UNPKG

pako

Version:

zlib port to javascript - fast, modularized, with browser support

1,330 lines (1,140 loc) 112 kB
/*! pako 2.1.0 https://github.com/nodeca/pako @license (MIT AND Zlib) */ (function (global, factory) { typeof exports === 'object' && typeof module !== 'undefined' ? factory(exports) : typeof define === 'function' && define.amd ? define(['exports'], factory) : (global = typeof globalThis !== 'undefined' ? globalThis : global || self, factory(global.pako = {})); })(this, (function (exports) { 'use strict'; // Note: adler32 takes 12% for level 0 and 2% for level 6. // It isn't worth it to make additional optimizations as in original. // Small size is preferable. // (C) 1995-2013 Jean-loup Gailly and Mark Adler // (C) 2014-2017 Vitaly Puzrin and Andrey Tupitsin // // This software is provided 'as-is', without any express or implied // warranty. In no event will the authors be held liable for any damages // arising from the use of this software. // // Permission is granted to anyone to use this software for any purpose, // including commercial applications, and to alter it and redistribute it // freely, subject to the following restrictions: // // 1. The origin of this software must not be misrepresented; you must not // claim that you wrote the original software. If you use this software // in a product, an acknowledgment in the product documentation would be // appreciated but is not required. // 2. Altered source versions must be plainly marked as such, and must not be // misrepresented as being the original software. // 3. This notice may not be removed or altered from any source distribution. const adler32 = (adler, buf, len, pos) => { let s1 = (adler & 0xffff) |0, s2 = ((adler >>> 16) & 0xffff) |0, n = 0; while (len !== 0) { // Set limit ~ twice less than 5552, to keep // s2 in 31-bits, because we force signed ints. // in other case %= will fail. n = len > 2000 ? 2000 : len; len -= n; do { s1 = (s1 + buf[pos++]) |0; s2 = (s2 + s1) |0; } while (--n); s1 %= 65521; s2 %= 65521; } return (s1 | (s2 << 16)) |0; }; var adler32_1 = adler32; // Note: we can't get significant speed boost here. // So write code to minimize size - no pregenerated tables // and array tools dependencies. // (C) 1995-2013 Jean-loup Gailly and Mark Adler // (C) 2014-2017 Vitaly Puzrin and Andrey Tupitsin // // This software is provided 'as-is', without any express or implied // warranty. In no event will the authors be held liable for any damages // arising from the use of this software. // // Permission is granted to anyone to use this software for any purpose, // including commercial applications, and to alter it and redistribute it // freely, subject to the following restrictions: // // 1. The origin of this software must not be misrepresented; you must not // claim that you wrote the original software. If you use this software // in a product, an acknowledgment in the product documentation would be // appreciated but is not required. // 2. Altered source versions must be plainly marked as such, and must not be // misrepresented as being the original software. // 3. This notice may not be removed or altered from any source distribution. // Use ordinary array, since untyped makes no boost here const makeTable = () => { let c, table = []; for (var n = 0; n < 256; n++) { c = n; for (var k = 0; k < 8; k++) { c = ((c & 1) ? (0xEDB88320 ^ (c >>> 1)) : (c >>> 1)); } table[n] = c; } return table; }; // Create table on load. Just 255 signed longs. Not a problem. const crcTable = new Uint32Array(makeTable()); const crc32 = (crc, buf, len, pos) => { const t = crcTable; const end = pos + len; crc ^= -1; for (let i = pos; i < end; i++) { crc = (crc >>> 8) ^ t[(crc ^ buf[i]) & 0xFF]; } return (crc ^ (-1)); // >>> 0; }; var crc32_1 = crc32; // (C) 1995-2013 Jean-loup Gailly and Mark Adler // (C) 2014-2017 Vitaly Puzrin and Andrey Tupitsin // // This software is provided 'as-is', without any express or implied // warranty. In no event will the authors be held liable for any damages // arising from the use of this software. // // Permission is granted to anyone to use this software for any purpose, // including commercial applications, and to alter it and redistribute it // freely, subject to the following restrictions: // // 1. The origin of this software must not be misrepresented; you must not // claim that you wrote the original software. If you use this software // in a product, an acknowledgment in the product documentation would be // appreciated but is not required. // 2. Altered source versions must be plainly marked as such, and must not be // misrepresented as being the original software. // 3. This notice may not be removed or altered from any source distribution. // See state defs from inflate.js const BAD$1 = 16209; /* got a data error -- remain here until reset */ const TYPE$1 = 16191; /* i: waiting for type bits, including last-flag bit */ /* Decode literal, length, and distance codes and write out the resulting literal and match bytes until