UNPKG

p5

Version:

[![npm version](https://badge.fury.io/js/p5.svg)](https://www.npmjs.com/package/p5)

841 lines (817 loc) 21.3 kB
import { x as RAD_TO_DEG, D as DEG_TO_RAD } from '../constants-BRcElHU3.js'; /** * @module Math * @submodule Trigonometry * @for p5 * @requires core * @requires constants */ function trigonometry(p5, fn){ const DEGREES = fn.DEGREES = 'degrees'; const RADIANS = fn.RADIANS = 'radians'; /* * all DEGREES/RADIANS conversion should be done in the p5 instance * if possible, using the p5._toRadians(), p5._fromRadians() methods. */ fn._angleMode = RADIANS; /** * Calculates the arc cosine of a number. * * `acos()` is the inverse of <a href="#/p5/cos">cos()</a>. It expects * arguments in the range -1 to 1. By default, `acos()` returns values in the * range 0 to &pi; (about 3.14). If the * <a href="#/p5/angleMode">angleMode()</a> is `DEGREES`, then values are * returned in the range 0 to 180. * * @method acos * @param {Number} value value whose arc cosine is to be returned. * @return {Number} arc cosine of the given value. * * @example * <div> * <code> * function setup() { * createCanvas(100, 100); * * background(200); * * // Calculate cos() and acos() values. * let a = PI; * let c = cos(a); * let ac = acos(c); * * // Display the values. * text(`${round(a, 3)}`, 35, 25); * text(`${round(c, 3)}`, 35, 50); * text(`${round(ac, 3)}`, 35, 75); * * describe('The numbers 3.142, -1, and 3.142 written on separate rows.'); * } * </code> * </div> * * <div> * <code> * function setup() { * createCanvas(100, 100); * * background(200); * * // Calculate cos() and acos() values. * let a = PI + QUARTER_PI; * let c = cos(a); * let ac = acos(c); * * // Display the values. * text(`${round(a, 3)}`, 35, 25); * text(`${round(c, 3)}`, 35, 50); * text(`${round(ac, 3)}`, 35, 75); * * describe('The numbers 3.927, -0.707, and 2.356 written on separate rows.'); * } * </code> * </div> */ fn.acos = function(ratio) { return this._fromRadians(Math.acos(ratio)); }; /** * Calculates the arc sine of a number. * * `asin()` is the inverse of <a href="#/p5/sin">sin()</a>. It expects input * values in the range of -1 to 1. By default, `asin()` returns values in the * range -&pi; &divide; 2 (about -1.57) to &pi; &divide; 2 (about 1.57). If * the <a href="#/p5/angleMode">angleMode()</a> is `DEGREES` then values are * returned in the range -90 to 90. * * @method asin * @param {Number} value value whose arc sine is to be returned. * @return {Number} arc sine of the given value. * * @example * <div> * <code> * function setup() { * createCanvas(100, 100); * * background(200); * * // Calculate sin() and asin() values. * let a = PI / 3; * let s = sin(a); * let as = asin(s); * * // Display the values. * text(`${round(a, 3)}`, 35, 25); * text(`${round(s, 3)}`, 35, 50); * text(`${round(as, 3)}`, 35, 75); * * describe('The numbers 1.047, 0.866, and 1.047 written on separate rows.'); * } * </code> * </div> * * <div> * <code> * function setup() { * createCanvas(100, 100); * * background(200); * * // Calculate sin() and asin() values. * let a = PI + PI / 3; * let s = sin(a); * let as = asin(s); * * // Display the values. * text(`${round(a, 3)}`, 35, 25); * text(`${round(s, 3)}`, 35, 50); * text(`${round(as, 3)}`, 35, 75); * * describe('The numbers 4.189, -0.866, and -1.047 written on separate rows.'); * } * </code> * </div> */ fn.asin = function(ratio) { return this._fromRadians(Math.asin(ratio)); }; /** * Calculates the arc tangent of a number. * * `atan()` is the inverse of <a href="#/p5/tan">tan()</a>. It expects input * values in the range of -Infinity to Infinity. By default, `atan()` returns * values in the range -&pi; &divide; 2 (about -1.57) to &pi; &divide; 2 * (about 1.57). If the <a href="#/p5/angleMode">angleMode()</a> is `DEGREES` * then values are returned in the range -90 to 90. * * @method atan * @param {Number} value value whose arc tangent is to be returned. * @return {Number} arc tangent of the given value. * * @example * <div> * <code> * function setup() { * createCanvas(100, 100); * * background(200); * * // Calculate tan() and atan() values. * let a = PI / 3; * let t = tan(a); * let at = atan(t); * * // Display the values. * text(`${round(a, 3)}`, 35, 25); * text(`${round(t, 3)}`, 35, 50); * text(`${round(at, 3)}`, 35, 75); * * describe('The numbers 1.047, 1.732, and 1.047 written on separate rows.'); * } * </code> * </div> * * <div> * <code> * function setup() { * createCanvas(100, 100); * * background(200); * * // Calculate tan() and atan() values. * let a = PI + PI / 3; * let t = tan(a); * let at = atan(t); * * // Display