phaser
Version:
A fast, free and fun HTML5 Game Framework for Desktop and Mobile web browsers from the team at Phaser Studio Inc.
1,997 lines (1,764 loc) • 832 kB
JavaScript
var Camera3DPlugin =
/******/ (function(modules) { // webpackBootstrap
/******/ // The module cache
/******/ var installedModules = {};
/******/
/******/ // The require function
/******/ function __webpack_require__(moduleId) {
/******/
/******/ // Check if module is in cache
/******/ if(installedModules[moduleId]) {
/******/ return installedModules[moduleId].exports;
/******/ }
/******/ // Create a new module (and put it into the cache)
/******/ var module = installedModules[moduleId] = {
/******/ i: moduleId,
/******/ l: false,
/******/ exports: {}
/******/ };
/******/
/******/ // Execute the module function
/******/ modules[moduleId].call(module.exports, module, module.exports, __webpack_require__);
/******/
/******/ // Flag the module as loaded
/******/ module.l = true;
/******/
/******/ // Return the exports of the module
/******/ return module.exports;
/******/ }
/******/
/******/
/******/ // expose the modules object (__webpack_modules__)
/******/ __webpack_require__.m = modules;
/******/
/******/ // expose the module cache
/******/ __webpack_require__.c = installedModules;
/******/
/******/ // define getter function for harmony exports
/******/ __webpack_require__.d = function(exports, name, getter) {
/******/ if(!__webpack_require__.o(exports, name)) {
/******/ Object.defineProperty(exports, name, { enumerable: true, get: getter });
/******/ }
/******/ };
/******/
/******/ // define __esModule on exports
/******/ __webpack_require__.r = function(exports) {
/******/ if(typeof Symbol !== 'undefined' && Symbol.toStringTag) {
/******/ Object.defineProperty(exports, Symbol.toStringTag, { value: 'Module' });
/******/ }
/******/ Object.defineProperty(exports, '__esModule', { value: true });
/******/ };
/******/
/******/ // create a fake namespace object
/******/ // mode & 1: value is a module id, require it
/******/ // mode & 2: merge all properties of value into the ns
/******/ // mode & 4: return value when already ns object
/******/ // mode & 8|1: behave like require
/******/ __webpack_require__.t = function(value, mode) {
/******/ if(mode & 1) value = __webpack_require__(value);
/******/ if(mode & 8) return value;
/******/ if((mode & 4) && typeof value === 'object' && value && value.__esModule) return value;
/******/ var ns = Object.create(null);
/******/ __webpack_require__.r(ns);
/******/ Object.defineProperty(ns, 'default', { enumerable: true, value: value });
/******/ if(mode & 2 && typeof value != 'string') for(var key in value) __webpack_require__.d(ns, key, function(key) { return value[key]; }.bind(null, key));
/******/ return ns;
/******/ };
/******/
/******/ // getDefaultExport function for compatibility with non-harmony modules
/******/ __webpack_require__.n = function(module) {
/******/ var getter = module && module.__esModule ?
/******/ function getDefault() { return module['default']; } :
/******/ function getModuleExports() { return module; };
/******/ __webpack_require__.d(getter, 'a', getter);
/******/ return getter;
/******/ };
/******/
/******/ // Object.prototype.hasOwnProperty.call
/******/ __webpack_require__.o = function(object, property) { return Object.prototype.hasOwnProperty.call(object, property); };
/******/
/******/ // __webpack_public_path__
/******/ __webpack_require__.p = "";
/******/
/******/
/******/ // Load entry module and return exports
/******/ return __webpack_require__(__webpack_require__.s = 42);
/******/ })
/************************************************************************/
/******/ ([
/* 0 */
/***/ (function(module, exports) {
/**
* @author Richard Davey <rich@photonstorm.com>
* @copyright 2020 Photon Storm Ltd.
* @license {@link https://opensource.org/licenses/MIT|MIT License}
*/
// Taken from klasse by mattdesl https://github.com/mattdesl/klasse
function hasGetterOrSetter (def)
{
return (!!def.get && typeof def.get === 'function') || (!!def.set && typeof def.set === 'function');
}
function getProperty (definition, k, isClassDescriptor)
{
// This may be a lightweight object, OR it might be a property that was defined previously.
// For simple class descriptors we can just assume its NOT previously defined.
var def = (isClassDescriptor) ? definition[k] : Object.getOwnPropertyDescriptor(definition, k);
if (!isClassDescriptor && def.value && typeof def.value === 'object')
{
def = def.value;
}
// This might be a regular property, or it may be a getter/setter the user defined in a class.
if (def && hasGetterOrSetter(def))
{
if (typeof def.enumerable === 'undefined')
{
def.enumerable = true;
}
if (typeof def.configurable === 'undefined')
{
def.configurable = true;
}
return def;
}
else
{
return false;
}
}
function hasNonConfigurable (obj, k)
{
var prop = Object.getOwnPropertyDescriptor(obj, k);
if (!prop)
{
return false;
}
if (prop.value && typeof prop.value === 'object')
{
prop = prop.value;
}
if (prop.configurable === false)
{
return true;
}
return false;
}
/**
* Extends the given `myClass` object's prototype with the properties of `definition`.
*
* @function extend
* @param {Object} ctor The constructor object to mix into.
* @param {Object} definition A dictionary of functions for the class.
* @param {boolean} isClassDescriptor Is the definition a class descriptor?
* @param {Object} [extend] The parent constructor object.
*/
function extend (ctor, definition, isClassDescriptor, extend)
{
for (var k in definition)
{
if (!definition.hasOwnProperty(k))
{
continue;
}
var def = getProperty(definition, k, isClassDescriptor);
if (def !== false)
{
// If Extends is used, we will check its prototype to see if the final variable exists.
var parent = extend || ctor;
if (hasNonConfigurable(parent.prototype, k))
{
// Just skip the final property
if (Class.ignoreFinals)
{
continue;
}
// We cannot re-define a property that is configurable=false.
