phaser
Version:
A fast, free and fun HTML5 Game Framework for Desktop and Mobile web browsers from the team at Phaser Studio Inc.
60 lines (46 loc) • 1.72 kB
JavaScript
/**
* @author Richard Davey <rich@phaser.io>
* @copyright 2013-2025 Phaser Studio Inc.
* @license {@link https://opensource.org/licenses/MIT|MIT License}
*/
var Point = require('../point/Point');
// The three angle bisectors of a triangle meet in one point called the incenter.
// It is the center of the incircle, the circle inscribed in the triangle.
function getLength (x1, y1, x2, y2)
{
var x = x1 - x2;
var y = y1 - y2;
var magnitude = (x * x) + (y * y);
return Math.sqrt(magnitude);
}
/**
* Calculates the position of the incenter of a Triangle object. This is the point where its three angle bisectors meet and it's also the center of the incircle, which is the circle inscribed in the triangle.
*
* @function Phaser.Geom.Triangle.InCenter
* @since 3.0.0
*
* @generic {Phaser.Geom.Point} O - [out,$return]
*
* @param {Phaser.Geom.Triangle} triangle - The Triangle to find the incenter of.
* @param {Phaser.Geom.Point} [out] - An optional Point in which to store the coordinates.
*
* @return {Phaser.Geom.Point} Point (x, y) of the center pixel of the triangle.
*/
var InCenter = function (triangle, out)
{
if (out === undefined) { out = new Point(); }
var x1 = triangle.x1;
var y1 = triangle.y1;
var x2 = triangle.x2;
var y2 = triangle.y2;
var x3 = triangle.x3;
var y3 = triangle.y3;
var d1 = getLength(x3, y3, x2, y2);
var d2 = getLength(x1, y1, x3, y3);
var d3 = getLength(x2, y2, x1, y1);
var p = d1 + d2 + d3;
out.x = (x1 * d1 + x2 * d2 + x3 * d3) / p;
out.y = (y1 * d1 + y2 * d2 + y3 * d3) / p;
return out;
};
module.exports = InCenter;