the values. * text(`${round(a, 3)}`, 35, 25); * text(`${round(t, 3)}`, 35, 50); * text(`${round(at, 3)}`, 35, 75); * * describe('The numbers 4.189, 1.732, and 1.047 written on separate rows.'); * } * </code> * </div> */ fn.atan = function(ratio) { return this._fromRadians(Math.atan(ratio)); }; /** * Calculates the angle formed by a point, the origin, and the positive * x-axis. * * `atan2()` is most often used for orienting geometry to the mouse's * position, as in `atan2(mouseY, mouseX)`. The first parameter is the point's * y-coordinate and the second parameter is its x-coordinate. * * By default, `atan2()` returns values in the range * -&pi; (about -3.14) to &pi; (3.14). If the * <a href="#/p5/angleMode">angleMode()</a> is `DEGREES`, then values are * returned in the range -180 to 180. * * @method atan2 * @param {Number} y y-coordinate of the point. * @param {Number} x x-coordinate of the point. * @return {Number} arc tangent of the given point. * * @example * <div> * <code> * function setup() { * createCanvas(100, 100); * * describe('A rectangle at the top-left of the canvas rotates with mouse movements.'); * } * * function draw() { * background(200); * * // Calculate the angle between the mouse * // and the origin. * let a = atan2(mouseY, mouseX); * * // Rotate. * rotate(a); * * // Draw the shape. * rect(0, 0, 60, 10); * } * </code> * </div> * * <div> * <code> * function setup() { * createCanvas(100, 100); * * describe('A rectangle at the center of the canvas rotates with mouse movements.'); * } * * function draw() { * background(200); * * // Translate the origin to the center. * translate(50, 50); * * // Get the mouse's coordinates relative to the origin. * let x = mouseX - 50; * let y = mouseY - 50; * * // Calculate the angle between the mouse and the origin. * let a = atan2(y, x); * * // Rotate. * rotate(a); * * // Draw the shape. * rect(-30, -5, 60, 10); * } * </code> * </div> */ fn.atan2 = function(y, x) { return this._fromRadians(Math.atan2(y, x)); }; /** * Calculates the cosine of an angle. * * `cos()` is useful for many geometric tasks in creative coding. The values * returned oscillate between -1 and 1 as the input angle increases. `cos()` * calculates the cosine of an angle, using radians by default, or according * to if <a href="#/p5/angleMode">angleMode()</a> setting (RADIANS or DEGREES). * * @method cos * @param {Number} angle the angle, in radians by default, or according to if <a href="/reference/p5/angleMode/">angleMode()</a> setting (RADIANS or DEGREES). * @return {Number} cosine of the angle. * * @example * <div> * <code> * function setup() { * createCanvas(100, 100); * * describe('A white ball on a string oscillates left and right.'); * } * * function draw() { * background(200); * * // Calculate the coordinates. * let x = 30 * cos(frameCount * 0.05) + 50; * let y = 50; * * // Draw the oscillator. * line(50, y, x, y); * circle(x, y, 20); * } * </code> * </div> * * <div> * <code> * function setup() { * createCanvas(100, 100); * * background(200); * * describe('A series of black dots form a wave pattern.'); * } * * function draw() { * // Calculate the coordinates. * let x = frameCount; * let y = 30 * cos(x * 0.1) + 50; * * // Draw the point. * point(x, y); * } * </code> * </div> * * <div> * <code> * function setup() { * createCanvas(100, 100); * * background(200); * * describe('A series of black dots form an infinity symbol.'); * } * * function draw() { * // Calculate the coordinates. * let x = 30 * cos(frameCount * 0.1) + 50; * let y = 10 * sin(frameCount * 0.2) + 50; * * // Draw the point. * point(x, y); * } * </code> * </div> */ fn.cos = function(angle) { return Math.cos(this._toRadians(angle)); }; /** * Calculates the sine of an angle. * * `sin()` is useful for many geometric tasks in creative coding. The values * returned oscillate between -1 and 1 as the input angle increases. `sin()` * calculates the sine of an angle, using radians by default, or according to * if <a href="#/p5/angleMode">angleMode()</a> setting (RADIANS or DEGREES). * * @method sin * @param {Number} angle the angle, in radians by default, or according to if <a href="/reference/p5/angleMode/">angleMode()</a> setting (RADIANS or DEGREES). * @return {Number} sine of the angle. * * @example * <div> * <code> * function setup() { * createCanvas(100, 100); * * describe('A white ball on a string oscillates up and down.'); * } * * function draw() { * background(200); * * // Calculate the coordinates. * let x = 50; * let y = 30 * sin(frameCount * 0.05) + 50; * * // Draw the oscillator. * line(50, y, x, y); * circle(x, y, 