UNPKG

planck-js

Version:

2D JavaScript physics engine for cross-platform HTML5 game development

809 lines (685 loc) 24.9 kB
/* * Planck.js * The MIT License * Copyright (c) 2021 Erin Catto, Ali Shakiba * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ var _DEBUG = typeof DEBUG === 'undefined' ? false : DEBUG; var _ASSERT = typeof ASSERT === 'undefined' ? false : ASSERT; module.exports = PrismaticJoint; var common = require('../util/common'); var options = require('../util/options'); var Settings = require('../Settings'); var Math = require('../common/Math'); var Vec2 = require('../common/Vec2'); var Vec3 = require('../common/Vec3'); var Mat22 = require('../common/Mat22'); var Mat33 = require('../common/Mat33'); var Rot = require('../common/Rot'); var Sweep = require('../common/Sweep'); var Transform = require('../common/Transform'); var Velocity = require('../common/Velocity'); var Position = require('../common/Position'); var Joint = require('../Joint'); var Body = require('../Body'); var inactiveLimit = 0; var atLowerLimit = 1; var atUpperLimit = 2; var equalLimits = 3; PrismaticJoint.TYPE = 'prismatic-joint'; Joint.TYPES[PrismaticJoint.TYPE] = PrismaticJoint; PrismaticJoint._super = Joint; PrismaticJoint.prototype = Object.create(PrismaticJoint._super.prototype); /** * @typedef {Object} PrismaticJointDef * * Prismatic joint definition. This requires defining a line of motion using an * axis and an anchor point. The definition uses local anchor points and a local * axis so that the initial configuration can violate the constraint slightly. * The joint translation is zero when the local anchor points coincide in world * space. Using local anchors and a local axis helps when saving and loading a * game. * * @prop {boolean} enableLimit Enable/disable the joint limit. * @prop {float} lowerTranslation The lower translation limit, usually in * meters. * @prop {float} upperTranslation The upper translation limit, usually in * meters. * @prop {boolean} enableMotor Enable/disable the joint motor. * @prop {float} maxMotorForce The maximum motor torque, usually in N-m. * @prop {float} motorSpeed The desired motor speed in radians per second. * * @prop {Vec2} localAnchorA The local anchor point relative to bodyA's origin. * @prop {Vec2} localAnchorB The local anchor point relative to bodyB's origin. * @prop {Vec2} localAxisA The local translation unit axis in bodyA. * @prop {float} referenceAngle The constrained angle between the bodies: * bodyB_angle - bodyA_angle. */ var DEFAULTS = { enableLimit : false, lowerTranslation : 0.0, upperTranslation : 0.0, enableMotor : false, maxMotorForce : 0.0, motorSpeed : 0.0 }; /** * A prismatic joint. This joint provides one degree of freedom: translation * along an axis fixed in bodyA. Relative rotation is prevented. You can use a * joint limit to restrict the range of motion and a joint motor to drive the * motion or to model joint friction. * * @param {PrismaticJointDef} def * @param {Body} bodyA * @param {Body} bodyB */ function PrismaticJoint(def, bodyA, bodyB, anchor, axis) { if (!