either not enough input or output is available, an end-of-block is encountered, or a data error is encountered. When large enough input and output buffers are supplied to inflate(), for example, a 16K input buffer and a 64K output buffer, more than 95% of the inflate execution time is spent in this routine. Entry assumptions: state.mode === LEN strm.avail_in >= 6 strm.avail_out >= 258 start >= strm.avail_out state.bits < 8 On return, state.mode is one of: LEN -- ran out of enough output space or enough available input TYPE -- reached end of block code, inflate() to interpret next block BAD -- error in block data Notes: - The maximum input bits used by a length/distance pair is 15 bits for the length code, 5 bits for the length extra, 15 bits for the distance code, and 13 bits for the distance extra. This totals 48 bits, or six bytes. Therefore if strm.avail_in >= 6, then there is enough input to avoid checking for available input while decoding. - The maximum bytes that a single length/distance pair can output is 258 bytes, which is the maximum length that can be coded. inflate_fast() requires strm.avail_out >= 258 for each loop to avoid checking for output space. */ var inffast = function inflate_fast(strm, start) { let _in; /* local strm.input */ let last; /* have enough input while in < last */ let _out; /* local strm.output */ let beg; /* inflate()'s initial strm.output */ let end; /* while out < end, enough space available */ //#ifdef INFLATE_STRICT let dmax; /* maximum distance from zlib header */ //#endif let wsize; /* window size or zero if not using window */ let whave; /* valid bytes in the window */ let wnext; /* window write index */ // Use `s_window` instead `window`, avoid conflict with instrumentation tools let s_window; /* allocated sliding window, if wsize != 0 */ let hold; /* local strm.hold */ let bits; /* local strm.bits */ let lcode; /* local strm.lencode */ let dcode; /* local strm.distcode */ let lmask; /* mask for first level of length codes */ let dmask; /* mask for first level of distance codes */ let here; /* retrieved table entry */ let op; /* code bits, operation, extra bits, or */ /* window position, window bytes to copy */ let len; /* match length, unused bytes */ let dist; /* match distance */ let from; /* where to copy match from */ let from_source; let input, output; // JS specific, because we have no pointers /* copy state to local variables */ const state = strm.state; //here = state.here; _in = strm.next_in; input = strm.input; last = _in + (strm.avail_in - 5); _out = strm.next_out; output = strm.output; beg = _out - (start - strm.avail_out); end = _out + (strm.avail_out - 257); //#ifdef INFLATE_STRICT dmax = state.dmax; //#endif wsize = state.wsize; whave = state.whave; wnext = state.wnext; s_window = state.window; hold = state.hold; bits = state.bits; lcode = state.lencode; dcode = state.distcode; lmask = (1 << state.lenbits) - 1; dmask = (1 << state.distbits) - 1; /* decode literals and length/distances until end-of-block or not enough input data or output space */ top: do { if (bits < 15) { hold += input[_in++] << bits; bits += 8; hold += input[_in++] << bits; bits += 8; } here = lcode[hold & lmask]; dolen: for (;;) { // Goto emulation op = here >>> 24/*here.bits*/; hold >>>= op; bits -= op; op = (here >>> 16) & 0xff/*here.op*/; if (op === 0) { /* literal */ //Tracevv((stderr, here.val >= 0x20 && here.val < 0x7f ? // "inflate: literal '%c'\n" : // "inflate: literal 0x%02x\n", here.val)); output[_out++] = here & 0xffff/*here.val*/; } else if (op & 16) { /* length base */ len = here & 0xffff/*here.val*/; op &= 15; /* number of extra bits */ if (op) { if (bits < op) { hold += input[_in++] << bits; bits += 8; } len += hold & ((1 << op) - 1); hold >>>= op; bits -= op; } //Tracevv((stderr, "inflate: length %u\n", len)); if (bits < 15) { hold += input[_in++] << bits; bits += 8; hold += input[_in++] << bits; bits += 8; } here = dcode[hold & dmask]; dodist: for (;;) { // goto emulation op = here >>> 24/*here.bits*/; hold >>>= op; bits -= op; op = (here >>> 16) & 0xff/*here.op*/; if (op & 16) { /* distance base */ dist = here & 0xffff/*here.val*/; op &= 15; /* number of extra bits */ if (bits < op) { hold += input[_in++] << bits; bits += 8; if (bits < op) { hold += input[_in++] << bits; bits += 8; } } dist += hold & ((1 << op) - 1); //#ifdef INFLATE_STRICT if (dist > dmax) { strm.msg = 'invalid distance too far back'; state.mode = BAD$1; break top; } //#endif hold >>>= op; bits -= op; //Tracevv((stderr, "inflate: distance %u\n", dist)); op = _out - beg; /* max distance in output */ if (dist > op) { /* see if copy from window */ op = dist - op; /* distance back in window */ if (op > whave) { if (state.sane) { strm.msg = 'invalid distance too far back'; state.mode = BAD$1; break top; } // (!) This block is disabled in zlib defaults, // don't enable it for binary compatibility //#ifdef INFLATE_ALLOW_INVALID_DISTANCE_TOOFAR_ARRR // if (len <= op - whave) { // do { // output[_out++] = 0; // } while (--len); // continue