// So we will consider them final and throw an error. This is by
// default so it is clear to the developer what is happening.
// You can set ignoreFinals to true if you need to extend a class
// which has configurable=false; it will simply not re-define final properties.
throw new Error('cannot override final property \'' + k + '\', set Class.ignoreFinals = true to skip');
}
Object.defineProperty(ctor.prototype, k, def);
}
else
{
ctor.prototype[k] = definition[k];
}
}
}
/**
* Applies the given `mixins` to the prototype of `myClass`.
*
* @function mixin
* @param {Object} myClass The constructor object to mix into.
* @param {Object|Array<Object>} mixins The mixins to apply to the constructor.
*/
function mixin (myClass, mixins)
{
if (!mixins)
{
return;
}
if (!Array.isArray(mixins))
{
mixins = [ mixins ];
}
for (var i = 0; i < mixins.length; i++)
{
extend(myClass, mixins[i].prototype || mixins[i]);
}
}
/**
* Creates a new class with the given descriptor.
* The constructor, defined by the name `initialize`,
* is an optional function. If unspecified, an anonymous
* function will be used which calls the parent class (if
* one exists).
*
* You can also use `Extends` and `Mixins` to provide subclassing
* and inheritance.
*
* @class Phaser.Class
* @constructor
* @param {Object} definition a dictionary of functions for the class
* @example
*
* var MyClass = new Phaser.Class({
*
* initialize: function() {
* this.foo = 2.0;
* },
*
* bar: function() {
* return this.foo + 5;
* }
* });
*/
function Class (definition)
{
if (!definition)
{
definition = {};
}
// The variable name here dictates what we see in Chrome debugger
var initialize;
var Extends;
if (definition.initialize)
{
if (typeof definition.initialize !== 'function')
{
throw new Error('initialize must be a function');
}
initialize = definition.initialize;
// Usually we should avoid 'delete' in V8 at all costs.
// However, its unlikely to make any performance difference
// here since we only call this on class creation (i.e. not object creation).
delete definition.initialize;
}
else if (definition.Extends)
{
var base = definition.Extends;
initialize = function ()
{
base.apply(this, arguments);
};
}
else
{
initialize = function () {};
}
if (definition.Extends)
{
initialize.prototype = Object.create(definition.Extends.prototype);
initialize.prototype.constructor = initialize;
// For getOwnPropertyDescriptor to work, we need to act directly on the Extends (or Mixin)
Extends = definition.Extends;
delete definition.Extends;
}
else
{
initialize.prototype.constructor = initialize;
}
// Grab the mixins, if they are specified...
var mixins = null;
if (definition.Mixins)
{
mixins = definition.Mixins;
delete definition.Mixins;
}
// First, mixin if we can.
mixin(initialize, mixins);
// Now we grab the actual definition which defines the overrides.
extend(initialize, definition, true, Extends);
return initialize;
}
Class.extend = extend;
Class.mixin = mixin;
Class.ignoreFinals = false;
module.exports = Class;
/***/ }),
/* 1 */
/***/ (function(module, exports, __webpack_require__) {
/**
* @author Richard Davey <rich@photonstorm.com>
* @copyright 2020 Photon Storm Ltd.
* @license {@link https://opensource.org/licenses/MIT|MIT License}
*/
// Adapted from [gl-matrix](https://github.com/toji/gl-matrix) by toji
// and [vecmath](https://github.com/mattdesl/vecmath) by mattdesl
var Class = __webpack_require__(0);
var FuzzyEqual = __webpack_require__(18);
/**
* @classdesc
* A representation of a vector in 2D space.
*
* A two-component vector.
*
* @class Vector2
* @memberof Phaser.Math
* @constructor
* @since 3.0.0
*
* @param {number|Phaser.Types.Math.Vector2Like} [x] - The x component, or an object with `x` and `y` properties.
* @param {number} [y] - The y component.
*/
var Vector2 = new Class({
initialize:
function Vector2 (x, y)
{
/**
* The x component of this Vector.
*
* @name Phaser.Math.Vector2#x
* @type {number}
* @default 0
* @since 3.0.0
*/
this.x = 0;
/**
* The y component of this Vector.
*
* @name Phaser.Math.Vector2#y
* @type {number}
* @default 0
* @since 3.0.0
*/
this.y = 0;
if (typeof x === 'object')
{
this.x = x.x || 0;
this.y = x.y || 0;
}
else
{
if (y === undefined) { y = x; }
this.x = x || 0;
this.y = y || 0;
}
},
/**
* Make a clone of this Vector2.
*
* @method Phaser.Math.Vector2#clone
* @since 3.0.0
*
* @return {Phaser.Math.Vector2} A clone of this Vector2.
*/
clone: function ()
{
return new Vector2(this.x, this.y);
},
/**
* Copy the components of a given Vector into this Vector.
*
* @method Phaser.Math.Vector2#copy
* @since 3.0.0
*
* @param {Phaser.Math.Vector2} src - The Vector to copy the components from.
*
* @return {Phaser.Math.Vector2} This Vector2.
*/
copy: function (src)
{
this.x = src.x || 0;
this.y = src.y || 0;
return this;
},
/**
* Set the component values of this Vector from a given Vector2Like object.
*
* @method Phaser.Math.Vector2#setFromObject
* @since 3.0.0
*
* @param {Phaser.Types.Math.Vector2Like} obj - The object containing the component values to set for this Vector.
*
* @return {Phaser.Math.Vector2} This Vector2.
*/
setFromObject: function (obj)
{
this.x = obj.x || 0;
this.y = obj.y || 0;
return this;
},
/**
* Set the `x` and `y` components of the this Vector to the given `x` and `y` values.
*
* @method Phaser.Math.Vector2#set
* @since 3.0.0
*
* @param {number} x - The x value to set for this Vector.
* @param {number} [y=x] - The y value to set for this Vector.
*
* @return {Phaser.Math.Vector2} This Vector2.