(this instanceof PrismaticJoint)) { return new PrismaticJoint(def, bodyA, bodyB, anchor, axis); } def = options(def, DEFAULTS); Joint.call(this, def, bodyA, bodyB); bodyA = this.m_bodyA; bodyB = this.m_bodyB; this.m_type = PrismaticJoint.TYPE; this.m_localAnchorA = Vec2.clone(anchor ? bodyA.getLocalPoint(anchor) : def.localAnchorA || Vec2.zero()); this.m_localAnchorB = Vec2.clone(anchor ? bodyB.getLocalPoint(anchor) : def.localAnchorB || Vec2.zero()); this.m_localXAxisA = Vec2.clone(axis ? bodyA.getLocalVector(axis) : def.localAxisA || Vec2.neo(1.0, 0.0)); this.m_localXAxisA.normalize(); this.m_localYAxisA = Vec2.cross(1.0, this.m_localXAxisA); this.m_referenceAngle = Math.isFinite(def.referenceAngle) ? def.referenceAngle : bodyB.getAngle() - bodyA.getAngle(); this.m_impulse = Vec3(); this.m_motorMass = 0.0; this.m_motorImpulse = 0.0; this.m_lowerTranslation = def.lowerTranslation; this.m_upperTranslation = def.upperTranslation; this.m_maxMotorForce = def.maxMotorForce; this.m_motorSpeed = def.motorSpeed; this.m_enableLimit = def.enableLimit; this.m_enableMotor = def.enableMotor; this.m_limitState = inactiveLimit; this.m_axis = Vec2.zero(); this.m_perp = Vec2.zero(); // Solver temp this.m_localCenterA; // Vec2 this.m_localCenterB; // Vec2 this.m_invMassA; // float this.m_invMassB; // float this.m_invIA; // float this.m_invIB; // float this.m_axis, this.m_perp; // Vec2 this.m_s1, this.m_s2; // float this.m_a1, this.m_a2; // float this.m_K = new Mat33(); this.m_motorMass; // float // Linear constraint (point-to-line) // d = p2 - p1 = x2 + r2 - x1 - r1 // C = dot(perp, d) // Cdot = dot(d, cross(w1, perp)) + dot(perp, v2 + cross(w2, r2) - v1 - // cross(w1, r1)) // = -dot(perp, v1) - dot(cross(d + r1, perp), w1) + dot(perp, v2) + // dot(cross(r2, perp), v2) // J = [-perp, -cross(d + r1, perp), perp, cross(r2,perp)] // // Angular constraint // C = a2 - a1 + a_initial // Cdot = w2 - w1 // J = [0 0 -1 0 0 1] // // K = J * invM * JT // // J = [-a -s1 a s2] // [0 -1 0 1] // a = perp // s1 = cross(d + r1, a) = cross(p2 - x1, a) // s2 = cross(r2, a) = cross(p2 - x2, a) // Motor/Limit linear constraint // C = dot(ax1, d) // Cdot = = -dot(ax1, v1) - dot(cross(d + r1, ax1), w1) + dot(ax1, v2) + // dot(cross(r2, ax1), v2) // J = [-ax1 -cross(d+r1,ax1) ax1 cross(r2,ax1)] // Block Solver // We develop a block solver that includes the joint limit. This makes the // limit stiff (inelastic) even // when the mass has poor distribution (leading to large torques about the // joint anchor points). // // The Jacobian has 3 rows: // J = [-uT -s1 uT s2] // linear // [0 -1 0 1] // angular // [-vT -a1 vT a2] // limit // // u = perp // v = axis // s1 = cross(d + r1, u), s2 = cross(r2, u) // a1 = cross(d + r1, v), a2 = cross(r2, v) // M * (v2 - v1) = JT * df // J * v2 = bias // // v2 = v1 + invM * JT * df // J * (v1 + invM * JT * df) = bias // K * df = bias - J * v1 = -Cdot // K = J * invM * JT // Cdot = J * v1 - bias // // Now solve for f2. // df = f2 - f1 // K * (f2 - f1) = -Cdot // f2 = invK * (-Cdot) + f1 // // Clamp accumulated limit impulse. // lower: f2(3) = max(f2(3), 0) // upper: f2(3) = min(f2(3), 0) // // Solve for correct f2(1:2) // K(1:2, 1:2) * f2(1:2) = -Cdot(1:2) - K(1:2,3) * f2(3) + K(1:2,1:3) * f1 // = -Cdot(1:2) - K(1:2,3) * f2(3) + K(1:2,1:2) * f1(1:2) + K(1:2,3) * f1(3) // K(1:2, 