top; // } // len -= op - whave; // do { // output[_out++] = 0; // } while (--op > whave); // if (op === 0) { // from = _out - dist; // do { // output[_out++] = output[from++]; // } while (--len); // continue top; // } //#endif } from = 0; // window index from_source = s_window; if (wnext === 0) { /* very common case */ from += wsize - op; if (op < len) { /* some from window */ len -= op; do { output[_out++] = s_window[from++]; } while (--op); from = _out - dist; /* rest from output */ from_source = output; } } else if (wnext < op) { /* wrap around window */ from += wsize + wnext - op; op -= wnext; if (op < len) { /* some from end of window */ len -= op; do { output[_out++] = s_window[from++]; } while (--op); from = 0; if (wnext < len) { /* some from start of window */ op = wnext; len -= op; do { output[_out++] = s_window[from++]; } while (--op); from = _out - dist; /* rest from output */ from_source = output; } } } else { /* contiguous in window */ from += wnext - op; if (op < len) { /* some from window */ len -= op; do { output[_out++] = s_window[from++]; } while (--op); from = _out - dist; /* rest from output */ from_source = output; } } while (len > 2) { output[_out++] = from_source[from++]; output[_out++] = from_source[from++]; output[_out++] = from_source[from++]; len -= 3; } if (len) { output[_out++] = from_source[from++]; if (len > 1) { output[_out++] = from_source[from++]; } } } else { from = _out - dist; /* copy direct from output */ do { /* minimum length is three */ output[_out++] = output[from++]; output[_out++] = output[from++]; output[_out++] = output[from++]; len -= 3; } while (len > 2); if (len) { output[_out++] = output[from++]; if (len > 1) { output[_out++] = output[from++]; } } } } else if ((op & 64) === 0) { /* 2nd level distance code */ here = dcode[(here & 0xffff)/*here.val*/ + (hold & ((1 << op) - 1))]; continue dodist; } else { strm.msg = 'invalid distance code'; state.mode = BAD$1; break top; } break; // need to emulate goto via "continue" } } else if ((op & 64) === 0) { /* 2nd level length code */ here = lcode[(here & 0xffff)/*here.val*/ + (hold & ((1 << op) - 1))]; continue dolen; } else if (op & 32) { /* end-of-block */ //Tracevv((stderr, "inflate: end of block\n")); state.mode = TYPE$1; break top; } else { strm.msg = 'invalid literal/length code'; state.mode = BAD$1; break top; } break; // need to emulate goto via "continue" } } while (_in < last && _out < end); /* return unused bytes (on entry, bits < 8, so in won't go too far back) */ len = bits >> 3; _in -= len; bits -= len << 3; hold &= (1 << bits) - 1; /* update state and return */ strm.next_in = _in; strm.next_out = _out; strm.avail_in = (_in < last ? 5 + (last - _in) : 5 - (_in - last)); strm.avail_out = (_out < end ? 257 + (end - _out) : 257 - (_out - end)); state.hold = hold; state.bits = bits; return; }; // (C) 1995-2013 Jean-loup Gailly and Mark Adler // (C) 2014-2017 Vitaly Puzrin and Andrey Tupitsin // // This software is provided 'as-is', without any express or implied // warranty. In no event will the authors be held liable for any damages // arising from the use of this software. // // Permission is granted to anyone to use this software for any purpose, // including commercial applications, and to alter it and redistribute it // freely, subject to the following restrictions: // // 1. The origin of this software must not be misrepresented; you must not // claim that you wrote the original software. If you use this software // in a product, an acknowledgment in the product documentation would be // appreciated but is not required. // 2. Altered source versions must be plainly marked as such, and must not be // misrepresented as being the original software. // 3. This notice may not be removed or altered from any source distribution. const MAXBITS = 15; const ENOUGH_LENS$1 = 852; const ENOUGH_DISTS$1 = 592; //const ENOUGH = (ENOUGH_LENS+ENOUGH_DISTS); const CODES$1 = 0; const LENS$1 = 1; const DISTS$1 = 2; const lbase = new Uint16Array([ /* Length codes 257..285 base */ 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 19, 23, 27, 31, 35, 43, 51, 59, 67, 83, 99, 115, 131, 163, 195, 227, 258, 0, 0 ]); const lext = new Uint8Array([ /* Length codes 257..285 extra */ 16, 16, 16, 16, 16, 16, 16, 16, 17, 17, 17, 17, 18, 18, 18, 18, 19, 19, 19, 19, 20, 20, 20, 20, 21, 21, 21, 21, 16, 72, 78 ]); const dbase = new Uint16Array([ /* Distance codes 0..29 base */ 1, 2, 3, 4, 5, 7, 9, 13, 17, 25, 33, 49, 65, 97, 129, 193, 257, 385, 513, 769, 1025, 1537, 2049, 3073, 4097, 6145, 8193, 12289, 16385, 24577, 0, 0 ]); const dext = new Uint8Array([ /* Distance codes 0..29 extra */ 16, 16, 16, 16, 17, 17, 18, 18, 19, 19, 20, 20, 21, 21, 22, 22, 23, 23, 24, 24, 25, 25, 26, 26, 27, 27, 28, 28, 29, 29, 64, 64 ]); const inflate_table = (type, lens, lens_index, codes, table, table_index, work, opts) => { const bits = opts.bits; //here = opts.here; /* table entry for duplication */ let len = 0; /* a code's length in bits */ let sym = 0; /* index of code symbols */ let min = 0, max = 0; /* minimum and maximum code lengths */ let root = 0; /* number of index bits for root table */ let curr = 0; /* number of index bits for current table */ let drop = 0; /* code bits to drop for sub-table */ let left = 0; /* number of prefix codes available */ let used = 0; /* code entries in table used */ let huff = 0; /* Huffman code */ let incr; /* for incrementing code, index */ let fill; /* index for replicating entries */ let low; /* low bits for current root entry */ let mask; /* mask for low root bits */ let next; /* next available space in table */ let base = null; /* base value table to use */ // let shoextra; /* extra bits table to use */ let match; /* use base and extra for symbol >= match */ const count = new Uint16Array(MAXBITS + 1); //[MAXBITS+1]; /* number of codes of each length */ const offs = new Uint16Array(MAXBITS + 1); //[MAXBITS+1]; /* offsets in table for each length */ let extra = null; let here_bits, here_op, here_val; /* Process a set of code lengths to create a canonical Huffman code. The code lengths are lens[0..codes-1]. Each length corresponds to the symbols 0..codes-1. The Huffman code is generated by first sorting the symbols by length from short to long, and retaining the symbol order for codes with equal lengths. Then the code starts with all zero bits for the first code of the shortest length, and the codes are integer increments for the same length, and zeros are appended as the length increases. For the deflate format, these bits are stored backwards from their more natural integer increment ordering, and so when the decoding tables are built in the large loop below, the integer codes are incremented backwards. This routine assumes, but does not check, that all of the entries in lens[] are in the range 0..MAXBITS. The caller must assure this. 1..MAXBITS is interpreted as that code length. zero means that that symbol does not occur in this code. The codes are sorted by computing a count of codes for each length, creating from that a table of starting indices for each length in the sorted table, and then entering the symbols in order in the sorted table. The sorted table is work[], with that space being provided by the caller. The length counts are used for other purposes as well, i.e. finding the minimum and maximum length codes, determining if there are any codes at all, checking for a valid set of lengths, and looking ahead at length counts to determine sub-table sizes when building the decoding tables. */ /* accumulate lengths for codes (assumes lens[] all in 0..MAXBITS) */ for (len = 0; len <= MAXBITS; len++) { count[len] = 0; } for (sym = 0; sym < codes; sym++) { count[lens[lens_index + sym]]++; } /* bound code lengths, force root to be within code lengths */ root = bits; for (max = MAXBITS; max >= 1; max--) { if (count[max] !== 0) { break; } } if (root > max) { root = max; } if (max === 0) { /* no symbols to code at all */ //table.op[opts.table_index] = 64; //here.op = (var char)64; /* invalid code marker */ //table.bits[opts.table_index] = 1; //here.bits = (var char)1; //table.val[opts.table_index++] = 0; //here.val = (var short)0; table[table_index++] = (1 << 24) | (64 << 16) | 0; //table.op[opts.table_index] = 64; //table.bits[opts.table_index] = 1; //table.val[opts.table_index++] = 0; table[table_index++] = (1 << 24) | (64 << 16) | 0; opts.bits = 1; return 0; /* no symbols, but wait for decoding to report error */ } for (min = 1; min < max; min++) { if (count[min] !== 0) { break; } } if (root < min) { root = min; } /* check for an over-subscribed or incomplete set of lengths */ left = 1; for (len = 1; len <= MAXBITS; len++) { left <<= 1; left -= count[len]; if (left < 0) { return -1; } /* over-subscribed */ } if (left > 0 && (type === CODES$1 || max !== 1)) { return -1; /* incomplete set */ } /* generate offsets into symbol table for each length for sorting */ offs[1] = 0; for (len = 1; len < MAXBITS; len++) { offs[len + 1] = offs[len] + count[len]; } /* sort symbols by length, by symbol order within each length */ for (sym = 0; sym < codes; sym++) { if (lens[lens_index + sym] !== 0) { work[offs[lens[lens_index + sym]]++] = sym; } } /* Create and fill in decoding tables. In this loop, the table being filled is at next and has curr index bits. The code being used is huff with length len. That code is converted to an index by dropping drop bits off of the bottom. For codes where len is less than drop + curr, those top drop + curr - len bits are incremented through all values to fill the table with replicated entries. root is the number of index bits for the root table. When len exceeds root, sub-tables are created pointed to by the root entry with an index of the low root bits of huff. This is saved in low to check for when a new sub-table should be started. drop is zero when the root table is being filled, and drop is root when sub-tables are being filled. When a new sub-table is needed, it is necessary to look ahead in the code lengths to determine what size sub-table