UNPKG

phaser-ce

Version:

Phaser CE (Community Edition) is a fast, free and fun HTML5 Game Framework for Desktop and Mobile web browsers.

1,814 lines (1,623 loc) 189 kB
/** * @fileoverview gl-matrix - High performance matrix and vector operations * @author Brandon Jones * @author Colin MacKenzie IV * @version 2.3.2 */ /* Copyright (c) 2015, Brandon Jones, Colin MacKenzie IV. Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ (function webpackUniversalModuleDefinition(root, factory) { if(typeof exports === 'object' && typeof module === 'object') module.exports = factory(); else if(typeof define === 'function' && define.amd) define([], factory); else { var a = factory(); for(var i in a) (typeof exports === 'object' ? exports : root)[i] = a[i]; } })(this, function() { return /******/ (function(modules) { // webpackBootstrap /******/ // The module cache /******/ var installedModules = {}; /******/ // The require function /******/ function __webpack_require__(moduleId) { /******/ // Check if module is in cache /******/ if(installedModules[moduleId]) /******/ return installedModules[moduleId].exports; /******/ // Create a new module (and put it into the cache) /******/ var module = installedModules[moduleId] = { /******/ exports: {}, /******/ id: moduleId, /******/ loaded: false /******/ }; /******/ // Execute the module function /******/ modules[moduleId].call(module.exports, module, module.exports, __webpack_require__); /******/ // Flag the module as loaded /******/ module.loaded = true; /******/ // Return the exports of the module /******/ return module.exports; /******/ } /******/ // expose the modules object (__webpack_modules__) /******/ __webpack_require__.m = modules; /******/ // expose the module cache /******/ __webpack_require__.c = installedModules; /******/ // __webpack_public_path__ /******/ __webpack_require__.p = ""; /******/ // Load entry module and return exports /******/ return __webpack_require__(0); /******/ }) /************************************************************************/ /******/ ([ /* 0 */ /***/ function(module, exports, __webpack_require__) { /** * @fileoverview gl-matrix - High performance matrix and vector operations * @author Brandon Jones * @author Colin MacKenzie IV * @version 2.3.2 */ /* Copyright (c) 2015, Brandon Jones, Colin MacKenzie IV. Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ // END HEADER exports.glMatrix = __webpack_require__(1); exports.mat2 = __webpack_require__(2); exports.mat2d = __webpack_require__(3); exports.mat3 = __webpack_require__(4); exports.mat4 = __webpack_require__(5); exports.quat = __webpack_require__(6); exports.vec2 = __webpack_require__(9); exports.vec3 = __webpack_require__(7); exports.vec4 = __webpack_require__(8); /***/ }, /* 1 */ /***/ function(module, exports) { /* Copyright (c) 2015, Brandon Jones, Colin MacKenzie IV. Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /** * @class Common utilities * @name glMatrix */ var glMatrix = {}; // Configuration Constants glMatrix.EPSILON = 0.000001; glMatrix.ARRAY_TYPE = (typeof Float32Array !== 'undefined') ? Float32Array : Array; glMatrix.RANDOM = Math.random; glMatrix.ENABLE_SIMD = false; // Capability detection glMatrix.SIMD_AVAILABLE = (glMatrix.ARRAY_TYPE === this.Float32Array) && ('SIMD' in this); glMatrix.USE_SIMD = glMatrix.ENABLE_SIMD && glMatrix.SIMD_AVAILABLE; /** * Sets the type of array used when creating new vectors and matrices * * @param {Type} type Array type, such as Float32Array or Array */ glMatrix.setMatrixArrayType = function(type) { glMatrix.ARRAY_TYPE = type; } var degree = Math.PI / 180; /** * Convert Degree To Radian * * @param {Number} a Angle in Degrees */ glMatrix.toRadian = function(a){ return a * degree; } /** * Tests whether or not the arguments have approximately the same value, within an absolute * or relative tolerance of glMatrix.EPSILON (an absolute tolerance is used for values less * than or equal to 1.0, and a relative tolerance is used for larger values) * * @param {Number} a The first number to test. * @param {Number} b The second number to test. * @returns {Boolean} True if the numbers are approximately equal, false otherwise. */ glMatrix.equals = function(a, b) { return Math.abs(a - b) <= glMatrix.EPSILON*Math.max(1.0, Math.abs(a), Math.abs(b)); } module.exports = glMatrix; /***/ }, /* 2 */ /***/ function(module, exports, __webpack_require__) { /* Copyright (c) 2015, Brandon Jones, Colin MacKenzie IV. Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ var glMatrix = __webpack_require__(1); /** * @class 2x2 Matrix * @name mat2 */ var mat2 = {}; /** * Creates a new identity mat2 * * @returns {mat2} a new 2x2 matrix */ mat2.create = function() { var out = new glMatrix.ARRAY_TYPE(4); out[0] = 1; out[1] = 0; out[2] = 0; out[3] = 1; return out; }; /** * Creates a new mat2 initialized with values from an existing matrix * * @param {mat2} a matrix to clone * @returns {mat2} a new 2x2 matrix */ mat2.clone = function(a) { var out = new glMatrix.ARRAY_TYPE(4); out[0] = a[0]; out[1] = a[1]; out[2] = a[2]; out[3] = a[3]; return out; }; /** * Copy the values from one mat2 to another * * @param {mat2} out the receiving matrix * @param {mat2} a the source matrix * @returns {mat2} out */ mat2.copy = function(out, a) { out[0] = a[0]; out[1] = a[1]; out[2] = a[2]; out[3] = a[3]; return out; }; /** * Set a mat2 to the identity matrix * * @param {mat2} out the receiving matrix * @returns {mat2} out */ mat2.identity = function(out) { out[0] = 1; out[1] = 0; out[2] = 0; out[3] = 1; return out; }; /** * Create a new mat2 with the given values * * @param {Number} m00 Component in column 0, row 0 position (index 0) * @param {Number} m01 Component in column 0, row 1 position (index 1) * @param {Number} m10 Component in column 1, row 0 position (index 2) * @param {Number} m11 Component in column 1, row 1 position (index 3) * @returns {mat2} out A new 2x2 matrix */ mat2.fromValues = function(m00, m01, m10, m11) { var out = new glMatrix.ARRAY_TYPE(4); out[0] = m00; out[1] = m01; out[2] = m10; out[3] = m11; return out; }; /** * Set the components of a mat2 to the given values * * @param {mat2} out the receiving matrix * @param {Number} m00 Component in column 0, row 0 position (index 0) * @param {Number} m01 Component in column 0, row 1 position (index 1) * @param {Number} m10 Component in column 1, row 0 position (index 2) * @param {Number} m11 Component in column 1, row 1 position (index 3) * @returns {mat2} out */ mat2.set = function(out, m00, m01, m10, m11) { out[0] = m00; out[1] = m01; out[2] = m10; out[3] = m11; return out; }; /** * Transpose the values of a mat2 * * @param {mat2} out the receiving matrix * @param {mat2} a the source matrix * @returns {mat2} out */ mat2.transpose = function(out, a) { // If we are transposing ourselves we can skip a few steps but have to cache some values if (out === a) { var a1 = a[1]; out[1] = a[2]; out[2] = a1; } else { out[0] = a[0]; out[1] = a[2]; out[2] = a[1]; out[3] = a[3]; } return out; }; /** * Inverts a mat2 * * @param {mat2} out the receiving matrix * @param {mat2} a the source matrix * @returns {mat2} out */ mat2.invert = function(out, a) { var a0 = a[0], a1 = a[1], a2 = a[2], a3 = a[3], // Calculate the determinant det = a0 * a3 - a2 * a1; if (!det) { return null; } det = 1.0 / det; out[0] = a3 * det; out[1] = -a1 * det; out[2] = -a2 * det; out[3] = a0 * det; return out; }; /** * Calculates the adjugate of a mat2 * * @param {mat2} out the receiving matrix * @param {mat2} a the source matrix * @returns {mat2} out */ mat2.adjoint = function(out, a) { // Caching this value is nessecary if out == a var a0 = a[0]; out[0] = a[3]; out[1] = -a[1]; out[2] = -a[2]; out[3] = a0; return out; }; /** * Calculates the determinant of a mat2 * * @param {mat2} a the source matrix * @returns {Number} determinant of a */ mat2.determinant = function (a) { return a[0] * a[3] - a[2] * a[1]; }; /** * Multiplies two mat2's * * @param {mat2} out the receiving matrix * @param {mat2} a the first operand * @param {mat2} b the second operand * @returns {mat2} out */ mat2.multiply = function (out, a, b) { var a0 = a[0], a1 = a[1], a2 = a[2], a3 = a[3]; var b0 = b[0], b1 = b[1], b2 = b[2], b3 = b[3]; out[0] = a0 * b0 + a2 * b1; out[1] = a1 * b0 + a3 * b1; out[2] = a0 * b2 + a2 * b3; out[3] = a1 * b2 + a3 * b3; return out; }; /** * Alias for {@link mat2.multiply} * @function */ mat2.mul = mat2.multiply; /** * Rotates a mat2 by the given angle * * @param {mat2} out the receiving matrix * @param {mat2} a the matrix to rotate * @param {Number} rad the angle to rotate the matrix by * @returns {mat2} out */ mat2.rotate = function (out, a, rad) { var a0 = a[0], a1 = a[1], a2 = a[2], a3 = a[3], s = Math.sin(rad), c = Math.cos(rad); out[0] = a0 * c + a2 * s; out[1] = a1 * c + a3 * s; out[2] = a0 * -s + a2 * c; out[3] = a1 * -s + a3 * c; return out; }; /** * Scales the mat2 by the dimensions in the given vec2 * * @param {mat2} out the receiving matrix * @param {mat2} a the matrix to rotate * @param {vec2} v the vec2 to scale the matrix by * @returns {mat2} out **/ mat2.scale = function(out, a, v) { var a0 = a[0], a1 = a[1], a2 = a[2], a3 = a[3], v0 = v[0], v1 = v[1]; out[0] = a0 * v0; out[1] = a1 * v0; out[2] = a2 * v1; out[3] = a3 * v1; return out; }; /** * Creates a matrix from a given angle * This is equivalent to (but much faster than): * * mat2.identity(dest); * mat2.rotate(dest, dest, rad); * * @param {mat2} out mat2 receiving operation result * @param {Number} rad the angle to rotate the matrix by * @returns {mat2} out */ mat2.fromRotation = function(out, rad) { var s = Math.sin(rad), c = Math.cos(rad); out[0] = c; out[1] = s; out[2] = -s; out[3] = c; return out; } /** * Creates a matrix