1:2) * f2(1:2) = -Cdot(1:2) - K(1:2,3) * (f2(3) - f1(3)) + // K(1:2,1:2) * f1(1:2) // f2(1:2) = invK(1:2,1:2) * (-Cdot(1:2) - K(1:2,3) * (f2(3) - f1(3))) + // f1(1:2) // // Now compute impulse to be applied: // df = f2 - f1 } PrismaticJoint.prototype._serialize = function() { return { type: this.m_type, bodyA: this.m_bodyA, bodyB: this.m_bodyB, collideConnected: this.m_collideConnected, lowerTranslation: this.m_lowerTranslation, upperTranslation: this.m_upperTranslation, maxMotorForce: this.m_maxMotorForce, motorSpeed: this.m_motorSpeed, enableLimit: this.m_enableLimit, enableMotor: this.m_enableMotor, localAnchorA: this.m_localAnchorA, localAnchorB: this.m_localAnchorB, localAxisA: this.m_localXAxisA, referenceAngle: this.m_referenceAngle, }; }; PrismaticJoint._deserialize = function(data, world, restore) { data = Object.assign({}, data); data.bodyA = restore(Body, data.bodyA, world); data.bodyB = restore(Body, data.bodyB, world); data.localAxisA = Vec2(data.localAxisA); var joint = new PrismaticJoint(data); return joint; }; /** * @internal */ PrismaticJoint.prototype._setAnchors = function(def) { if (def.anchorA) { this.m_localAnchorA.set(this.m_bodyA.getLocalPoint(def.anchorA)); } else if (def.localAnchorA) { this.m_localAnchorA.set(def.localAnchorA); } if (def.anchorB) { this.m_localAnchorB.set(this.m_bodyB.getLocalPoint(def.anchorB)); } else if (def.localAnchorB) { this.m_localAnchorB.set(def.localAnchorB); } if (def.localAxisA) { this.m_localXAxisA.set(def.localAxisA); this.m_localYAxisA.set(Vec2.cross(1.0, def.localAxisA)); } } /** * The local anchor point relative to bodyA's origin. */ PrismaticJoint.prototype.getLocalAnchorA = function() { return this.m_localAnchorA; } /** * The local anchor point relative to bodyB's origin. */ PrismaticJoint.prototype.getLocalAnchorB = function() { return this.m_localAnchorB; } /** * The local joint axis relative to bodyA. */ PrismaticJoint.prototype.getLocalAxisA = function() { return this.m_localXAxisA; } /** * Get the reference angle. */ PrismaticJoint.prototype.getReferenceAngle = function() { return this.m_referenceAngle; } /** * Get the current joint translation, usually in meters. */ PrismaticJoint.prototype.getJointTranslation = function() { var pA = this.m_bodyA.getWorldPoint(this.m_localAnchorA); var pB = this.m_bodyB.getWorldPoint(this.m_localAnchorB); var d = Vec2.sub(pB, pA); var axis = this.m_bodyA.getWorldVector(this.m_localXAxisA); var translation = Vec2.dot(d, axis); return translation; } /** * Get the current joint translation speed, usually in meters per second. */ PrismaticJoint.prototype.getJointSpeed = function() { var bA = this.m_bodyA; var bB = this.m_bodyB; var rA = Rot.mulVec2(bA.m_xf.q, Vec2.sub(this.m_localAnchorA, bA.m_sweep.localCenter)); // Vec2 var rB = Rot.mulVec2(bB.m_xf.q, Vec2.sub(this.m_localAnchorB, bB.m_sweep.localCenter)); // Vec2 var p1 = Vec2.add(bA.m_sweep.c, rA); // Vec2 var p2 = Vec2.add(bB.m_sweep.c, rB); // Vec2 var d = Vec2.sub(p2, p1); // Vec2 var axis = Rot.mulVec2(bA.m_xf.q, this.m_localXAxisA); // Vec2 var vA = bA.m_linearVelocity; // Vec2 var vB = bB.m_linearVelocity; // Vec2 var wA = bA.m_angularVelocity; // float