is needed. The length counts are used for this, and so count[] is decremented as codes are entered in the tables. used keeps track of how many table entries have been allocated from the provided *table space. It is checked for LENS and DIST tables against the constants ENOUGH_LENS and ENOUGH_DISTS to guard against changes in the initial root table size constants. See the comments in inftrees.h for more information. sym increments through all symbols, and the loop terminates when all codes of length max, i.e. all codes, have been processed. This routine permits incomplete codes, so another loop after this one fills in the rest of the decoding tables with invalid code markers. */ /* set up for code type */ // poor man optimization - use if-else instead of switch, // to avoid deopts in old v8 if (type === CODES$1) { base = extra = work; /* dummy value--not used */ match = 20; } else if (type === LENS$1) { base = lbase; extra = lext; match = 257; } else { /* DISTS */ base = dbase; extra = dext; match = 0; } /* initialize opts for loop */ huff = 0; /* starting code */ sym = 0; /* starting code symbol */ len = min; /* starting code length */ next = table_index; /* current table to fill in */ curr = root; /* current table index bits */ drop = 0; /* current bits to drop from code for index */ low = -1; /* trigger new sub-table when len > root */ used = 1 << root; /* use root table entries */ mask = used - 1; /* mask for comparing low */ /* check available table space */ if ((type === LENS$1 && used > ENOUGH_LENS$1) || (type === DISTS$1 && used > ENOUGH_DISTS$1)) { return 1; } /* process all codes and make table entries */ for (;;) { /* create table entry */ here_bits = len - drop; if (work[sym] + 1 < match) { here_op = 0; here_val = work[sym]; } else if (work[sym] >= match) { here_op = extra[work[sym] - match]; here_val = base[work[sym] - match]; } else { here_op = 32 + 64; /* end of block */ here_val = 0; } /* replicate for those indices with low len bits equal to huff */ incr = 1 << (len - drop); fill = 1 << curr; min = fill; /* save offset to next table */ do { fill -= incr; table[next + (huff >> drop) + fill] = (here_bits << 24) | (here_op << 16) | here_val |0; } while (fill !== 0); /* backwards increment the len-bit code huff */ incr = 1 << (len - 1); while (huff & incr) { incr >>= 1; } if (incr !== 0) { huff &= incr - 1; huff += incr; } else { huff = 0; } /* go to next symbol, update count, len */ sym++; if (--count[len] === 0) { if (len === max) { break; } len = lens[lens_index + work[sym]]; } /* create new sub-table if needed */ if (len > root && (huff & mask) !== low) { /* if first time, transition to sub-tables */ if (drop === 0) { drop = root; } /* increment past last table */ next += min; /* here min is 1 << curr */ /* determine length of next table */ curr = len - drop; left = 1 << curr; while (curr + drop < max) { left -= count[curr + drop]; if (left <= 0) { break; } curr++; left <<= 1; } /* check for enough space */ used += 1 << curr; if ((type === LENS$1 && used > ENOUGH_LENS$1) || (type === DISTS$1 && used > ENOUGH_DISTS$1)) { return 1; } /* point entry in root table to sub-table */ low = huff & mask; /*table.op[low] = curr; table.bits[low] = root; table.val[low] = next - opts.table_index;*/ table[low] = (root << 24) | (curr << 16) | (next - table_index) |0; } } /* fill in remaining table entry if code is incomplete (guaranteed to have at most one remaining entry, since if the code is incomplete, the maximum code length that was allowed to get this far is one bit) */ if (huff !== 0) { //table.op[next + huff] = 64; /* invalid code marker */ //table.bits[next + huff] = len - drop; //table.val[next + huff] = 0; table[next + huff] = ((len - drop) << 24) | (64 << 16) |0; } /* set return parameters */ //opts.table_index += used; opts.bits = root; return 0; }; var inftrees = inflate_table; // (C) 1995-2013 Jean-loup Gailly and Mark Adler // (C) 2014-2017 Vitaly Puzrin and Andrey Tupitsin // // This software is provided 'as-is', without any express or implied // warranty. In no event will the authors be held liable for any damages // arising from the use of this software. // // Permission is granted to anyone to use this software for any purpose, // including commercial applications, and to alter it and redistribute it // freely, subject to the following restrictions: // // 1. The origin of this software must not be misrepresented; you must not // claim that you wrote the original software. If you use this software // in a product, an acknowledgment in the product documentation would be // appreciated but is not required. // 2. Altered source versions must be plainly marked as such, and must not be // misrepresented as being the original software. // 3. This notice may not be removed or altered from any source distribution. var constants$1 = { /* Allowed flush values; see deflate() and inflate() below for details */ Z_NO_FLUSH: 0, Z_PARTIAL_FLUSH: 1, Z_SYNC_FLUSH: 2, Z_FULL_FLUSH: 3, Z_FINISH: 4, Z_BLOCK: 5, Z_TREES: 6, /* Return