*/
set: function (x, y)
{
if (y === undefined) { y = x; }
this.x = x;
this.y = y;
return this;
},
/**
* This method is an alias for `Vector2.set`.
*
* @method Phaser.Math.Vector2#setTo
* @since 3.4.0
*
* @param {number} x - The x value to set for this Vector.
* @param {number} [y=x] - The y value to set for this Vector.
*
* @return {Phaser.Math.Vector2} This Vector2.
*/
setTo: function (x, y)
{
return this.set(x, y);
},
/**
* Sets the `x` and `y` values of this object from a given polar coordinate.
*
* @method Phaser.Math.Vector2#setToPolar
* @since 3.0.0
*
* @param {number} azimuth - The angular coordinate, in radians.
* @param {number} [radius=1] - The radial coordinate (length).
*
* @return {Phaser.Math.Vector2} This Vector2.
*/
setToPolar: function (azimuth, radius)
{
if (radius == null) { radius = 1; }
this.x = Math.cos(azimuth) * radius;
this.y = Math.sin(azimuth) * radius;
return this;
},
/**
* Check whether this Vector is equal to a given Vector.
*
* Performs a strict equality check against each Vector's components.
*
* @method Phaser.Math.Vector2#equals
* @since 3.0.0
*
* @param {Phaser.Math.Vector2} v - The vector to compare with this Vector.
*
* @return {boolean} Whether the given Vector is equal to this Vector.
*/
equals: function (v)
{
return ((this.x === v.x) && (this.y === v.y));
},
/**
* Check whether this Vector is approximately equal to a given Vector.
*
* @method Phaser.Math.Vector2#fuzzyEquals
* @since 3.23.0
*
* @param {Phaser.Math.Vector2} v - The vector to compare with this Vector.
* @param {number} [epsilon=0.0001] - The tolerance value.
*
* @return {boolean} Whether both absolute differences of the x and y components are smaller than `epsilon`.
*/
fuzzyEquals: function (v, epsilon)
{
return (FuzzyEqual(this.x, v.x, epsilon) && FuzzyEqual(this.y, v.y, epsilon));
},
/**
* Calculate the angle between this Vector and the positive x-axis, in radians.
*
* @method Phaser.Math.Vector2#angle
* @since 3.0.0
*
* @return {number} The angle between this Vector, and the positive x-axis, given in radians.
*/
angle: function ()
{
// computes the angle in radians with respect to the positive x-axis
var angle = Math.atan2(this.y, this.x);
if (angle < 0)
{
angle += 2 * Math.PI;
}
return angle;
},
/**
* Set the angle of this Vector.
*
* @method Phaser.Math.Vector2#setAngle
* @since 3.23.0
*
* @param {number} angle - The angle, in radians.
*
* @return {Phaser.Math.Vector2} This Vector2.
*/
setAngle: function (angle)
{
return this.setToPolar(angle, this.length());
},
/**
* Add a given Vector to this Vector. Addition is component-wise.
*
* @method Phaser.Math.Vector2#add
* @since 3.0.0
*
* @param {Phaser.Math.Vector2} src - The Vector to add to this Vector.
*
* @return {Phaser.Math.Vector2} This Vector2.
*/
add: function (src)
{
this.x += src.x;
this.y += src.y;
return this;
},
/**
* Subtract the given Vector from this Vector. Subtraction is component-wise.
*
* @method Phaser.Math.Vector2#subtract
* @since 3.0.0
*
* @param {Phaser.Math.Vector2} src - The Vector to subtract from this Vector.
*
* @return {Phaser.Math.Vector2} This Vector2.
*/
subtract: function (src)
{
this.x -= src.x;
this.y -= src.y;
return this;
},
/**
* Perform a component-wise multiplication between this Vector and the given Vector.
*
* Multiplies this Vector by the given Vector.
*
* @method Phaser.Math.Vector2#multiply
* @since 3.0.0
*
* @param {Phaser.Math.Vector2} src - The Vector to multiply this Vector by.
*
* @return {Phaser.Math.Vector2} This Vector2.
*/
multiply: function (src)
{
this.x *= src.x;
this.y *= src.y;
return this;
},
/**
* Scale this Vector by the given value.
*
* @method Phaser.Math.Vector2#scale
* @since 3.0.0
*
* @param {number} value - The value to scale this Vector by.
*
* @return {Phaser.Math.Vector2} This Vector2.
*/
scale: function (value)
{
if (isFinite(value))
{
this.x *= value;
this.y *= value;
}
else
{
this.x = 0;
this.y = 0;
}
return this;
},
/**
* Perform a component-wise division between this Vector and the given Vector.
*
* Divides this Vector by the given Vector.
*
* @method Phaser.Math.Vector2#divide
* @since 3.0.0
*
* @param {Phaser.Math.Vector2} src - The Vector to divide this Vector by.
*
* @return {Phaser.Math.Vector2} This Vector2.
*/
divide: function (src)
{
this.x /= src.x;
this.y /= src.y;
return this;
},
/**
* Negate the `x` and `y` components of this Vector.
*
* @method Phaser.Math.Vector2#negate
* @since 3.0.0
*
* @return {Phaser.Math.Vector2} This Vector2.
*/
negate: function ()
{
this.x = -this.x;
this.y = -this.y;
return this;
},
/**
* Calculate the distance between this Vector and the given Vector.
*
* @method Phaser.Math.Vector2#distance
* @since 3.0.0
*
* @param {Phaser.Math.Vector2} src - The Vector to calculate the distance to.
*
* @return {number} The distance from this Vector to the given Vector.
*/
distance: function (src)
{
var dx = src.x - this.x;
var dy = src.y - this.y;
return Math.sqrt(dx * dx + dy * dy);
},
/**
* Calculate the distance between this Vector and the given Vector, squared.
*
* @method Phaser.Math.Vector2#distanceSq
* @since 3.0.0
*
* @param {Phaser.Math.Vector2} src - The Vector to calculate the distance to.
*
* @return {number} The distance from this Vector to the given Vector, squared.