var wB = bB.m_angularVelocity; // float var speed = Vec2.dot(d, Vec2.cross(wA, axis)) + Vec2.dot(axis, Vec2.sub(Vec2.addCross(vB, wB, rB), Vec2.addCross(vA, wA, rA))); // float return speed; } /** * Is the joint limit enabled? */ PrismaticJoint.prototype.isLimitEnabled = function() { return this.m_enableLimit; } /** * Enable/disable the joint limit. */ PrismaticJoint.prototype.enableLimit = function(flag) { if (flag != this.m_enableLimit) { this.m_bodyA.setAwake(true); this.m_bodyB.setAwake(true); this.m_enableLimit = flag; this.m_impulse.z = 0.0; } } /** * Get the lower joint limit, usually in meters. */ PrismaticJoint.prototype.getLowerLimit = function() { return this.m_lowerTranslation; } /** * Get the upper joint limit, usually in meters. */ PrismaticJoint.prototype.getUpperLimit = function() { return this.m_upperTranslation; } /** * Set the joint limits, usually in meters. */ PrismaticJoint.prototype.setLimits = function(lower, upper) { _ASSERT && common.assert(lower <= upper); if (lower != this.m_lowerTranslation || upper != this.m_upperTranslation) { this.m_bodyA.setAwake(true); this.m_bodyB.setAwake(true); this.m_lowerTranslation = lower; this.m_upperTranslation = upper; this.m_impulse.z = 0.0; } } /** * Is the joint motor enabled? */ PrismaticJoint.prototype.isMotorEnabled = function() { return this.m_enableMotor; } /** * Enable/disable the joint motor. */ PrismaticJoint.prototype.enableMotor = function(flag) { this.m_bodyA.setAwake(true); this.m_bodyB.setAwake(true); this.m_enableMotor = flag; } /** * Set the motor speed, usually in meters per second. */ PrismaticJoint.prototype.setMotorSpeed = function(speed) { this.m_bodyA.setAwake(true); this.m_bodyB.setAwake(true); this.m_motorSpeed = speed; } /** * Set the maximum motor force, usually in N. */ PrismaticJoint.prototype.setMaxMotorForce = function(force) { this.m_bodyA.setAwake(true); this.m_bodyB.setAwake(true); this.m_maxMotorForce = force; } PrismaticJoint.prototype.getMaxMotorForce = function() { return this.m_maxMotorForce; } /** * Get the motor speed, usually in meters per second. */ PrismaticJoint.prototype.getMotorSpeed = function() { return this.m_motorSpeed; } /** * Get the current motor force given the inverse time step, usually in N. */ PrismaticJoint.prototype.getMotorForce = function(inv_dt) { return inv_dt * this.m_motorImpulse; } PrismaticJoint.prototype.getAnchorA = function() { return this.m_bodyA.getWorldPoint(this.m_localAnchorA); } PrismaticJoint.prototype.getAnchorB = function() { return this.m_bodyB.getWorldPoint(this.m_localAnchorB); } PrismaticJoint.prototype.getReactionForce = function(inv_dt) { return Vec2.combine(this.m_impulse.x, this.m_perp, this.m_motorImpulse + this.m_impulse.z, this.m_axis).mul(inv_dt); } PrismaticJoint.prototype.getReactionTorque = function(inv_dt) { return inv_dt * this.m_impulse.y; } PrismaticJoint.prototype.initVelocityConstraints = function(step) { this.m_localCenterA = this.m_bodyA.m_sweep.localCenter; this.m_localCenterB = this.m_bodyB.m_sweep.localCenter; this.m_invMassA = this.m_bodyA.m_invMass; this.m_invMassB = this.m_bodyB.m_invMass; this.m_invIA = this.m_bodyA.m_invI; this.m_invIB = this.m_bodyB.m_invI; var