchorB) {
this.m_localAnchorB.setVec2(this.m_bodyB.getLocalPoint(def.anchorB));
} else if (def.localAnchorB) {
this.m_localAnchorB.setVec2(def.localAnchorB);
}
if (def.length > 0) {
this.m_length = +def.length;
} else if (def.length < 0) { // don't change length
} else if (def.anchorA || def.anchorA || def.anchorA || def.anchorA) {
this.m_length = Vec2.distance(
this.m_bodyA.getWorldPoint(this.m_localAnchorA),
this.m_bodyB.getWorldPoint(this.m_localAnchorB)
);
}
if (Number.isFinite(def.frequencyHz)) {
this.m_frequencyHz = def.frequencyHz;
}
if (Number.isFinite(def.dampingRatio)) {
this.m_dampingRatio = def.dampingRatio;
}
}
/**
* The local anchor point relative to bodyA's origin.
*/
getLocalAnchorA(): Vec2 {
return this.m_localAnchorA;
}
/**
* The local anchor point relative to bodyB's origin.
*/
getLocalAnchorB(): Vec2 {
return this.m_localAnchorB;
}
/**
* Set the natural length. Manipulating the length can lead to non-physical
* behavior when the frequency is zero.
*/
setLength(length: number): void {
this.m_length = length;
}
/**
* Get the natural length.
*/
getLength(): number {
return this.m_length;
}
setFrequency(hz: number): void {
this.m_frequencyHz = hz;
}
getFrequency(): number {
return this.m_frequencyHz;
}
setDampingRatio(ratio: number): void {
this.m_dampingRatio = ratio;
}
getDampingRatio(): number {
return this.m_dampingRatio;
}
/**
* Get the anchor point on bodyA in world coordinates.
*/
getAnchorA(): Vec2 {
return this.m_bodyA.getWorldPoint(this.m_localAnchorA);
}
/**
* Get the anchor point on bodyB in world coordinates.
*/
getAnchorB(): Vec2 {
return this.m_bodyB.getWorldPoint(this.m_localAnchorB);
}
/**
* Get the reaction force on bodyB at the joint anchor in Newtons.
*/
getReactionForce(inv_dt: number): Vec2 {
return Vec2.mulNumVec2(this.m_impulse, this.m_u).mul(inv_dt);
}
/**
* Get the reaction torque on bodyB in N*m.
*/
getReactionTorque(inv_dt: number): number {
return 0.0;
}
initVelocityConstraints(step: TimeStep): void {
this.m_localCenterA = this.m_bodyA.m_sweep.localCenter;
this.m_localCenterB = this.m_bodyB.m_sweep.localCenter;
this.m_invMassA = this.m_bodyA.m_invMass;
this.m_invMassB = this.m_bodyB.m_invMass;
this.m_invIA = this.m_bodyA.m_invI;
this.m_invIB = this.m_bodyB.m_invI;
const cA = this.m_bodyA.c_position.c;
const aA = this.m_bodyA.c_position.a;
const vA = this.m_bodyA.c_velocity.v;
let wA = this.m_bodyA.c_velocity.w;
const cB = this.m_bodyB.c_position.c;
const aB = this.m_bodyB.c_position.a;
const vB = this.m_bodyB.c_velocity.v;
let wB = this.m_bodyB.c_velocity.w;
const qA = Rot.neo(aA);
const qB = Rot.neo(aB);
this.m_rA = Rot.mulVec2(qA, Vec2.sub(this.m_localAnchorA, this.m_localCenterA));
this.m_rB = Rot.mulVec2(qB, Vec2.sub(this.m_localAnchorB, this.m_localCenterB));
this.m_u = Vec2.sub(Vec2.add(cB, this.m_rB), Vec2.add(cA, this.m_rA));
// Handle singularity.
const length = this.m_u.length();
if (length > Settings.linearSlop) {
this.m_u.mul(1.0 / length);
} else {
this.m_u.setNum(0.0, 0.0);
}
const crAu = Vec2.crossVec2Vec2(this.m_rA, this.m_u);
const crBu = Vec2.crossVec2Vec2(this.m_rB, this.m_u);
let invMass = this.m_invMassA + this.m_invIA * crAu * crAu + this.m_invMassB + this.m_invIB * crBu * crBu;
// Compute the effective mass matrix.