*/
distanceSq: function (src)
{
var dx = src.x - this.x;
var dy = src.y - this.y;
return dx * dx + dy * dy;
},
/**
* Calculate the length (or magnitude) of this Vector.
*
* @method Phaser.Math.Vector2#length
* @since 3.0.0
*
* @return {number} The length of this Vector.
*/
length: function ()
{
var x = this.x;
var y = this.y;
return Math.sqrt(x * x + y * y);
},
/**
* Set the length (or magnitude) of this Vector.
*
* @method Phaser.Math.Vector2#setLength
* @since 3.23.0
*
* @param {number} length
*
* @return {Phaser.Math.Vector2} This Vector2.
*/
setLength: function (length)
{
return this.normalize().scale(length);
},
/**
* Calculate the length of this Vector squared.
*
* @method Phaser.Math.Vector2#lengthSq
* @since 3.0.0
*
* @return {number} The length of this Vector, squared.
*/
lengthSq: function ()
{
var x = this.x;
var y = this.y;
return x * x + y * y;
},
/**
* Normalize this Vector.
*
* Makes the vector a unit length vector (magnitude of 1) in the same direction.
*
* @method Phaser.Math.Vector2#normalize
* @since 3.0.0
*
* @return {Phaser.Math.Vector2} This Vector2.
*/
normalize: function ()
{
var x = this.x;
var y = this.y;
var len = x * x + y * y;
if (len > 0)
{
len = 1 / Math.sqrt(len);
this.x = x * len;
this.y = y * len;
}
return this;
},
/**
* Rotate this Vector to its perpendicular, in the positive direction.
*
* @method Phaser.Math.Vector2#normalizeRightHand
* @since 3.0.0
*
* @return {Phaser.Math.Vector2} This Vector2.
*/
normalizeRightHand: function ()
{
var x = this.x;
this.x = this.y * -1;
this.y = x;
return this;
},
/**
* Rotate this Vector to its perpendicular, in the negative direction.
*
* @method Phaser.Math.Vector2#normalizeLeftHand
* @since 3.23.0
*
* @return {Phaser.Math.Vector2} This Vector2.
*/
normalizeLeftHand: function ()
{
var x = this.x;
this.x = this.y;
this.y = x * -1;
return this;
},
/**
* Calculate the dot product of this Vector and the given Vector.
*
* @method Phaser.Math.Vector2#dot
* @since 3.0.0
*
* @param {Phaser.Math.Vector2} src - The Vector2 to dot product with this Vector2.
*
* @return {number} The dot product of this Vector and the given Vector.
*/
dot: function (src)
{
return this.x * src.x + this.y * src.y;
},
/**
* Calculate the cross product of this Vector and the given Vector.
*
* @method Phaser.Math.Vector2#cross
* @since 3.0.0
*
* @param {Phaser.Math.Vector2} src - The Vector2 to cross with this Vector2.
*
* @return {number} The cross product of this Vector and the given Vector.
*/
cross: function (src)
{
return this.x * src.y - this.y * src.x;
},
/**
* Linearly interpolate between this Vector and the given Vector.
*
* Interpolates this Vector towards the given Vector.
*
* @method Phaser.Math.Vector2#lerp
* @since 3.0.0
*
* @param {Phaser.Math.Vector2} src - The Vector2 to interpolate towards.
* @param {number} [t=0] - The interpolation percentage, between 0 and 1.
*
* @return {Phaser.Math.Vector2} This Vector2.
*/
lerp: function (src, t)
{
if (t === undefined) { t = 0; }
var ax = this.x;
var ay = this.y;
this.x = ax + t * (src.x - ax);
this.y = ay + t * (src.y - ay);
return this;
},
/**
* Transform this Vector with the given Matrix.
*
* @method Phaser.Math.Vector2#transformMat3
* @since 3.0.0
*
* @param {Phaser.Math.Matrix3} mat - The Matrix3 to transform this Vector2 with.
*
* @return {Phaser.Math.Vector2} This Vector2.
*/
transformMat3: function (mat)
{
var x = this.x;
var y = this.y;
var m = mat.val;
this.x = m[0] * x + m[3] * y + m[6];
this.y = m[1] * x + m[4] * y + m[7];
return this;
},
/**
* Transform this Vector with the given Matrix.
*
* @method Phaser.Math.Vector2#transformMat4
* @since 3.0.0
*
* @param {Phaser.Math.Matrix4} mat - The Matrix4 to transform this Vector2 with.
*
* @return {Phaser.Math.Vector2} This Vector2.
*/
transformMat4: function (mat)
{
var x = this.x;
var y = this.y;
var m = mat.val;
this.x = m[0] * x + m[4] * y + m[12];
this.y = m[1] * x + m[5] * y + m[13];
return this;
},
/**
* Make this Vector the zero vector (0, 0).
*
* @method Phaser.Math.Vector2#reset
* @since 3.0.0
*
* @return {Phaser.Math.Vector2} This Vector2.
*/
reset: function ()
{
this.x = 0;
this.y = 0;
return this;
},
/**
* Limit the length (or magnitude) of this Vector.
*
* @method Phaser.Math.Vector2#limit
* @since 3.23.0
*
* @param {number} max - The maximum length.
*
* @return {Phaser.Math.Vector2} This Vector2.
*/
limit: function (max)
{
var len = this.length();
if (len && len > max)
{
this.scale(max / len);
}
return this;
},
/**
* Reflect this Vector off a line defined by a normal.
*
* @method Phaser.Math.Vector2#reflect
* @since 3.23.0
*
* @param {Phaser.Math.Vector2} normal - A vector perpendicular to the line.
*
* @return {Phaser.Math.Vector2} This Vector2.
*/
reflect: function (normal)
{
normal = normal.clone().normalize();
return this.subtract(normal.scale(2 * this.dot(normal)));
},
/**
* Reflect this Vector across another.
*
* @method Phaser.Math.Vector2#mirror
* @since 3.23.0
*
* @param {Phaser.Math.Vector2} axis - A vector to reflect across.