cA = this.m_bodyA.c_position.c; var aA = this.m_bodyA.c_position.a; var vA = this.m_bodyA.c_velocity.v; var wA = this.m_bodyA.c_velocity.w; var cB = this.m_bodyB.c_position.c; var aB = this.m_bodyB.c_position.a; var vB = this.m_bodyB.c_velocity.v; var wB = this.m_bodyB.c_velocity.w; var qA = Rot.neo(aA); var qB = Rot.neo(aB); // Compute the effective masses. var rA = Rot.mulVec2(qA, Vec2.sub(this.m_localAnchorA, this.m_localCenterA)); var rB = Rot.mulVec2(qB, Vec2.sub(this.m_localAnchorB, this.m_localCenterB)); var d = Vec2.zero(); d.addCombine(1, cB, 1, rB); d.subCombine(1, cA, 1, rA); var mA = this.m_invMassA, mB = this.m_invMassB; var iA = this.m_invIA, iB = this.m_invIB; // Compute motor Jacobian and effective mass. { this.m_axis = Rot.mulVec2(qA, this.m_localXAxisA); this.m_a1 = Vec2.cross(Vec2.add(d, rA), this.m_axis); this.m_a2 = Vec2.cross(rB, this.m_axis); this.m_motorMass = mA + mB + iA * this.m_a1 * this.m_a1 + iB * this.m_a2 * this.m_a2; if (this.m_motorMass > 0.0) { this.m_motorMass = 1.0 / this.m_motorMass; } } // Prismatic constraint. { this.m_perp = Rot.mulVec2(qA, this.m_localYAxisA); this.m_s1 = Vec2.cross(Vec2.add(d, rA), this.m_perp); this.m_s2 = Vec2.cross(rB, this.m_perp); var s1test = Vec2.cross(rA, this.m_perp); var k11 = mA + mB + iA * this.m_s1 * this.m_s1 + iB * this.m_s2 * this.m_s2; var k12 = iA * this.m_s1 + iB * this.m_s2; var k13 = iA * this.m_s1 * this.m_a1 + iB * this.m_s2 * this.m_a2; var k22 = iA + iB; if (k22 == 0.0) { // For bodies with fixed rotation. k22 = 1.0; } var k23 = iA * this.m_a1 + iB * this.m_a2; var k33 = mA + mB + iA * this.m_a1 * this.m_a1 + iB * this.m_a2 * this.m_a2; this.m_K.ex.set(k11, k12, k13); this.m_K.ey.set(k12, k22, k23); this.m_K.ez.set(k13, k23, k33); } // Compute motor and limit terms. if (this.m_enableLimit) { var jointTranslation = Vec2.dot(this.m_axis, d); // float if (Math.abs(this.m_upperTranslation - this.m_lowerTranslation) < 2.0 * Settings.linearSlop) { this.m_limitState = equalLimits; } else if (jointTranslation <= this.m_lowerTranslation) { if (this.m_limitState != atLowerLimit) { this.m_limitState = atLowerLimit; this.m_impulse.z = 0.0; } } else if (jointTranslation >= this.m_upperTranslation) { if (this.m_limitState != atUpperLimit) { this.m_limitState = atUpperLimit; this.m_impulse.z = 0.0; } } else { this.m_limitState = inactiveLimit; this.m_impulse.z = 0.0; } } else { this.m_limitState = inactiveLimit; this.m_impulse.z = 0.0; } if (this.m_enableMotor == false) { this.m_motorImpulse = 0.0; } if (step.warmStarting) { // Account for variable time step. this.m_impulse.mul(step.dtRatio); this.m_motorImpulse *= step.dtRatio; var P = Vec2.combine(this.m_impulse.x, this.m_perp, this.m_motorImpulse + this.m_impulse.z, this.m_axis); var LA = this.m_impulse.x * this.m_s1 + this.m_impulse.y + (this.m_motorImpulse + this.m_impulse.z) * this.m_a1; var LB = this.m_impulse.x * this.m_s2 + this.m_impulse.y + (this.m_motorImpulse + this.m_impulse.z) * this.m_a2; vA.subMul(mA, P); wA -= iA * LA; vB.addMul(mB, P); wB += iB * LB; } else { this.m_impulse.setZero(); this.m_motorImpulse = 0.0; } this.m_bodyA.c_velocity.v.set(vA); this.m_bodyA.c_velocity.w = wA; this.m_bodyB.c_velocity.v.set(vB); this.m_bodyB.c_velocity.w = wB; } PrismaticJoint.prototype.solveVelocityConstraints = function(step) { var vA = this.m_bodyA.c_velocity.v; var wA = this.m_bodyA.c_velocity.w; var vB = this.m_bodyB.c_velocity.v; var wB = this.m_bodyB.c_velocity.w; var mA = this.m_invMassA; var mB = this.m_invMassB; var iA = this.m_invIA; var iB = this.m_invIB; // Solve linear motor constraint. if (this.m_enableMotor && this.m_limitState != equalLimits) { var Cdot = Vec2.dot(this.m_axis, Vec2.sub(vB, vA)) + this.m_a2 * wB - this.m_a1 * wA; var impulse = this.m_motorMass * (this.m_motorSpeed - Cdot); var oldImpulse = this.m_motorImpulse; var maxImpulse = step.dt * this.m_maxMotorForce; this.m_motorImpulse = Math.clamp(this.m_motorImpulse + impulse, -maxImpulse, maxImpulse); impulse = this.m_motorImpulse - oldImpulse; var P = Vec2.mul(impulse, this.m_axis); var LA = impulse * this.m_a1; var LB = impulse * this.m_a2; vA.subMul(mA, P); wA -= iA * LA; vB.addMul(mB, P); wB += iB * LB; } var Cdot1 = Vec2.zero(); Cdot1.x += Vec2.dot(this.m_perp, vB) + this.m_s2 * wB; Cdot1.x -= Vec2.dot(this.m_perp, vA) + this.m_s1 * wA; Cdot1.y = wB - wA; if (this.m_enableLimit && this.m_limitState != inactiveLimit) { // Solve prismatic and limit constraint in block form. var Cdot2 = 0; Cdot2 += Vec2.dot(this.m_axis, vB) + this.m_a2 * wB; Cdot2 -= Vec2.dot(this.m_axis, vA) + this.m_a1 * wA; var Cdot = Vec3(Cdot1.x, Cdot1.y, Cdot2); var f1 = Vec3(this.m_impulse); var df = this.m_K.solve33(Vec3.neg(Cdot)); // Vec3 this.m_impulse.add(df); if (this.m_limitState == atLowerLimit) { this.m_impulse.z = Math.max(this.m_impulse.z, 0.0); } else if (this.m_limitState == atUpperLimit) { this.m_impulse.z = Math.min(this.m_impulse.z, 0.0); } // f2(1:2) = invK(1:2,1:2) * (-Cdot(1:2) - K(1:2,3) * (f2(3) - f1(3))) + // f1(1:2) var b = Vec2.combine(-1, Cdot1, -(this.m_impulse.z - f1.z), Vec2.neo(this.m_K.ez.x, this.m_K.ez.y)); // Vec2 var f2r = Vec2.add(this.m_K.solve22(b), Vec2.neo(f1.x, f1.y)); // Vec2 this.m_impulse.x = f2r.x; this.m_impulse.y = f2r.y; df = Vec3.sub(this.m_impulse, f1); var P = Vec2.combine(df.x, this.m_perp, df.z, this.m_axis); // Vec2 var LA = df.x * this.m_s1 + df.y + df.z * this.m_a1; // float var LB = df.x * this.m_s2 + df.y + df.z * this.m_a2; // float vA.subMul(mA, P); wA -= iA * LA; vB.addMul(mB, P); wB += iB * LB; } else { // Limit is inactive, just solve the prismatic constraint in block form. var df = this.m_K.solve22(Vec2.neg(Cdot1)); // Vec2 this.m_impulse.x += df.x; this.m_impulse.y += df.y; var P = Vec2.mul(df.x, this.m_perp); // Vec2 var LA = df.x * this.m_s1 + df.y; // float var LB = df.x * this.m_s2 + df.y; // float vA.subMul(mA, P); wA -= iA * LA; vB.addMul(mB, P); wB += iB * LB; } this.m_bodyA.c_velocity.v = vA; this.m_bodyA.c_velocity.w = wA; this.m_bodyB.c_velocity.v = vB; this.m_bodyB.c_velocity.w = wB; } PrismaticJoint.prototype.solvePositionConstraints = function(step) { var cA = this.m_bodyA.c_position.c; var aA = this.m_bodyA.c_position.a; var cB = this.m_bodyB.c_position.c; var aB = this.m_bodyB.c_position.a; var qA = Rot.neo(aA); var qB = Rot.neo(aB); var mA = this.m_invMassA; var mB = this.m_invMassB; var iA = this.m_invIA; var