from a vector scaling * This is equivalent to (but much faster than): * * mat2.identity(dest); * mat2.scale(dest, dest, vec); * * @param {mat2} out mat2 receiving operation result * @param {vec2} v Scaling vector * @returns {mat2} out */ mat2.fromScaling = function(out, v) { out[0] = v[0]; out[1] = 0; out[2] = 0; out[3] = v[1]; return out; } /** * Returns a string representation of a mat2 * * @param {mat2} a matrix to represent as a string * @returns {String} string representation of the matrix */ mat2.str = function (a) { return 'mat2(' + a[0] + ', ' + a[1] + ', ' + a[2] + ', ' + a[3] + ')'; }; /** * Returns Frobenius norm of a mat2 * * @param {mat2} a the matrix to calculate Frobenius norm of * @returns {Number} Frobenius norm */ mat2.frob = function (a) { return(Math.sqrt(Math.pow(a[0], 2) + Math.pow(a[1], 2) + Math.pow(a[2], 2) + Math.pow(a[3], 2))) }; /** * Returns L, D and U matrices (Lower triangular, Diagonal and Upper triangular) by factorizing the input matrix * @param {mat2} L the lower triangular matrix * @param {mat2} D the diagonal matrix * @param {mat2} U the upper triangular matrix * @param {mat2} a the input matrix to factorize */ mat2.LDU = function (L, D, U, a) { L[2] = a[2]/a[0]; U[0] = a[0]; U[1] = a[1]; U[3] = a[3] - L[2] * U[1]; return [L, D, U]; }; /** * Adds two mat2's * * @param {mat2} out the receiving matrix * @param {mat2} a the first operand * @param {mat2} b the second operand * @returns {mat2} out */ mat2.add = function(out, a, b) { out[0] = a[0] + b[0]; out[1] = a[1] + b[1]; out[2] = a[2] + b[2]; out[3] = a[3] + b[3]; return out; }; /** * Subtracts matrix b from matrix a * * @param {mat2} out the receiving matrix * @param {mat2} a the first operand * @param {mat2} b the second operand * @returns {mat2} out */ mat2.subtract = function(out, a, b) { out[0] = a[0] - b[0]; out[1] = a[1] - b[1]; out[2] = a[2] - b[2]; out[3] = a[3] - b[3]; return out; }; /** * Alias for {@link mat2.subtract} * @function */ mat2.sub = mat2.subtract; /** * Returns whether or not the matrices have exactly the same elements in the same position (when compared with ===) * * @param {mat2} a The first matrix. * @param {mat2} b The second matrix. * @returns {Boolean} True if the matrices are equal, false otherwise. */ mat2.exactEquals = function (a, b) { return a[0] === b[0] && a[1] === b[1] && a[2] === b[2] && a[3] === b[3]; }; /** * Returns whether or not the matrices have approximately the same elements in the same position. * * @param {mat2} a The first matrix. * @param {mat2} b The second matrix. * @returns {Boolean} True if the matrices are equal, false otherwise. */ mat2.equals = function (a, b) { var a0 = a[0], a1 = a[1], a2 = a[2], a3 = a[3]; var b0 = b[0], b1 = b[1], b2 = b[2], b3 = b[3]; return (Math.abs(a0 - b0) <= glMatrix.EPSILON*Math.max(1.0, Math.abs(a0), Math.abs(b0)) && Math.abs(a1 - b1) <= glMatrix.EPSILON*Math.max(1.0, Math.abs(a1), Math.abs(b1)) && Math.abs(a2 - b2) <= glMatrix.EPSILON*Math.max(1.0, Math.abs(a2), Math.abs(b2)) && Math.abs(a3 - b3) <= glMatrix.EPSILON*Math.max(1.0, Math.abs(a3), Math.abs(b3))); }; /** * Multiply each element of the matrix by a scalar. * * @param {mat2} out the receiving matrix * @param {mat2} a the matrix to scale * @param {Number} b amount to scale the matrix's elements by * @returns {mat2} out */ mat2.multiplyScalar = function(out, a, b) { out[0] = a[0] * b; out[1] = a[1] * b; out[2] = a[2] * b; out[3] = a[3] * b; return out; }; /** * Adds two mat2's after multiplying each element of the second operand by a scalar value. * * @param {mat2} out the receiving vector * @param {mat2} a the first operand * @param {mat2} b the second operand * @param {Number} scale the amount to scale b's elements by before adding * @returns {mat2} out */ mat2.multiplyScalarAndAdd = function(out, a, b, scale) { out[0] = a[0] + (b[0] * scale); out[1] = a[1] + (b[1] * scale); out[2] = a[2] + (b[2] * scale); out[3] = a[3] + (b[3] * scale); return out; }; module.exports = mat2; /***/ }, /* 3 */ /***/ function(module, exports, __webpack_require__) { /* Copyright (c) 2015, Brandon Jones, Colin MacKenzie IV. Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ var glMatrix = __webpack_require__(1); /** * @class 2x3 Matrix * @name mat2d * * @description * A mat2d contains six elements defined as: * <pre> * [a, c, tx, * b, d, ty] * </pre> * This is a short form for the 3x3 matrix: * <pre> * [a, c, tx, * b, d, ty, * 0, 0, 1] * </pre> * The last row is ignored so the array is shorter and operations are faster. */ var mat2d = {}; /** * Creates a new identity mat2d * * @returns {mat2d} a new 2x3 matrix */ mat2d.create = function() { var out = new glMatrix.ARRAY_TYPE(6); out[0] = 1; out[1] = 0; out[2] = 0; out[3] = 1; out[4] = 0; out[5] = 0; return out; }; /** * Creates a new mat2d initialized with values from an existing matrix * * @param {mat2d} a matrix to