UNPKG

phaser

Version:

A fast, free and fun HTML5 Game Framework for Desktop and Mobile web browsers from the team at Phaser Studio Inc.

239 lines (216 loc) 7.18 kB
/** * The `Matter.Vector` module contains methods for creating and manipulating vectors. * Vectors are the basis of all the geometry related operations in the engine. * A `Matter.Vector` object is of the form `{ x: 0, y: 0 }`. * * See the included usage [examples](https://github.com/liabru/matter-js/tree/master/examples). * * @class Vector */ // TODO: consider params for reusing vector objects var Vector = {}; module.exports = Vector; (function() { /** * Creates a new vector. * @method create * @param {number} x * @param {number} y * @return {vector} A new vector */ Vector.create = function(x, y) { return { x: x || 0, y: y || 0 }; }; /** * Returns a new vector with `x` and `y` copied from the given `vector`. * @method clone * @param {vector} vector * @return {vector} A new cloned vector */ Vector.clone = function(vector) { return { x: vector.x, y: vector.y }; }; /** * Returns the magnitude (length) of a vector. * @method magnitude * @param {vector} vector * @return {number} The magnitude of the vector */ Vector.magnitude = function(vector) { return Math.sqrt((vector.x * vector.x) + (vector.y * vector.y)); }; /** * Returns the magnitude (length) of a vector (therefore saving a `sqrt` operation). * @method magnitudeSquared * @param {vector} vector * @return {number} The squared magnitude of the vector */ Vector.magnitudeSquared = function(vector) { return (vector.x * vector.x) + (vector.y * vector.y); }; /** * Rotates the vector about (0, 0) by specified angle. * @method rotate * @param {vector} vector * @param {number} angle * @param {vector} [output] * @return {vector} The vector rotated about (0, 0) */ Vector.rotate = function(vector, angle, output) { var cos = Math.cos(angle), sin = Math.sin(angle); if (!output) output = {}; var x = vector.x * cos - vector.y * sin; output.y = vector.x * sin + vector.y * cos; output.x = x; return output; }; /** * Rotates the vector about a specified point by specified angle. * @method rotateAbout * @param {vector} vector * @param {number} angle * @param {vector} point * @param {vector} [output] * @return {vector} A new vector rotated about the point */ Vector.rotateAbout = function(vector, angle, point, output) { var cos = Math.cos(angle), sin = Math.sin(angle); if (!output) output = {}; var x = point.x + ((vector.x - point.x) * cos - (vector.y - point.y) * sin); output.y = point.y + ((vector.x - point.x) * sin + (vector.y - point.y) * cos); output.x = x; return output; }; /** * Normalises a vector (such that its magnitude is `1`). * @method normalise * @param {vector} vector * @return {vector} A new vector normalised */ Vector.normalise = function(vector) { var magnitude = Vector.magnitude(vector); if (magnitude === 0) return { x: 0, y: 0 }; return { x: vector.x / magnitude, y: vector.y / magnitude }; }; /** * Returns the dot-product of two vectors. * @method dot * @param {vector} vectorA * @param {vector} vectorB * @return {number} The dot product of the two vectors */ Vector.dot = function(vectorA, vectorB) { return (vectorA.x * vectorB.x) + (vectorA.y * vectorB.y); }; /** * Returns the cross-product of two vectors. * @method cross * @param {vector} vectorA * @param {vector} vectorB * @return {number} The cross product of the two vectors */ Vector.cross = function(vectorA, vectorB) { return (vectorA.x * vectorB.y) - (vectorA.y * vectorB.x); }; /** * Returns the cross-product of three vectors. * @method cross3 * @param {vector} vectorA * @param {vector} vectorB * @param {vector} vectorC * @return {number} The cross product of the three vectors */ Vector.cross3 = function(vectorA, vectorB, vectorC) { return (vectorB.x - vectorA.x) * (vectorC.y - vectorA.y) - (vectorB.y - vectorA.y) * (vectorC.x - vectorA.x); }; /** * Adds the two vectors. * @method add * @param {vector} vectorA * @param {vector} vectorB * @param {vector} [output] * @return {vector} A new vector of vectorA and vectorB added */ Vector.add = function(vectorA, vectorB, output) { if (!output) output = {}; output.x = vectorA.x + vectorB.x; output.y = vectorA.y + vectorB.y; return output; }; /** * Subtracts the two vectors. * @method sub * @param {vector} vectorA * @param {vector} vectorB * @param {vector} [output] * @return {vector} A new vector of vectorA and vectorB subtracted */ Vector.sub = function(vectorA, vectorB, output) { if (!output) output = {}; output.x = vectorA.x - vectorB.x; output.y = vectorA.y - vectorB.y; return output; }; /** * Multiplies a vector and a scalar. * @method mult * @param {vector} vector * @param {number} scalar * @return {vector} A new vector multiplied by scalar */ Vector.mult = function(vector, scalar) { return { x: vector.x * scalar, y: vector.y * scalar }; }; /** * Divides a vector and a scalar. * @method div * @param {vector} vector * @param {number} scalar * @return {vector} A new vector divided by scalar */ Vector.div = function(vector, scalar) { return { x: vector.x / scalar, y: vector.y / scalar }; }; /** * Returns the perpendicular vector. Set `negate` to true for the perpendicular in the opposite direction. * @method perp * @param {vector} vector * @param {bool} [negate=false] * @return {vector} The perpendicular vector */ Vector.perp = function(vector, negate) { negate = negate === true ? -1 : 1; return { x: negate * -vector.y, y: negate * vector.x }; }; /** * Negates both components of a vector such that it points in the opposite direction. * @method neg * @param {vector} vector * @return {vector} The negated vector */ Vector.neg = function(vector) { return { x: -vector.x, y: -vector.y }; }; /** * Returns the angle between the vector `vectorB - vectorA` and the x-axis in radians. * @method angle * @param {vector} vectorA * @param {vector} vectorB * @return {number} The angle in radians */ Vector.angle = function(vectorA, vectorB) { return Math.atan2(vectorB.y - vectorA.y, vectorB.x - vectorA.x); }; /** * Temporary vector pool (not thread-safe). * @property _temp * @type {vector[]} * @private */ Vector._temp = [ Vector.create(), Vector.create(), Vector.create(), Vector.create(), Vector.create(), Vector.create() ]; })();