codes for the compression/decompression functions. Negative values * are errors, positive values are used for special but normal events. */ Z_OK: 0, Z_STREAM_END: 1, Z_NEED_DICT: 2, Z_ERRNO: -1, Z_STREAM_ERROR: -2, Z_DATA_ERROR: -3, Z_MEM_ERROR: -4, Z_BUF_ERROR: -5, //Z_VERSION_ERROR: -6, /* compression levels */ Z_NO_COMPRESSION: 0, Z_BEST_SPEED: 1, Z_BEST_COMPRESSION: 9, Z_DEFAULT_COMPRESSION: -1, Z_FILTERED: 1, Z_HUFFMAN_ONLY: 2, Z_RLE: 3, Z_FIXED: 4, Z_DEFAULT_STRATEGY: 0, /* Possible values of the data_type field (though see inflate()) */ Z_BINARY: 0, Z_TEXT: 1, //Z_ASCII: 1, // = Z_TEXT (deprecated) Z_UNKNOWN: 2, /* The deflate compression method */ Z_DEFLATED: 8 //Z_NULL: null // Use -1 or null inline, depending on var type }; // (C) 1995-2013 Jean-loup Gailly and Mark Adler // (C) 2014-2017 Vitaly Puzrin and Andrey Tupitsin // // This software is provided 'as-is', without any express or implied // warranty. In no event will the authors be held liable for any damages // arising from the use of this software. // // Permission is granted to anyone to use this software for any purpose, // including commercial applications, and to alter it and redistribute it // freely, subject to the following restrictions: // // 1. The origin of this software must not be misrepresented; you must not // claim that you wrote the original software. If you use this software // in a product, an acknowledgment in the product documentation would be // appreciated but is not required. // 2. Altered source versions must be plainly marked as such, and must not be // misrepresented as being the original software. // 3. This notice may not be removed or altered from any source distribution. const CODES = 0; const LENS = 1; const DISTS = 2; /* Public constants ==========================================================*/ /* ===========================================================================*/ const { Z_FINISH: Z_FINISH$1, Z_BLOCK, Z_TREES, Z_OK: Z_OK$1, Z_STREAM_END: Z_STREAM_END$1, Z_NEED_DICT: Z_NEED_DICT$1, Z_STREAM_ERROR: Z_STREAM_ERROR$1, Z_DATA_ERROR: Z_DATA_ERROR$1, Z_MEM_ERROR: Z_MEM_ERROR$1, Z_BUF_ERROR, Z_DEFLATED } = constants$1; /* STATES ====================================================================*/ /* ===========================================================================*/ const HEAD = 16180; /* i: waiting for magic header */ const FLAGS = 16181; /* i: waiting for method and flags (gzip) */ const TIME = 16182; /* i: waiting for modification time (gzip) */ const OS = 16183; /* i: waiting for extra flags and operating system (gzip) */ const EXLEN = 16184; /* i: waiting for extra length (gzip) */ const EXTRA = 16185; /* i: waiting for extra bytes (gzip) */ const NAME = 16186; /* i: waiting for end of file name (gzip) */ const COMMENT = 16187; /* i: waiting for end of comment (gzip) */ const HCRC = 16188; /* i: waiting for header crc (gzip) */ const DICTID = 16189; /* i: waiting for dictionary check value */ const DICT = 16190; /* waiting for inflateSetDictionary() call */ const TYPE = 16191; /* i: waiting for type bits, including last-flag bit */ const TYPEDO = 16192; /* i: same, but skip check to exit inflate on new block */ const STORED = 16193; /* i: waiting for stored size (length and complement) */ const COPY_ = 16194; /* i/o: same as COPY below, but only first time in */ const COPY = 16195; /* i/o: waiting for input or output to copy stored block */ const TABLE = 16196; /* i: waiting for dynamic block table lengths */ const LENLENS = 16197; /* i: waiting for code length code lengths */ const CODELENS = 16198; /* i: waiting for length/lit and distance code lengths */ const LEN_ = 16199; /* i: same as LEN below, but only first time in */ const LEN = 16200; /* i: waiting for length/lit/eob code */ const LENEXT = 16201; /* i: waiting for length extra bits */ const DIST = 16202; /* i: waiting for distance code */ const DISTEXT = 16203; /* i: waiting for distance extra bits */ const MATCH = 16204; /* o: waiting for output space to copy string */ const LIT = 16205; /* o: waiting for output space to write literal */ const CHECK = 16206; /* i: waiting for 32-bit check value */ const LENGTH = 16207; /* i: waiting for 32-bit length (gzip) */ const DONE = 16208; /* finished check, done -- remain here until reset */ const BAD = 16209; /* got a data error -- remain here until reset */ const MEM = 16210; /* got an inflate() memory error -- remain here until reset */ const SYNC = 16211; /* looking for synchronization bytes to restart inflate() */ /* ===========================================================================*/ const ENOUGH_LENS = 852; const ENOUGH_DISTS = 592; //const ENOUGH = (ENOUGH_LENS+ENOUGH_DISTS); const MAX_WBITS = 15; /* 32K LZ77 window */ const DEF_WBITS = MAX_WBITS; const zswap32 = (q) => { return (((q >>> 24) & 0xff) + ((q >>> 8) & 0xff00) + ((q & 0xff00) << 8) + ((q & 0xff) << 24)); }; function InflateState() { this.strm = null; /* pointer back to this zlib stream */ this.mode = 0; /* current inflate mode */ this.last = false; /* true if processing last block */ this.wrap = 0; /* bit 0 true for zlib, bit 1 true for gzip, bit 2 true to validate check value */ this.havedict = false; /* true if dictionary provided */ this.flags = 0; /* gzip header method and flags (0 if zlib), or -1 if raw or no header yet */ this.dmax = 0; /* zlib header max distance (INFLATE_STRICT) */ this.check = 0; /* protected copy of check value */ this.total = 0; /* protected copy of output count */ // TODO: may be {} this.head = null; /* where to save gzip header information */ /* sliding window */ this.wbits = 0; /* log base 2 of requested window size */ this.wsize = 0; /* window size or zero if not using window */ this.whave = 0; /* valid bytes in the window */ this.wnext = 0; /* window write index */ this.window = null; /* allocated sliding window, if needed */ /* bit accumulator */ this.hold = 0; /* input bit accumulator */ this.bits = 0; /* number of bits in "in" */ /* for string and stored block copying */ this.length = 0; /* literal or length of data to copy */ this.offset = 0; /* distance back to copy string from */ /* for table and code decoding */ this.extra = 0; /* extra bits needed */ /* fixed and dynamic code tables */ this.lencode = null; /* starting table for length/literal codes */ this.distcode = null; /* starting table for distance codes */ this.lenbits = 0; /* index bits for lencode */ this.distbits = 0; /* index bits for distcode */ /* dynamic table building */ this.ncode = 0; /* number of code length code lengths */ this.nlen = 0; /* number of length code lengths */ this.ndist = 0; /* number of distance code lengths */ this.have = 0; /* number of code lengths in lens[] */ this.next = null; /* next available space in codes[] */ this.lens = new Uint16Array(320); /* temporary storage for code lengths */ this.work = new Uint16Array(288); /* work area for code table building */ /* because we don't have pointers in js, we use lencode and distcode directly as buffers so we don't need codes */ //this.codes = new Int32Array(ENOUGH); /* space for code tables */ this.lendyn = null; /* dynamic table for length/literal codes (JS specific) */ this.distdyn = null; /* dynamic table for distance codes (JS specific) */ this.sane = 0; /* if false, allow invalid distance too far */ this.back = 0; /* bits back of last unprocessed length/lit */ this.was = 0; /* initial length of match */ } const inflateStateCheck = (strm) => { if (!strm) { return 1; } const state = strm.state; if (!state || state.strm !== strm || state.mode < HEAD || state.mode > SYNC) { return 1; } return 0; }; const inflateResetKeep = (strm) => { if (inflateStateCheck(strm)) { return Z_STREAM_ERROR$1; } const state = strm.state; strm.total_in = strm.total_out = state.total = 0; strm.msg = ''; /*Z_NULL*/ if (state.wrap) { /* to support ill-conceived Java test suite */ strm.adler = state.wrap & 1; } state.mode = HEAD; state.last = 0; state.havedict = 0; state.flags = -1; state.dmax = 32768; state.head = null/*Z_NULL*/; state.hold = 0; state.bits = 0; //state.lencode = state.distcode = state.next = state.codes; state.lencode = state.lendyn = new Int32Array(ENOUGH_LENS); state.distcode = state.distdyn = new Int32Array(ENOUGH_DISTS); state.sane = 1; state.back = -1; //Tracev((stderr, "inflate: reset\n")); return Z_OK$1; }; const inflateReset = (strm) => { if (inflateStateCheck(strm)) { return Z_STREAM_ERROR$1; } const state = strm.state; state.wsize = 0; state.whave = 0; state.wnext = 0; return inflateResetKeep(strm); }; const inflateReset2 = (strm, windowBits) => { let wrap; /* get the state */ if (inflateStateCheck(strm)) { return Z_STREAM_ERROR$1; } const state = strm.state; /* extract wrap request from windowBits parameter */ if (windowBits < 0) { wrap = 0; windowBits = -windowBits; } else { wrap = (windowBits >> 4) + 5; if (windowBits < 48) { windowBits &= 15; } } /* set number of window bits, free window if different */ if (windowBits && (windowBits < 8 || windowBits > 15)) { return Z_STREAM_ERROR$1; } if (state.window !== null && state.wbits !== windowBits) { state.window = null; } /* update state and reset the rest of it */ state.wrap = wrap; state.wbits = windowBits; return inflateReset(strm); }; const inflateInit2 = (strm, windowBits) => { if (!strm) { return Z_STREAM_ERROR$1; } //strm.msg = Z_NULL; /* in case we return an error */ const state = new InflateState(); //if (state === Z_NULL) return Z_MEM_ERROR; //Tracev((stderr, "inflate: allocated\n")); strm.state = state; state.strm = strm; state.window = null/*Z_NULL*/; state.mode = HEAD; /* to pass state test in inflateReset2() */ const ret = inflateReset2(strm, windowBits); if (ret !