clone * @returns {mat2d} a new 2x3 matrix */ mat2d.clone = function(a) { var out = new glMatrix.ARRAY_TYPE(6); out[0] = a[0]; out[1] = a[1]; out[2] = a[2]; out[3] = a[3]; out[4] = a[4]; out[5] = a[5]; return out; }; /** * Copy the values from one mat2d to another * * @param {mat2d} out the receiving matrix * @param {mat2d} a the source matrix * @returns {mat2d} out */ mat2d.copy = function(out, a) { out[0] = a[0]; out[1] = a[1]; out[2] = a[2]; out[3] = a[3]; out[4] = a[4]; out[5] = a[5]; return out; }; /** * Set a mat2d to the identity matrix * * @param {mat2d} out the receiving matrix * @returns {mat2d} out */ mat2d.identity = function(out) { out[0] = 1; out[1] = 0; out[2] = 0; out[3] = 1; out[4] = 0; out[5] = 0; return out; }; /** * Create a new mat2d with the given values * * @param {Number} a Component A (index 0) * @param {Number} b Component B (index 1) * @param {Number} c Component C (index 2) * @param {Number} d Component D (index 3) * @param {Number} tx Component TX (index 4) * @param {Number} ty Component TY (index 5) * @returns {mat2d} A new mat2d */ mat2d.fromValues = function(a, b, c, d, tx, ty) { var out = new glMatrix.ARRAY_TYPE(6); out[0] = a; out[1] = b; out[2] = c; out[3] = d; out[4] = tx; out[5] = ty; return out; }; /** * Set the components of a mat2d to the given values * * @param {mat2d} out the receiving matrix * @param {Number} a Component A (index 0) * @param {Number} b Component B (index 1) * @param {Number} c Component C (index 2) * @param {Number} d Component D (index 3) * @param {Number} tx Component TX (index 4) * @param {Number} ty Component TY (index 5) * @returns {mat2d} out */ mat2d.set = function(out, a, b, c, d, tx, ty) { out[0] = a; out[1] = b; out[2] = c; out[3] = d; out[4] = tx; out[5] = ty; return out; }; /** * Inverts a mat2d * * @param {mat2d} out the receiving matrix * @param {mat2d} a the source matrix * @returns {mat2d} out */ mat2d.invert = function(out, a) { var aa = a[0], ab = a[1], ac = a[2], ad = a[3], atx = a[4], aty = a[5]; var det = aa * ad - ab * ac; if(!det){ return null; } det = 1.0 / det; out[0] = ad * det; out[1] = -ab * det; out[2] = -ac * det; out[3] = aa * det; out[4] = (ac * aty - ad * atx) * det; out[5] = (ab * atx - aa * aty) * det; return out; }; /** * Calculates the determinant of a mat2d * * @param {mat2d} a the source matrix * @returns {Number} determinant of a */ mat2d.determinant = function (a) { return a[0] * a[3] - a[1] * a[2]; }; /** * Multiplies two mat2d's * * @param {mat2d} out the receiving matrix * @param {mat2d} a the first operand * @param {mat2d} b the second operand * @returns {mat2d} out */ mat2d.multiply = function (out, a, b) { var a0 = a[0], a1 = a[1], a2 = a[2], a3 = a[3], a4 = a[4], a5 = a[5], b0 = b[0], b1 = b[1], b2 = b[2], b3 = b[3], b4 = b[4], b5 = b[5]; out[0] = a0 * b0 + a2 * b1; out[1] = a1 * b0 + a3 * b1; out[2] = a0 * b2 + a2 * b3; out[3] = a1 * b2 + a3 * b3; out[4] = a0 * b4 + a2 * b5 + a4; out[5] = a1 * b4 + a3 * b5 + a5; return out; }; /** * Alias for {@link mat2d.multiply} * @function */ mat2d.mul = mat2d.multiply; /** * Rotates a mat2d by the given angle * * @param {mat2d} out the receiving matrix * @param {mat2d} a the matrix to rotate * @param {Number} rad the angle to rotate the matrix by * @returns {mat2d} out */ mat2d.rotate = function (out, a, rad) { var a0 = a[0], a1 = a[1], a2 = a[2], a3 = a[3], a4 = a[4], a5 = a[5], s = Math.sin(rad), c = Math.cos(rad); out[0] = a0 * c + a2 * s; out[1] = a1 * c + a3 * s; out[2] = a0 * -s + a2 * c; out[3] = a1 * -s + a3 * c; out[4] = a4; out[5] = a5; return out; }; /** * Scales the mat2d by the dimensions in the given vec2 * * @param {mat2d} out the receiving matrix * @param {mat2d} a the matrix to translate * @param {vec2} v the vec2 to scale the matrix by * @returns {mat2d} out **/ mat2d.scale = function(out, a, v) { var a0 = a[0], a1 = a[1], a2 = a[2], a3 = a[3], a4 = a[4], a5 = a[5], v0 = v[0], v1 = v[1]; out[0] = a0 * v0; out[1] = a1 * v0; out[2] = a2 * v1; out[3] = a3 * v1; out[4] = a4; out[5] = a5; return out; }; /** * Translates the mat2d by the dimensions in the given vec2 * * @param {mat2d} out the receiving matrix * @param {mat2d} a the matrix to translate * @param {vec2} v the vec2 to translate the matrix by * @returns {mat2d} out **/ mat2d.translate = function(out, a, v) { var a0 = a[0], a1 = a[1], a2 = a[2], a3 = a[3], a4 = a[4], a5 = a[5], v0 = v[0], v1 = v[1]; out[0] = a0; out[1] = a1; out[2] = a2; out[3] = a3; out[4] = a0 * v0 + a2 * v1 + a4; out[5] = a1 * v0 + a3 * v1 + a5; return out; }; /** * Creates a matrix from a given angle * This is equivalent to (but much faster than): * * mat2d.identity(dest); * mat2d.rotate(dest, dest, rad); * * @param {mat2d} out mat2d receiving operation result * @param {Number} rad the angle to rotate the matrix by * @returns {mat2d} out */ mat2d.fromRotation = function(out, rad) { var s = Math.sin(rad), c = Math.cos(rad); out[0] = c; out[1] = s; out[2] = -s; out[3] = c; out[4] = 0; out[5] = 0; return out; } /** * Creates a matrix from a vector scaling * This is equivalent to (but much faster than): * * mat2d.identity(dest); * mat2d.scale(dest, dest, vec); * * @param {mat2d} out mat2d receiving operation result * @param {vec2} v Scaling vector * @returns {mat2d} out */ mat2d.fromScaling = function(out, v) { out[0] = v[0]; out[1] = 0; out[2] = 0; out[3] = v[1]; out[4] = 0; out[5] = 0; return out; } /** * Creates a matrix from a vector translation * This is equivalent to (but much faster than): * * mat2d.identity(dest); * mat2d.translate(dest, dest, vec); * * @param {mat2d} out mat2d receiving operation result * @param {vec2} v Translation vector * @returns {mat2d} out */ mat2d.fromTranslation = function(out, v) { out[0] = 1; out[1] = 0; out[2] = 0; out[3] = 1; out[4] = v[0]; out[5] = v[1]; return out; } /** * Returns a string representation of a mat2d * * @param {mat2d} a matrix to represent as a string * @returns {String} string representation of the matrix */ mat2d.str = function (a) { return 'mat2d(' + a[0] + ', ' + a[1] + ', ' + a[2] + ', ' + a[3] + ', ' + a[4] + ', ' + a[5] + ')'; }; /** * Returns Frobenius norm of a mat2d * * @param {mat2d} a the matrix to calculate Frobenius norm of * @returns {Number} Frobenius norm */ mat2d.frob = function (a) { return(Math.sqrt(Math.pow(a[0], 2) + Math.pow(a[1], 2) + Math.pow(a[2], 2) + Math.pow(a[3], 2) + Math.pow(a[4], 2) + Math.pow(a[5], 2) + 1)) }; /** * Adds two mat2d's * * @param {mat2d} out the receiving matrix * @param {mat2d} a the first operand * @param {mat2d} b the second operand * @returns {mat2d} out */ mat2d.add = function(out, a, b) { out[0] = a[0] + b[0]; out[1] = a[1] + b[1]; out[2] = a[2] + b[2]; out[3] = a[3] + b[3]; out[4] = a[4] + b[4]; out[5] = a[5] + b[5]; return out; }; /** * Subtracts matrix b from matrix a * * @param {mat2d} out the receiving matrix * @param {mat2d} a the first operand * @param {mat2d} b the second operand * @returns {mat2d} out */ mat2d.subtract = function(out, a, b) { out[0] = a[0] - b[0]; out[1] = a[1] - b[1]; out[2] = a[2] - b[2]; out[3] = a[3] - b[3]; out[4] = a[4] - b[4]; out[5] = a[5] - b[5]; return out; }; /** * Alias for {@link mat2d.subtract} * @function */ mat2d.sub = mat2d.subtract; /** * Multiply each element of the matrix by a scalar. * * @param {mat2d} out the receiving matrix * @param {mat2d} a the matrix to scale * @param {Number} b amount to scale the matrix's elements by * @returns {mat2d} out */ mat2d.multiplyScalar = function(out, a, b) { out[0] = a[0] * b; out[1] = a[1] * b; out[2] = a[2] * b; out[3] = a[3] * b; out[4] = a[4] * b; out[5] = a[5] * b; return out; }; /** * Adds two mat2d's after multiplying each element of the second operand by a scalar value. * * @param {mat2d} out the receiving vector * @param {mat2d} a the first operand * @param {mat2d} b the second operand * @param {Number} scale the amount to scale b's elements by before adding * @returns {mat2d} out */ mat2d.multiplyScalarAndAdd = function(out, a, b, scale) { out[0] = a[0] + (b[0] * scale); out[1] = a[1] + (b[1] * scale); out[2] = a[2] + (b[2] * scale); out[3] = a[3] + (b[3] * scale); out[4] = a[4] + (b[4] * scale); out[5] = a[5] + (b[5] * scale); return out; }; /** * Returns whether or not the matrices have exactly the same elements in the same position (when compared with ===) * * @param {mat2d} a The first matrix. * @param {mat2d} b The second matrix. * @returns {Boolean} True if the matrices are equal, false otherwise. */ mat2d.exactEquals = function (a, b) { return a[0] === b[0] && a[1] === b[1] && a[2] === b[2] && a[3] === b[3] && a[4] === b[4] && a[5] === b[5]; }; /** * Returns whether or not the matrices have approximately the same elements in the same position. * * @param {mat2d} a The first matrix. * @param {mat2d} b The second matrix. * @returns {Boolean} True if the matrices are equal, false otherwise. */ mat2d.equals = function (a, b) { var a0 = a[0], a1 = a[1], a2 = a[2], a3 = a[3], a4 = a[4], a5 = a[5]; var b0 = b[0], b1 = b[1], b2 = b[2], b3 = b[3], b4 = b[4], b5 = b[5]; return (Math.abs(a0 - b0) <= glMatrix.EPSILON*Math.max(1.0, Math.abs(a0), Math.abs(b0)) && Math.abs(a1 - b1) <= glMatrix.EPSILON*Math.max(1.0, Math.abs(a1), Math.abs(b1)) && Math.abs(a2 - b2) <= glMatrix.EPSILON*Math.max(1.0, Math.abs(a2), Math.abs(b2)) && Math.abs(a3 - b3) <= glMatrix.EPSILON*Math.max(1.0, Math.abs(a3), Math.abs(b3)) && Math.abs(a4 - b4) <= glMatrix.EPSILON*Math.max(1.0, Math.abs(a4), Math.abs(b4)) && Math.abs(a5 - b5) <= glMatrix.EPSILON*Math.max(1.0, Math.abs(a5), Math.abs(b5))); }; module.exports = mat2d; /***/ }, /* 4 */ /***/ function(module, exports, __webpack_require__) { /* Copyright (c) 2015, Brandon Jones, Colin MacKenzie IV. Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ var glMatrix = __webpack_require__(1); /** * @class 3x3 Matrix * @name mat3 */ var mat3 = {}; /** * Creates a new identity mat3 * * @returns {mat3} a new 3x3 matrix */ mat3.create = function() { var out = new glMatrix.ARRAY_TYPE(9); out[0] = 1; out[1] = 0; out[2] = 0; out[3] = 0; out[4] = 1; out[5] = 0; out[6] = 0; out[7] = 0; out[8] = 1; return out; }; /** * Copies the upper-left 3x3 values into the given mat3. * * @param {mat3} out the receiving 3x3 matrix * @param {mat4} a the source 4x4 matrix * @returns {mat3} out */ mat3.fromMat4 = function(out, a) { out[0] = a[0]; out[1] = a[1]; out[2] = a[2]; out[3] = a[4]; out[4] = a[5]; out[5] = a[6]; out[6] = a[8]; out[7] = a[9]; out[8] = a[10]; return out; }; /** * Creates a new mat3 initialized with values from an existing matrix * * @param {mat3} a matrix to clone * @returns {mat3} a new 3x3 matrix */ mat3.clone = function(a) { var out = new glMatrix.ARRAY_TYPE(9); out[0] = a[0]; out[1] = a[1]; out[2] = a[2]; out[3] = a[3]; out[4] = a[4]; out[5] = a[5]; out[6] = a[6]; out[7] = a[7]; out[8] = a[8]; return out; }; /** * Copy the values from one mat3 to another * * @param {mat3} out the receiving matrix * @param {mat3} a the source matrix * @returns {mat3} out */ mat3.copy = function(out, a) { out[0] = a[0]; out[1] = a[1]; out[2] = a[2]; out[3] = a[3]; out[4] = a[4]; out[5] = a[5]; out[6] = a[6]; out[7] = a[7]; out[8] = a[8]; return out; }; /** * Create a new mat3 with the given values * * @param {Number} m00 Component in column 0, row 0 position (index 0) * @param {Number} m01 Component in column 0, row 1 position (index 1) * @param {Number} m02 Component in column 0, row 2 position (index 2) * @param {Number} m10 Component in column 1, row 0 position (index 3) * @param {Number} m11 Component in column 1, row 1 position (index 4) * @param {Number} m12 Component in column 1, row 2 position (index 5) * @param {Number} m20 Component in column 2, row 0 position (index 6) * @param {Number} m21 Component in column 2, row 1 position (index 7) * @param {Number} m22 Component in column 2, row 2 position (index 8) * @returns {mat3} A new mat3 */ mat3.fromValues = function(m00, m01, m02, m10, m11, m12, m20, m21, m22) { var out = new glMatrix.ARRAY_TYPE(9); out[0] = m00; out[1] = m01; out[2] = m02; out[3] = m10; out[4] = m11; out[5] = m12; out[6] = m20; out[7] = m21; out[8] = m22; return out; }; /** * Set the components of a mat3 to the given values * * @param {mat3} out the receiving matrix * @param {Number} m00 Component in column 0, row 0 position (index 0) * @param {Number} m01 Component in column 0, row 1 position (index 1) * @param {Number} m02 Component in column 0, row 2 position (index 2) * @param {Number} m10 Component in column 1, row 0 position (index 3) * @param {Number} m11 Component in column 1, row 1 position (index 4) * @param {Number} m12 Component in column 1, row 2 position (index 5) * @param {Number} m20 Component in column 2, row 0 position (index 6) * @param {Number} m21 Component in column 2, row 1 position (index 7) * @param {Number} m22 Component in column 2, row 2 position (index 8) * @returns {mat3} out */ mat3.set = function(out, m00, m01, m02, m10, m11, m12, m20, m21, m22) { out[0] = m00; out[1] = m01; out[2] = m02; out[3] = m10; out[4] = m11; out[5] = m12; out[6] = m20; out[7] = m21; out[8] = m22; return out; }; /** * Set a mat3 to the identity matrix * * @param {mat3} out the receiving matrix * @returns {mat3} out */ mat3.identity = function(out) { out[0] = 1; out[1] = 0; out[2] = 0; out[3] = 0; out[4] = 1; out[5] = 0; out[6] = 0; out[7] = 0; out[8] = 1; return out; }; /** * Transpose the values of a mat3 * * @param {mat3} out the receiving matrix * @param {mat3} a the source matrix * @returns {mat3} out */ mat3.transpose = function(out, a) { // If we are transposing ourselves we can skip a few steps but have to cache some values if (out === a) { var a01 = a[1], a02 = a[2], a12 = a[5]; out[1] = a[3]; out[2] = a[6]; out[3] = a01; out[5] = a[7]; out[6] = a02; out[7] = a12; } else { out[0] = a[0]; out[1] = a[3]; out[2] = a[6]; out[3] = a[1]; out[4] = a[4]; out[5] = a[7]; out[6] = a[2]; out[7] = a[5]; out[8] = a[8]; } return out; }; /** * Inverts a mat3 * * @param {mat3} out the receiving matrix * @param {mat3} a the source matrix * @returns {mat3} out */ mat3.invert = function(out, a) { var a00 = a[0], a01 = a[1], a02 = a[2], a10 = a[3], a11 = a[4], a12 = a[5], a20 = a[6], a21 = a[7], a22 = a[8], b01 = a22 * a11 - a12 * a21, b11 = -a22 * a10 + a12 * a20, b21 = a21 * a10 - a11 * a20, // Calculate the determinant det = a00 * b01 + a01 * b11 + a02 * b21; if (!det) { return null; } det = 1.0 / det; out[0] = b01 * det; out[1] = (-a22 * a01 + a02 * a21) * det; out[2] = (a12 * a01 - a02 * a11) * det; out[3] = b11 * det; out[4] = (a22 * a00 - a02 * a20) * det; out[5] = (-a12 * a00 + a02 * a10) * det; out[6] = b21 * det; out[7] = (-a21 * a00 + a01 * a20) * det; out[8] = (a11 * a00 - a01 * a10) * det; return out; }; /** * Calculates the adjugate of a mat3 * * @param {mat3} out the receiving matrix * @param {mat3} a the source matrix * @returns {mat3} out */ mat3.adjoint = function(out, a) { var a00 = a[0], a01 = a[1], a02 = a[2], a10 = a[3], a11 = a[4], a12 = a[5], a20 = a[6], a21 = a[7], a22 = a[8]; out[0] = (a11 * a22 - a12 * a21); out[1] = (a02 * a21 - a01 * a22); out[2] = (a01 * a12 - a02 * a11); out[3] = (a12 * a20 - a10 * a22); out[4] = (a00 * a22 - a02 * a20); out[5] = (a02 * a10 - a00 * a12); out[6] = (a10 * a21 - a11 * a20); out[7] = (a01 * a20 - a00 * a21); out[8] = (a00 * a11 - a01 * a10); return out; }; /** * Calculates the determinant of a mat3 * * @param {mat3} a the source matrix * @returns {Number} determinant of a */ mat3.determinant = function (a) { var a00 = a[0], a01 = a[1], a02 = a[2], a10 = a[3], a11 = a[4], a12 = a[5], a20 = a[6], a21 = a[7], a22 = a[8]; return a00 * (a22 * a11 - a12 * a21) + a01 * (-a22 * a10 + a12 * a20) + a02 * (a21 * a10 - a11 * a20); }; /** * Multiplies two mat3's * * @param {mat3} out the receiving matrix * @param {mat3} a the first operand * @param {mat3} b the second operand * @returns {mat3} out */ mat3.multiply = function (out, a, b) { var a00 = a[0], a01 = a[1], a02 = a[2], a10 = a[3], a11 = a[4], a12 = a[5], a20 = a[6], a21 = a[7], a22 = a[8], b00 = b[0], b01 = b[1], b02 = b[2], b10 = b[3], b11 = b[4], b12 = b[5], b20 = b[6], b21 = b[7], b22 = b[8]; out[0] = b00 * a00 + b01 * a10 + b02 * a20; out[1] = b00 * a01 + b01 * a11 + b02 * a21; out[2] = b00 * a02 + b01 * a12 + b02 * a22; out[3] = b10 * a00 + b11 * a10 + b12 * a20; out[4] = b10 * a01 + b11 * a11 + b12 * a21; out[5] = b10 * a02 + b11 * a12 + b12 * a22; out[6] = b20 * a00 + b21 * a10 + b22 * a20; out[7] = b20 * a01 + b21 * a11 + b22 * a21; out[8] = b20 * a02 + b21 * a12 + b22 * a22; return out; }; /** * Alias for {@link mat3.multiply} * @function */ mat3.mul = mat3.multiply; /** * Translate a mat3 by the given vector * * @param {mat3} out the receiving matrix * @param {mat3} a the matrix to translate * @param {vec2} v vector to translate by * @returns {mat3} out */ mat3.translate = function(out, a, v) { var a00 = a[0], a01 = a[1], a02 = a[2], a10 = a[3], a11 = a[4], a12 = a[5], a20 = a[6], a21 = a[7], a22 = a[8], x = v[0], y = v[1]; out[0] = a00; out[1] = a01; out[2] = a02; out[3] = a10; out[4] = a11; out[5] = a12; out[6] = x * a00 + y * a10 + a20; out[7] = x * a01 + y * a11 + a21; out[8] = x * a02 + y * a12 + a22; return out; }; /** * Rotates a mat3 by the given angle * * @param {mat3} out the receiving matrix * @param {mat3} a the matrix to rotate * @param {Number} rad the angle to rotate the matrix by * @returns {mat3} out */ mat3.rotate = function (out, a, rad) { var a00 = a[0], a01 = a[1], a02 = a[2], a10 = a[3], a11 = a[4], a12 = a[5], a20 = a[6], a21 = a[7], a22 = a[8], s = Math.sin(rad), c = Math.cos(rad); out[0] = c * a00 + s * a10; out[1] = c * a01 + s * a11; out[2] = c * a02 + s * a12; out[3] = c * a10 - s * a00; out[4] = c * a11 - s * a01; out[5] = c * a12 - s * a02; out[6] = a20; out[7] = a21; out[8] = a22; return out; }; /** * Scales the mat3 by the dimensions in the given vec2 * * @param {mat3} out the receiving matrix * @param {mat3} a the matrix to rotate * @param {vec2} v the vec2 to scale the matrix by * @returns {mat3} out **/ mat3.scale = function(out, a, v) { var x = v[0], y = v[1]; out[0] = x * a[0]; out[1] = x * a[1]; out[2] = x * a[2]; out[3] = y * a[3]; out[4] = y * a[4]; out[5] = y * a[5]; out[6] = a[6]; out[7] = a[7]; out[8] = a[8]; return out; }; /** * Creates a matrix from a vector translation * This is equivalent to (but much faster than): * * mat3.identity(dest); * mat3.translate(dest, dest, vec); * * @param {mat3} out mat3 receiving operation result * @param {vec2} v Translation vector * @returns {mat3} out */ mat3.fromTranslation = function(out, v) { out[0] = 1; out[1] = 0; out[2] = 0; out[3] = 0; out[4] = 1; out[5] = 0; out[6] = v[0]; out[7] = v[1]; out[8] = 1; return out; } /** * Creates a matrix from a given angle * This is equivalent to (but much faster than): * * mat3.identity(dest); * mat3.rotate(dest, dest, rad); * * @param {mat3} out mat3 receiving operation result * @param {Number} rad the angle to rotate the matrix by * @returns {mat3} out */ mat3.fromRotation = function(out, rad) { var s = Math.sin(rad), c = Math.cos(rad); out[0] = c; out[1] = s; out[2] = 0; out[3] = -s; out[4] = c; out[5] = 0; out[6] = 0; out[7] = 0; out[8] = 1; return out; } /** * Creates a matrix from a vector scaling * This is equivalent to (but much faster than): * * mat3.identity(dest); * mat3.scale(dest, dest, vec); * * @param {mat3} out mat3 receiving operation result * @param {vec2} v Scaling vector * @returns {mat3} out */ mat3.fromScaling = function(out, v) { out[0] = v[0]; out[1] = 