*
* @return {Phaser.Math.Vector2} This Vector2.
*/
mirror: function (axis)
{
return this.reflect(axis).negate();
},
/**
* Rotate this Vector by an angle amount.
*
* @method Phaser.Math.Vector2#rotate
* @since 3.23.0
*
* @param {number} delta - The angle to rotate by, in radians.
*
* @return {Phaser.Math.Vector2} This Vector2.
*/
rotate: function (delta)
{
var cos = Math.cos(delta);
var sin = Math.sin(delta);
return this.set(cos * this.x - sin * this.y, sin * this.x + cos * this.y);
}
});
/**
* A static zero Vector2 for use by reference.
*
* This constant is meant for comparison operations and should not be modified directly.
*
* @constant
* @name Phaser.Math.Vector2.ZERO
* @type {Phaser.Math.Vector2}
* @since 3.1.0
*/
Vector2.ZERO = new Vector2();
/**
* A static right Vector2 for use by reference.
*
* This constant is meant for comparison operations and should not be modified directly.
*
* @constant
* @name Phaser.Math.Vector2.RIGHT
* @type {Phaser.Math.Vector2}
* @since 3.16.0
*/
Vector2.RIGHT = new Vector2(1, 0);
/**
* A static left Vector2 for use by reference.
*
* This constant is meant for comparison operations and should not be modified directly.
*
* @constant
* @name Phaser.Math.Vector2.LEFT
* @type {Phaser.Math.Vector2}
* @since 3.16.0
*/
Vector2.LEFT = new Vector2(-1, 0);
/**
* A static up Vector2 for use by reference.
*
* This constant is meant for comparison operations and should not be modified directly.
*
* @constant
* @name Phaser.Math.Vector2.UP
* @type {Phaser.Math.Vector2}
* @since 3.16.0
*/
Vector2.UP = new Vector2(0, -1);
/**
* A static down Vector2 for use by reference.
*
* This constant is meant for comparison operations and should not be modified directly.
*
* @constant
* @name Phaser.Math.Vector2.DOWN
* @type {Phaser.Math.Vector2}
* @since 3.16.0
*/
Vector2.DOWN = new Vector2(0, 1);
/**
* A static one Vector2 for use by reference.
*
* This constant is meant for comparison operations and should not be modified directly.
*
* @constant
* @name Phaser.Math.Vector2.ONE
* @type {Phaser.Math.Vector2}
* @since 3.16.0
*/
Vector2.ONE = new Vector2(1, 1);
module.exports = Vector2;
/***/ }),
/* 2 */
/***/ (function(module, exports) {
/**
* @author Richard Davey <rich@photonstorm.com>
* @copyright 2020 Photon Storm Ltd.
* @license {@link https://opensource.org/licenses/MIT|MIT License}
*/
var MATH_CONST = {
/**
* The value of PI * 2.
*
* @name Phaser.Math.PI2
* @type {number}
* @since 3.0.0
*/
PI2: Math.PI * 2,
/**
* The value of PI * 0.5.
*
* @name Phaser.Math.TAU
* @type {number}
* @since 3.0.0
*/
TAU: Math.PI * 0.5,
/**
* An epsilon value (1.0e-6)
*
* @name Phaser.Math.EPSILON
* @type {number}
* @since 3.0.0
*/
EPSILON: 1.0e-6,
/**
* For converting degrees to radians (PI / 180)
*
* @name Phaser.Math.DEG_TO_RAD
* @type {number}
* @since 3.0.0
*/
DEG_TO_RAD: Math.PI / 180,
/**
* For converting radians to degrees (180 / PI)
*
* @name Phaser.Math.RAD_TO_DEG
* @type {number}
* @since 3.0.0
*/
RAD_TO_DEG: 180 / Math.PI,
/**
* An instance of the Random Number Generator.
* This is not set until the Game boots.
*
* @name Phaser.Math.RND
* @type {Phaser.Math.RandomDataGenerator}
* @since 3.0.0
*/
RND: null,
/**
* The minimum safe integer this browser supports.
* We use a const for backward compatibility with Internet Explorer.
*
* @name Phaser.Math.MIN_SAFE_INTEGER
* @type {number}
* @since 3.21.0
*/
MIN_SAFE_INTEGER: Number.MIN_SAFE_INTEGER || -9007199254740991,
/**
* The maximum safe integer this browser supports.
* We use a const for backward compatibility with Internet Explorer.
*
* @name Phaser.Math.MAX_SAFE_INTEGER
* @type {number}
* @since 3.21.0
*/
MAX_SAFE_INTEGER: Number.MAX_SAFE_INTEGER || 9007199254740991
};
module.exports = MATH_CONST;
/***/ }),
/* 3 */
/***/ (function(module, exports, __webpack_require__) {
/**
* @author Richard Davey <rich@photonstorm.com>
* @copyright 2020 Photon Storm Ltd.
* @license {@link https://opensource.org/licenses/MIT|MIT License}
*/
// Adapted from [gl-matrix](https://github.com/toji/gl-matrix) by toji
// and [vecmath](https://github.com/mattdesl/vecmath) by mattdesl
var Class = __webpack_require__(0);
/**
* @classdesc
* A representation of a vector in 3D space.
*
* A three-component vector.
*
* @class Vector3
* @memberof Phaser.Math
* @constructor
* @since 3.0.0
*
* @param {number} [x] - The x component.
* @param {number} [y] - The y component.
* @param {number} [z] - The z component.
*/
var Vector3 = new Class({
initialize:
function Vector3 (x, y, z)
{
/**
* The x component of this Vector.
*
* @name Phaser.Math.Vector3#x
* @type {number}
* @default 0
* @since 3.0.0
*/
this.x = 0;
/**
* The y component of this Vector.
*
* @name Phaser.Math.Vector3#y
* @type {number}
* @default 0
* @since 3.0.0
*/
this.y = 0;
/**
* The z component of this Vector.