iB = this.m_invIB; // Compute fresh Jacobians var rA = Rot.mulVec2(qA, Vec2.sub(this.m_localAnchorA, this.m_localCenterA)); // Vec2 var rB = Rot.mulVec2(qB, Vec2.sub(this.m_localAnchorB, this.m_localCenterB)); // Vec2 var d = Vec2.sub(Vec2.add(cB, rB), Vec2.add(cA, rA)); // Vec2 var axis = Rot.mulVec2(qA, this.m_localXAxisA); // Vec2 var a1 = Vec2.cross(Vec2.add(d, rA), axis); // float var a2 = Vec2.cross(rB, axis); // float var perp = Rot.mulVec2(qA, this.m_localYAxisA); // Vec2 var s1 = Vec2.cross(Vec2.add(d, rA), perp); // float var s2 = Vec2.cross(rB, perp); // float var impulse = Vec3(); var C1 = Vec2.zero(); // Vec2 C1.x = Vec2.dot(perp, d); C1.y = aB - aA - this.m_referenceAngle; var linearError = Math.abs(C1.x); // float var angularError = Math.abs(C1.y); // float var linearSlop = Settings.linearSlop; var maxLinearCorrection = Settings.maxLinearCorrection; var active = false; // bool var C2 = 0.0; // float if (this.m_enableLimit) { var translation = Vec2.dot(axis, d); // float if (Math.abs(this.m_upperTranslation - this.m_lowerTranslation) < 2.0 * linearSlop) { // Prevent large angular corrections C2 = Math.clamp(translation, -maxLinearCorrection, maxLinearCorrection); linearError = Math.max(linearError, Math.abs(translation)); active = true; } else if (translation <= this.m_lowerTranslation) { // Prevent large linear corrections and allow some slop. C2 = Math.clamp(translation - this.m_lowerTranslation + linearSlop, -maxLinearCorrection, 0.0); linearError = Math .max(linearError, this.m_lowerTranslation - translation); active = true; } else if (translation >= this.m_upperTranslation) { // Prevent large linear corrections and allow some slop. C2 = Math.clamp(translation - this.m_upperTranslation - linearSlop, 0.0, maxLinearCorrection); linearError = Math .max(linearError, translation - this.m_upperTranslation); active = true; } } if (active) { var k11 = mA + mB + iA * s1 * s1 + iB * s2 * s2; // float var k12 = iA * s1 + iB * s2; // float var k13 = iA * s1 * a1 + iB * s2 * a2; // float var k22 = iA + iB; // float if (k22 == 0.0) { // For fixed rotation k22 = 1.0; } var k23 = iA * a1 + iB * a2; // float var k33 = mA + mB + iA * a1 * a1 + iB * a2 * a2; // float var K = new Mat33() K.ex.set(k11, k12, k13); K.ey.set(k12, k22, k23); K.ez.set(k13, k23, k33); var C = Vec3(); C.x = C1.x; C.y = C1.y; C.z = C2; impulse = K.solve33(Vec3.neg(C)); } else { var k11 = mA + mB + iA * s1 * s1 + iB * s2 * s2; // float var k12 = iA * s1 + iB * s2; // float var k22 = iA + iB; // float if (k22 == 0.0) { k22 = 1.0; } var K = new Mat22(); K.ex.set(k11, k12); K.ey.set(k12, k22); var impulse1 = K.solve(Vec2.neg(C1)); // Vec2 impulse.x = impulse1.x; impulse.y = impulse1.y; impulse.z = 0.0; } var P = Vec2.combine(impulse.x, perp, impulse.z, axis); // Vec2 var LA = impulse.x * s1 + impulse.y + impulse.z * a1; // float var LB = impulse.x * s2 + impulse.y + impulse.z * a2; // float cA.subMul(mA, P); aA -= iA * LA; cB.addMul(mB, P); aB += iB * LB; this.m_bodyA.c_position.c = cA; this.m_bodyA.c_position.a = aA; this.m_bodyB.c_position.c = cB; this.m_bodyB.c_position.a = aB; return linearError <= Settings.linearSlop && angularError <= Settings.angularSlop; }