0; out[2] = 0; out[3] = 0; out[4] = v[1]; out[5] = 0; out[6] = 0; out[7] = 0; out[8] = 1; return out; } /** * Copies the values from a mat2d into a mat3 * * @param {mat3} out the receiving matrix * @param {mat2d} a the matrix to copy * @returns {mat3} out **/ mat3.fromMat2d = function(out, a) { out[0] = a[0]; out[1] = a[1]; out[2] = 0; out[3] = a[2]; out[4] = a[3]; out[5] = 0; out[6] = a[4]; out[7] = a[5]; out[8] = 1; return out; }; /** * Calculates a 3x3 matrix from the given quaternion * * @param {mat3} out mat3 receiving operation result * @param {quat} q Quaternion to create matrix from * * @returns {mat3} out */ mat3.fromQuat = function (out, q) { var x = q[0], y = q[1], z = q[2], w = q[3], x2 = x + x, y2 = y + y, z2 = z + z, xx = x * x2, yx = y * x2, yy = y * y2, zx = z * x2, zy = z * y2, zz = z * z2, wx = w * x2, wy = w * y2, wz = w * z2; out[0] = 1 - yy - zz; out[3] = yx - wz; out[6] = zx + wy; out[1] = yx + wz; out[4] = 1 - xx - zz; out[7] = zy - wx; out[2] = zx - wy; out[5] = zy + wx; out[8] = 1 - xx - yy; return out; }; /** * Calculates a 3x3 normal matrix (transpose inverse) from the 4x4 matrix * * @param {mat3} out mat3 receiving operation result * @param {mat4} a Mat4 to derive the normal matrix from * * @returns {mat3} out */ mat3.normalFromMat4 = function (out, a) { var a00 = a[0], a01 = a[1], a02 = a[2], a03 = a[3], a10 = a[4], a11 = a[5], a12 = a[6], a13 = a[7], a20 = a[8], a21 = a[9], a22 = a[10], a23 = a[11], a30 = a[12], a31 = a[13], a32 = a[14], a33 = a[15], b00 = a00 * a11 - a01 * a10, b01 = a00 * a12 - a02 * a10, b02 = a00 * a13 - a03 * a10, b03 = a01 * a12 - a02 * a11, b04 = a01 * a13 - a03 * a11, b05 = a02 * a13 - a03 * a12, b06 = a20 * a31 - a21 * a30, b07 = a20 * a32 - a22 * a30, b08 = a20 * a33 - a23 * a30, b09 = a21 * a32 - a22 * a31, b10 = a21 * a33 - a23 * a31, b11 = a22 * a33 - a23 * a32, // Calculate the determinant det = b00 * b11 - b01 * b10 + b02 * b09 + b03 * b08 - b04 * b07 + b05 * b06; if (!det) { return null; } det = 1.0 / det; out[0] = (a11 * b11 - a12 * b10 + a13 * b09) * det; out[1] = (a12 * b08 - a10 * b11 - a13 * b07) * det; out[2] = (a10 * b10 - a11 * b08 + a13 * b06) * det; out[3] = (a02 * b10 - a01 * b11 - a03 * b09) * det; out[4] = (a00 * b11 - a02 * b08 + a03 * b07) * det; out[5] = (a01 * b08 - a00 * b10 - a03 * b06) * det; out[6] = (a31 * b05 - a32 * b04 + a33 * b03) * det; out[7] = (a32 * b02 - a30 * b05 - a33 * b01) * det; out[8] = (a30 * b04 - a31 * b02 + a33 * b00) * det; return out; }; /** * Returns a string representation of a mat3 * * @param {mat3} a matrix to represent as a string * @returns {String} string representation of the matrix */ mat3.str = function (a) { return 'mat3(' + a[0] + ', ' + a[1] + ', ' + a[2] + ', ' + a[3] + ', ' + a[4] + ', ' + a[5] + ', ' + a[6] + ', ' + a[7] + ', ' + a[8] + ')'; }; /** * Returns Frobenius norm of a mat3 * * @param {mat3} a the matrix to calculate Frobenius norm of * @returns {Number} Frobenius norm */ mat3.frob = function (a) { return(Math.sqrt(Math.pow(a[0], 2) + Math.pow(a[1], 2) + Math.pow(a[2], 2) + Math.pow(a[3], 2) + Math.pow(a[4], 2) + Math.pow(a[5], 2) + Math.pow(a[6], 2) + Math.pow(a[7], 2) + Math.pow(a[8], 2))) }; /** * Adds two mat3's * * @param {mat3} out the receiving matrix * @param {mat3} a the first operand * @param {mat3} b the second operand * @returns {mat3} out */ mat3.add = function(out, a, b) { out[0] = a[0] + b[0]; out[1] = a[1] + b[1]; out[2] = a[2] + b[2]; out[3] = a[3] + b[3]; out[4] = a[4] + b[4]; out[5] = a[5] + b[5]; out[6] = a[6] + b[6]; out[7] = a[7] + b[7]; out[8] = a[8] + b[8]; return out; }; /** * Subtracts matrix b from matrix a * * @param {mat3} out the receiving matrix * @param {mat3} a the first operand * @param {mat3} b the second operand * @returns {mat3} out */ mat3.subtract = function(out, a, b) { out[0] = a[0] - b[0]; out[1] = a[1] - b[1]; out[2] = a[2] - b[2]; out[3] = a[3] - b[3]; out[4] = a[4] - b[4]; out[5] = a[5] - b[5]; out[6] = a[6] - b[6]; out[7] = a[7] - b[7]; out[8] = a[8] - b[8]; return out; }; /** * Alias for {@link mat3.subtract} * @function */ mat3.sub = mat3.subtract; /** * Multiply each element of the matrix by a scalar. * * @param {mat3} out the receiving matrix * @param {mat3} a the matrix to scale * @param {Number} b amount to scale the matrix's elements by * @returns {mat3} out */ mat3.multiplyScalar = function(out, a, b) { out[0] = a[0] * b; out[1] = a[1] * b; out[2] = a[2] * b; out[3] = a[3] * b; out[4] = a[4] * b; out[5] = a[5] * b; out[6] = a[6] * b; out[7] = a[7] * b; out[8] = a[8] * b; return out; }; /** * Adds two mat3's after multiplying each element of the second operand by a scalar value. * * @param {mat3} out the receiving vector * @param {mat3} a the first operand * @param {mat3} b the second operand * @param {Number} scale the amount to scale b's elements by before adding * @returns {mat3} ou