*
* @name Phaser.Math.Vector3#z
* @type {number}
* @default 0
* @since 3.0.0
*/
this.z = 0;
if (typeof x === 'object')
{
this.x = x.x || 0;
this.y = x.y || 0;
this.z = x.z || 0;
}
else
{
this.x = x || 0;
this.y = y || 0;
this.z = z || 0;
}
},
/**
* Set this Vector to point up.
*
* Sets the y component of the vector to 1, and the others to 0.
*
* @method Phaser.Math.Vector3#up
* @since 3.0.0
*
* @return {Phaser.Math.Vector3} This Vector3.
*/
up: function ()
{
this.x = 0;
this.y = 1;
this.z = 0;
return this;
},
/**
* Sets the components of this Vector to be the `Math.min` result from the given vector.
*
* @method Phaser.Math.Vector3#min
* @since 3.50.0
*
* @param {Phaser.Math.Vector3} v - The Vector3 to check the minimum values against.
*
* @return {Phaser.Math.Vector3} This Vector3.
*/
min: function (v)
{
this.x = Math.min(this.x, v.x);
this.y = Math.min(this.y, v.y);
this.z = Math.min(this.z, v.z);
return this;
},
/**
* Sets the components of this Vector to be the `Math.max` result from the given vector.
*
* @method Phaser.Math.Vector3#max
* @since 3.50.0
*
* @param {Phaser.Math.Vector3} v - The Vector3 to check the maximum values against.
*
* @return {Phaser.Math.Vector3} This Vector3.
*/
max: function (v)
{
this.x = Math.max(this.x, v.x);
this.y = Math.max(this.y, v.y);
this.z = Math.max(this.z, v.z);
return this;
},
/**
* Make a clone of this Vector3.
*
* @method Phaser.Math.Vector3#clone
* @since 3.0.0
*
* @return {Phaser.Math.Vector3} A new Vector3 object containing this Vectors values.
*/
clone: function ()
{
return new Vector3(this.x, this.y, this.z);
},
/**
* Adds the two given Vector3s and sets the results into this Vector3.
*
* @method Phaser.Math.Vector3#addVectors
* @since 3.50.0
*
* @param {Phaser.Math.Vector3} a - The first Vector to add.
* @param {Phaser.Math.Vector3} b - The second Vector to add.
*
* @return {Phaser.Math.Vector3} This Vector3.
*/
addVectors: function (a, b)
{
this.x = a.x + b.x;
this.y = a.y + b.y;
this.z = a.z + b.z;
return this;
},
/**
* Calculate the cross (vector) product of two given Vectors.
*
* @method Phaser.Math.Vector3#crossVectors
* @since 3.0.0
*
* @param {Phaser.Math.Vector3} a - The first Vector to multiply.
* @param {Phaser.Math.Vector3} b - The second Vector to multiply.
*
* @return {Phaser.Math.Vector3} This Vector3.
*/
crossVectors: function (a, b)
{
var ax = a.x;
var ay = a.y;
var az = a.z;
var bx = b.x;
var by = b.y;
var bz = b.z;
this.x = ay * bz - az * by;
this.y = az * bx - ax * bz;
this.z = ax * by - ay * bx;
return this;
},
/**
* Check whether this Vector is equal to a given Vector.
*
* Performs a strict equality check against each Vector's components.
*
* @method Phaser.Math.Vector3#equals
* @since 3.0.0
*
* @param {Phaser.Math.Vector3} v - The Vector3 to compare against.
*
* @return {boolean} True if the two vectors strictly match, otherwise false.
*/
equals: function (v)
{
return ((this.x === v.x) && (this.y === v.y) && (this.z === v.z));
},
/**
* Copy the components of a given Vector into this Vector.
*
* @method Phaser.Math.Vector3#copy
* @since 3.0.0
*
* @param {(Phaser.Math.Vector2|Phaser.Math.Vector3)} src - The Vector to copy the components from.
*
* @return {Phaser.Math.Vector3} This Vector3.
*/
copy: function (src)
{
this.x = src.x;
this.y = src.y;
this.z = src.z || 0;
return this;
},
/**
* Set the `x`, `y`, and `z` components of this Vector to the given `x`, `y`, and `z` values.
*
* @method Phaser.Math.Vector3#set
* @since 3.0.0
*
* @param {(number|object)} x - The x value to set for this Vector, or an object containing x, y and z components.
* @param {number} [y] - The y value to set for this Vector.
* @param {number} [z] - The z value to set for this Vector.
*
* @return {Phaser.Math.Vector3} This Vector3.
*/
set: function (x, y, z)
{
if (typeof x === 'object')
{
this.x = x.x || 0;
this.y = x.y || 0;
this.z = x.z || 0;
}
else
{
this.x = x || 0;
this.y = y || 0;
this.z = z || 0;
}
return this;
},
/**
* Sets the components of this Vector3 from the position of the given Matrix4.
*
* @method Phaser.Math.Vector3#setFromMatrixPosition
* @since 3.50.0
*
* @param {Phaser.Math.Matrix4} mat4 - The Matrix4 to get the position from.
*
* @return {Phaser.Math.Vector3} This Vector3.
*/
setFromMatrixPosition: function (m)
{
return this.fromArray(m.val, 12);
},
/**
* Sets the components of this Vector3 from the Matrix4 column specified.
*
* @method Phaser.Math.Vector3#setFromMatrixColumn
* @since 3.50.0
*
* @param {Phaser.Math.Matrix4} mat4 - The Matrix4 to get the column from.
* @param {number} index - The column index.
*
* @return {Phaser.Math.Vector3} This Vector3.
*/
setFromMatrixColumn: function (mat4, index)
{
return this.fromArray(mat4.val, index * 4);
},
/**
* Sets the components of this Vector3 from the given array, based on the offset.
*
* Vector3.x = array[offset]
* Vector3.y = array[offset + 1]
* Vector3.z = array[offset + 2]
*
* @method Phaser.Math.Vector3#fromArray
* @since 3.50.0
*
* @param {number[]} array - The array of values to get this Vector from.