this.m_mass = invMass != 0.0 ? 1.0 / invMass : 0.0;
if (this.m_frequencyHz > 0.0) {
const C = length - this.m_length;
// Frequency
const omega = 2.0 * math_PI * this.m_frequencyHz;
// Damping coefficient
const d = 2.0 * this.m_mass * this.m_dampingRatio * omega;
// Spring stiffness
const k = this.m_mass * omega * omega;
// magic formulas
const h = step.dt;
this.m_gamma = h * (d + h * k);
this.m_gamma = this.m_gamma != 0.0 ? 1.0 / this.m_gamma : 0.0;
this.m_bias = C * h * k * this.m_gamma;
invMass += this.m_gamma;
this.m_mass = invMass != 0.0 ? 1.0 / invMass : 0.0;
} else {
this.m_gamma = 0.0;
this.m_bias = 0.0;
}
if (step.warmStarting) {
// Scale the impulse to support a variable time step.
this.m_impulse *= step.dtRatio;
const P = Vec2.mulNumVec2(this.m_impulse, this.m_u);
vA.subMul(this.m_invMassA, P);
wA -= this.m_invIA * Vec2.crossVec2Vec2(this.m_rA, P);
vB.addMul(this.m_invMassB, P);
wB += this.m_invIB * Vec2.crossVec2Vec2(this.m_rB, P);
} else {
this.m_impulse = 0.0;
}
this.m_bodyA.c_velocity.v.setVec2(vA);
this.m_bodyA.c_velocity.w = wA;
this.m_bodyB.c_velocity.v.setVec2(vB);
this.m_bodyB.c_velocity.w = wB;
}
solveVelocityConstraints(step: TimeStep): void {
const vA = this.m_bodyA.c_velocity.v;
let wA = this.m_bodyA.c_velocity.w;
const vB = this.m_bodyB.c_velocity.v;
let wB = this.m_bodyB.c_velocity.w;
// Cdot = dot(u, v + cross(w, r))
const vpA = Vec2.add(vA, Vec2.crossNumVec2(wA, this.m_rA));
const vpB = Vec2.add(vB, Vec2.crossNumVec2(wB, this.m_rB));
const Cdot = Vec2.dot(this.m_u, vpB) - Vec2.dot(this.m_u, vpA);
const impulse = -this.m_mass * (Cdot + this.m_bias + this.m_gamma * this.m_impulse);
this.m_impulse += impulse;
const P = Vec2.mulNumVec2(impulse, this.m_u);
vA.subMul(this.m_invMassA, P);
wA -= this.m_invIA * Vec2.crossVec2Vec2(this.m_rA, P);
vB.addMul(this.m_invMassB, P);
wB += this.m_invIB * Vec2.crossVec2Vec2(this.m_rB, P);
this.m_bodyA.c_velocity.v.setVec2(vA);
this.m_bodyA.c_velocity.w = wA;
this.m_bodyB.c_velocity.v.setVec2(vB);
this.m_bodyB.c_velocity.w = wB;
}
/**
* This returns true if the position errors are within tolerance.
*/
solvePositionConstraints(step: TimeStep): boolean {
if (this.m_frequencyHz > 0.0) {
// There is no position correction for soft distance constraints.
return true;
}
const cA = this.m_bodyA.c_position.c;
let aA = this.m_bodyA.c_position.a;
const cB = this.m_bodyB.c_position.c;
let aB = this.m_bodyB.c_position.a;
const qA = Rot.neo(aA);
const qB = Rot.neo(aB);
const rA = Rot.mulSub(qA, this.m_localAnchorA, this.m_localCenterA);
const rB = Rot.mulSub(qB, this.m_localAnchorB, this.m_localCenterB);
const u = Vec2.sub(Vec2.add(cB, rB), Vec2.add(cA, rA));
const length = u.normalize();
const C = clamp(length - this.m_length, -Settings.maxLinearCorrection, Settings.maxLinearCorrection);
const impulse = -this.m_mass * C;
const P = Vec2.mulNumVec2(impulse, u);
cA.subMul(this.m_invMassA, P);
aA -= this.m_invIA * Vec2.crossVec2Vec2(rA, P);
cB.addMul(this.m_invMassB, P);
aB += this.m_invIB * Vec2.crossVec2Vec2(rB, P);
this.m_bodyA.c_position.c.setVec2(cA);
this.m_bodyA.c_position.a = aA;
this.m_bodyB.c_position.c.setVec2(cB);
this.m_bodyB.c_position.a = aB;
return math_abs(C) < Settings.linearSlop;
}
}