== Z_OK$1) { strm.state = null/*Z_NULL*/; } return ret; }; const inflateInit = (strm) => { return inflateInit2(strm, DEF_WBITS); }; /* Return state with length and distance decoding tables and index sizes set to fixed code decoding. Normally this returns fixed tables from inffixed.h. If BUILDFIXED is defined, then instead this routine builds the tables the first time it's called, and returns those tables the first time and thereafter. This reduces the size of the code by about 2K bytes, in exchange for a little execution time. However, BUILDFIXED should not be used for threaded applications, since the rewriting of the tables and virgin may not be thread-safe. */ let virgin = true; let lenfix, distfix; // We have no pointers in JS, so keep tables separate const fixedtables = (state) => { /* build fixed huffman tables if first call (may not be thread safe) */ if (virgin) { lenfix = new Int32Array(512); distfix = new Int32Array(32); /* literal/length table */ let sym = 0; while (sym < 144) { state.lens[sym++] = 8; } while (sym < 256) { state.lens[sym++] = 9; } while (sym < 280) { state.lens[sym++] = 7; } while (sym < 288) { state.lens[sym++] = 8; } inftrees(LENS, state.lens, 0, 288, lenfix, 0, state.work, { bits: 9 }); /* distance table */ sym = 0; while (sym < 32) { state.lens[sym++] = 5; } inftrees(DISTS, state.lens, 0, 32, distfix, 0, state.work, { bits: 5 }); /* do this just once */ virgin = false; } state.lencode = lenfix; state.lenbits = 9; state.distcode = distfix; state.distbits = 5; }; /* Update the window with the last wsize (normally 32K) bytes written before returning. If window does not exist yet, create it. This is only called when a window is already in use, or when output has been written during this inflate call, but the end of the deflate stream has not been reached yet. It is also called to create a window for dictionary data when a dictionary is loaded. Providing output buffers larger than 32K to inflate() should provide a speed advantage, since only the last 32K of output is copied to the sliding window upon return from inflate(), and since all distances after the first 32K of output will fall in the output data, making match copies simpler and faster. The advantage may be dependent on the size of the processor's data caches. */ const updatewindow = (strm, src, end, copy) => { let dist; const state = strm.state; /* if it hasn't been done already, allocate space for the window */ if (state.window === null) { state.wsize = 1 << state.wbits; state.wnext = 0; state.whave = 0; state.window = new Uint8Array(state.wsize); } /* copy state->wsize or less output bytes into the circular window */ if (copy >= state.wsize) { state.window.set(src.subarray(end - state.wsize, end), 0); state.wnext = 0; state.whave = state.wsize; } else { dist = state.wsize - state.wnext; if (dist > copy) { dist = copy; } //zmemcpy(state->window + state->wnext, end - copy, dist); state.window.set(src.subarray(end - copy, end - copy + dist), state.wnext); copy -= dist; if (copy) { //zmemcpy(state->window, end - copy, copy); state.window.set(src.subarray(end - copy, end), 0); state.wnext = copy; state.whave = state.wsize; } else { state.wnext += dist; if (state.wnext === state.wsize) { state.wnext = 0; } if (state.whave < state.wsize) { state.whave += dist; } } } return 0; }; const inflate$1 = (strm, flush) => { let state; let input, output; // input/output buffers let next; /* next input INDEX */ let put; /* next output INDEX */ let have, left; /* available input and output */ let hold; /* bit buffer */ let bits; /* bits in bit buffer */ let _in, _out; /* save starting available input and output */ let copy; /* number of stored or match bytes to copy */ let from; /* where to copy match bytes from */ let from_source; let here = 0; /* current decoding table entry */ let here_bits, here_op, here_val; // paked "here" denormalized (JS specific) //let last; /* parent table entry */ let last_bits, last_op, last_val; // paked "last" denormalized (JS specific) let len; /* length to copy for repeats, bits to drop */ let ret; /* return code */ const hbuf = new Uint8Array(4); /* buffer for gzip header crc calculation */ let opts; let n; // temporary variable for NEED_BITS const order = /* permutation of code lengths */ new Uint8Array([ 16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15 ]); if (inflateStateCheck(strm) || !strm.output || (!strm.input && strm.avail_in !== 0)) { return Z_STREAM_ERROR$1; } state = strm.state; if (state.mode === TYPE) { state.mode = TYPEDO; } /* skip check */ //--- LOAD() --- put = strm.next_out; output = strm.output; left = strm.avail_out; next = strm.next_in; input = strm.input; have = strm.avail_in; hold = state.hold; bits = state.bits; //--- _in = have; _out = left; ret = Z_OK$1; inf_leave: // goto emulation for (;;) { switch (state.mode) { case HEAD: if (state.wrap === 0) { state.mode = TYPEDO; break; } //=== NEEDBITS(16); while (bits < 16) { if (have === 0) { break inf_leave; } have--; hold += input[next++] << bits; bits += 8; } //===// if ((state.wrap & 2) && hold === 0x8b1f) { /* gzip header */ if (state.wbits === 0) { state.wbits = 15; } state.check = 0/*crc32(0L, Z_NULL, 0)*/; //=== CRC2(state.check, hold); hbuf[0] = hold & 0xff; hbuf[1] = (hold >>> 8) & 0xff; state.check = crc32_1(state.check, hbuf, 2, 0); //===// //=== INITBITS(); hold = 0; bits = 0; //===// state.mode = FLAGS; brea