* @param {number} [offset=0] - The offset index into the array.
*
* @return {Phaser.Math.Vector3} This Vector3.
*/
fromArray: function (array, offset)
{
if (offset === undefined) { offset = 0; }
this.x = array[offset];
this.y = array[offset + 1];
this.z = array[offset + 2];
return this;
},
/**
* Add a given Vector to this Vector. Addition is component-wise.
*
* @method Phaser.Math.Vector3#add
* @since 3.0.0
*
* @param {(Phaser.Math.Vector2|Phaser.Math.Vector3)} v - The Vector to add to this Vector.
*
* @return {Phaser.Math.Vector3} This Vector3.
*/
add: function (v)
{
this.x += v.x;
this.y += v.y;
this.z += v.z || 0;
return this;
},
/**
* Add the given value to each component of this Vector.
*
* @method Phaser.Math.Vector3#addScalar
* @since 3.50.0
*
* @param {number} s - The amount to add to this Vector.
*
* @return {Phaser.Math.Vector3} This Vector3.
*/
addScalar: function (s)
{
this.x += s;
this.y += s;
this.z += s;
return this;
},
/**
* Add and scale a given Vector to this Vector. Addition is component-wise.
*
* @method Phaser.Math.Vector3#addScale
* @since 3.50.0
*
* @param {(Phaser.Math.Vector2|Phaser.Math.Vector3)} v - The Vector to add to this Vector.
* @param {number} scale - The amount to scale `v` by.
*
* @return {Phaser.Math.Vector3} This Vector3.
*/
addScale: function (v, scale)
{
this.x += v.x * scale;
this.y += v.y * scale;
this.z += v.z * scale || 0;
return this;
},
/**
* Subtract the given Vector from this Vector. Subtraction is component-wise.
*
* @method Phaser.Math.Vector3#subtract
* @since 3.0.0
*
* @param {(Phaser.Math.Vector2|Phaser.Math.Vector3)} v - The Vector to subtract from this Vector.
*
* @return {Phaser.Math.Vector3} This Vector3.
*/
subtract: function (v)
{
this.x -= v.x;
this.y -= v.y;
this.z -= v.z || 0;
return this;
},
/**
* Perform a component-wise multiplication between this Vector and the given Vector.
*
* Multiplies this Vector by the given Vector.
*
* @method Phaser.Math.Vector3#multiply
* @since 3.0.0
*
* @param {(Phaser.Math.Vector2|Phaser.Math.Vector3)} v - The Vector to multiply this Vector by.
*
* @return {Phaser.Math.Vector3} This Vector3.
*/
multiply: function (v)
{
this.x *= v.x;
this.y *= v.y;
this.z *= v.z || 1;
return this;
},
/**
* Scale this Vector by the given value.
*
* @method Phaser.Math.Vector3#scale
* @since 3.0.0
*
* @param {number} scale - The value to scale this Vector by.
*
* @return {Phaser.Math.Vector3} This Vector3.
*/
scale: function (scale)
{
if (isFinite(scale))
{
this.x *= scale;
this.y *= scale;
this.z *= scale;
}
else
{
this.x = 0;
this.y = 0;
this.z = 0;
}
return this;
},
/**
* Perform a component-wise division between this Vector and the given Vector.
*
* Divides this Vector by the given Vector.
*
* @method Phaser.Math.Vector3#divide
* @since 3.0.0
*
* @param {(Phaser.Math.Vector2|Phaser.Math.Vector3)} v - The Vector to divide this Vector by.
*
* @return {Phaser.Math.Vector3} This Vector3.
*/
divide: function (v)
{
this.x /= v.x;
this.y /= v.y;
this.z /= v.z || 1;
return this;
},
/**
* Negate the `x`, `y` and `z` components of this Vector.
*
* @method Phaser.Math.Vector3#negate
* @since 3.0.0
*
* @return {Phaser.Math.Vector3} This Vector3.
*/
negate: function ()
{
this.x = -this.x;
this.y = -this.y;
this.z = -this.z;
return this;
},
/**
* Calculate the distance between this Vector and the given Vector.
*
* @method Phaser.Math.Vector3#distance
* @since 3.0.0
*
* @param {(Phaser.Math.Vector2|Phaser.Math.Vector3)} v - The Vector to calculate the distance to.
*
* @return {number} The distance from this Vector to the given Vector.
*/
distance: function (v)
{
var dx = v.x - this.x;
var dy = v.y - this.y;
var dz = v.z - this.z || 0;
return Math.sqrt(dx * dx + dy * dy + dz * dz);
},
/**
* Calculate the distance between this Vector and the given Vector, squared.
*
* @method Phaser.Math.Vector3#distanceSq
* @since 3.0.0
*
* @param {(Phaser.Math.Vector2|Phaser.Math.Vector3)} v - The Vector to calculate the distance to.
*
* @return {number} The distance from this Vector to the given Vector, squared.
*/
distanceSq: function (v)
{
var dx = v.x - this.x;
var dy = v.y - this.y;
var dz = v.z - this.z || 0;
return dx * dx + dy * dy + dz * dz;
},
/**
* Calculate the length (or magnitude) of this Vector.
*
* @method Phaser.Math.Vector3#length
* @since 3.0.0
*
* @return {number} The length of this Vector.
*/
length: function ()
{
var x = this.x;
var y = this.y;
var z = this.z;
return Math.sqrt(x * x + y * y + z * z);
},
/**
* Calculate the length of this Vector squared.
*
* @method Phaser.Math.Vector3#lengthSq
* @since 3.0.0
*
* @return {number} The length of this Vector, squared.
*/
lengthSq: function ()
{
var x = this.x;
var y = this.y;
var z = this.z;
return x * x + y * y + z * z;
},
/**
* Normalize this Vector.
*
* Makes the vector a unit length vector (magnitude of 1) in the same direction.
*
* @method Phaser.Math.Vector3#normalize
* @since 3.0.0
*
* @return {Phaser.Math.Vector3} This Vector3.
*/
normalize: function ()
{
var x = this.x;
var y = this.y;
var z = this.z;
var len = x * x + y * y + z * z;
if (len > 0)
{
len = 1 / Math.sqrt(len);
this.x = x * len;
this.y = y * len;
this.z = z * len;
}
return this;
},
/**
* Calculate the dot product of this Vector and the given Vector.
*
* @method Phaser.Math.Vector3#dot
* @since 3.0.0
*
* @param {Phaser.Math.Vector3} v - The Vector3 to dot product with this Vector3.
*
* @return {number} The dot product of this Vector and `v`.
*/
dot: function (v)
{
return this.x * v.x + this.y * v.y + this.z * v.z;
},
/**
* Calculate the cross (vector) product of this Vector (which will be modified) and the given Vector.
*
* @method Phaser.Math.Vector3#cross
* @since 3.0.0
*
* @param {Phaser.Math.Vector3} v - The Vector to cross product with.
*
* @return {Phaser.Math.Vector3} This Vector3.
*/
cross: function (v)
{
var ax = this.x;
var ay = this.y;
var az = this.z;
var bx = v.x;
var by = v.y;
var bz = v.z;
this.x = ay * bz - az * by;
this.y = az * bx - ax * bz;
this.z = ax * by - ay * bx;
return this;
},
/**
* Linearly interpolate between this Vector and the given Vector.
*
* Interpolates this Vector towards the given Vector.
*
* @method Phaser.Math.Vector3#lerp
* @since 3.0.0
*
* @param {Phaser.Math.Vector3} v - The Vector3 to interpolate towards.
* @param {number} [t=0] - The interpolation percentage, between 0 and 1.
*
* @return {Phaser.Math.Vector3} This Vector3.
*/
lerp: function (v, t)
{
if (t === undefined) { t = 0; }
var ax = this.x;
var ay = this.y;
var az = this.z;
this.x = ax + t * (v.x - ax);
this.y = ay + t * (v.y - ay);
this.z = az + t * (v.z - az);
return this;
},
/**
* Takes a Matrix3 and applies it to this Vector3.
*
* @method Phaser.Math.Vector3#applyMatrix3
* @since 3.50.0
*
* @param {Phaser.Math.Matrix3} mat3 - The Matrix3 to apply to this Vector3.
*
* @return {Phaser.Math.Vector3} This Vector3.
*/
applyMatrix3: function (mat3)
{
var x = this.x;
var y = this.y;
var z = this.z;
var m = mat3.val;
this.x = m[0] * x + m[3] * y + m[6] * z;
this.y = m[1] * x + m[4] * y + m[7] * z;
this.z = m[2] * x + m[5] * y + m[8] * z;
return this;
},
/**
* Takes a Matrix4 and applies it to this Vector3.
*
* @method Phaser.Math.Vector3#applyMatrix4
* @since 3.50.0
*
* @param {Phaser.Math.Matrix4} mat4 - The Matrix4 to apply to this Vector3.
*
* @return {Phaser.Math.Vector3} This Vector3.
*/
applyMatrix4: function (mat4)
{
var x = this.x;
var y = this.y;
var z = this.z;
var m = mat4.val;
var w = 1 / (m[3] * x + m[7] * y + m[11] * z + m[15]);
this.x = (m[0] * x + m[4] * y + m[8] * z + m[12]) * w;
this.y = (m[1] * x + m[5] * y + m[9] * z + m[13]) * w;
this.z = (m[2] * x + m[6] * y + m[10] * z + m[14]) * w;
return this;
},
/**
* Transform this Vector with the given Matrix.
*
* @method Phaser.Math.Vector3#transformMat3
* @since 3.0.0
*
* @param {Phaser.Math.Matrix3} mat - The Matrix3 to transform this Vector3 with.
*
* @return {Phaser.Math.Vector3} This Vector3.
*/
transformMat3: function (mat)
{
var x = this.x;
var y = this.y;
var z = this.z;
var m = mat.val;
this.x = x * m[0] + y * m[3] + z * m[6];
this.y = x * m[1] + y * m[4] + z * m[7];
this.z = x * m[2] + y * m[5] + z * m[8];
return this;
},
/**
* Transform this Vector with the given Matrix4.
*
* @method Phaser.Math.Vector3#transformMat4
* @since 3.0.0
*
* @param {Phaser.Math.Matrix4} mat - The Matrix4 to transform this Vector3 with.
*
* @return {Phaser.Math.Vector3} This Vector3.
*/
transformMat4: function (mat)
{
var x = this.x;
var y = this.y;
var z = this.z;
var m = mat.val;
this.x = m[0] * x + m[4] * y + m[8] * z + m[12];
this.y = m[1] * x + m[5] * y + m[9] * z + m[13];
this.z = m[2] * x + m[6] * y + m[10] * z + m[14];
return this;
},
/**
* Transforms the coordinates of this Vector3 with the given Matrix4.
*
* @method Phaser.Math.Vector3#transformCoordinates
* @since 3.0.0
*
* @param {Phaser.Math.Matrix4} mat - The Matrix4 to transform this Vector3 with.
*
* @return {Phaser.Math.Vector3} This Vector3.
*/
transformCoordinates: function (mat)
{
var x = this.x;
var y = this.y;
var z = this.z;
var m = mat.val;
var tx = (x * m[0]) + (y * m[4]) + (z * m[8]) + m[12];
var ty = (x * m[1]) + (y * m[5]) + (z * m[9]) + m[13];
var tz = (x * m[2]) + (y * m[6]) + (z * m[10]) + m[14];
var tw = (x * m[3]) + (y * m[7]) + (z * m[11]) + m[15];
this.x = tx / tw;
this.y = ty / tw;
this.z = tz / tw;
return this;
},
/**
* Transform this Vector with the given Quaternion.
*
* @method Phaser.Math.Vector3#transformQuat
* @since 3.0.0
*
* @para