20); * } * </code> * </div> * * <div> * <code> * function setup() { * createCanvas(100, 100); * * background(200); * * describe('A series of black dots form a wave pattern.'); * } * * function draw() { * // Calculate the coordinates. * let x = frameCount; * let y = 30 * sin(x * 0.1) + 50; * * // Draw the point. * point(x, y); * } * </code> * </div> * * <div> * <code> * function setup() { * createCanvas(100, 100); * * background(200); * * describe('A series of black dots form an infinity symbol.'); * } * * function draw() { * // Calculate the coordinates. * let x = 30 * cos(frameCount * 0.1) + 50; * let y = 10 * sin(frameCount * 0.2) + 50; * * // Draw the point. * point(x, y); * } * </code> * </div> */ fn.sin = function(angle) { return Math.sin(this._toRadians(angle)); }; /** * Calculates the tangent of an angle. * * `tan()` is useful for many geometric tasks in creative coding. The values * returned range from -Infinity to Infinity and repeat periodically as the * input angle increases. `tan()` calculates the tan of an angle, using radians * by default, or according to * if <a href="#/p5/angleMode">angleMode()</a> setting (RADIANS or DEGREES). * * @method tan * @param {Number} angle the angle, in radians by default, or according to if <a href="/reference/p5/angleMode/">angleMode()</a> setting (RADIANS or DEGREES). * @return {Number} tangent of the angle. * * @example * <div> * <code> * function setup() { * createCanvas(100, 100); * * background(200); * * describe('A series of identical curves drawn with black dots. Each curve starts from the top of the canvas, continues down at a slight angle, flattens out at the middle of the canvas, then continues to the bottom.'); * } * * function draw() { * // Calculate the coordinates. * let x = frameCount; * let y = 5 * tan(x * 0.1) + 50; * * // Draw the point. * point(x, y); * } * </code> * </div> */ fn.tan = function(angle) { return Math.tan(this._toRadians(angle)); }; /** * Converts an angle measured in radians to its value in degrees. * * Degrees and radians are both units for measuring angles. There are 360˚ in * one full rotation. A full rotation is 2 &times; &pi; (about 6.28) radians. * * The same angle can be expressed in with either unit. For example, 90° is a * quarter of a full rotation. The same angle is 2 &times; &pi; &divide; 4 * (about 1.57) radians. * * @method degrees * @param {Number} radians radians value to convert to degrees. * @return {Number} converted angle. * * @example * <div> * <code> * function setup() { * createCanvas(100, 100); * * background(200); * * // Calculate the angle conversion. * let rad = QUARTER_PI; * let deg = degrees(rad); * * // Display the conversion. * text(`${round(rad, 2)} rad = ${deg}˚`, 10, 50); * * describe('The text "0.79 rad = 45˚".'); * } * </code> * </div> */ fn.degrees = angle => angle * RAD_TO_DEG; /** * Converts an angle measured in degrees to its value in radians. * * Degrees and radians are both units for measuring angles. There are 360˚ in * one full rotation. A full rotation is 2 &times; &pi; (about 6.28) radians. * * The same angle can be expressed in with either unit. For example, 90° is a * quarter of a full rotation. The same angle is 2 &times; &pi; &divide; 4 * (about 1.57) radians. * * @method radians * @param {Number} degrees degree value to convert to radians. * @return {Number} converted angle. * * @example * <div> * <code> * function setup() { * createCanvas(100, 100); * * background(200); * * // Caclulate the angle conversion. * let deg = 45; * let rad = radians(deg); * * // Display the angle conversion. * text(`${deg}˚ = ${round(rad, 3)} rad`, 10, 50); * * describe('The text "45˚ = 0.785 rad".'); * } * </code> * </div> */ fn.radians = angle => angle * DEG_TO_RAD; /** * Changes the unit system used to measure angles. * * Degrees and radians are both units for measuring angles. There are 360˚ in * one full rotation. A full rotation is 2 &times; &pi; (about 6.28) radians. * * Functions such as <a href="#/p5/rotate">rotate()</a> and * <a href="#/p5/sin">sin()</a> expect angles measured radians by default. * Calling `angleMode(DEGREES)` switches to degrees. Calling * `angleMode(RADIANS)` switches back to radians. * * Calling `angleMode()` with no arguments returns current angle mode, which * is either `RADIANS` or `DEGREES`. * * @method angleMode * @param {(RADIANS|DEGREES)} mode either RADIANS or DEGREES. * @example * <div> * <code> * function setup() { * createCanvas(100, 100); * * background(200); * * // Rotate 1/8 turn. * rotate(QUARTER_PI); * * // Draw a line. * line(0, 0, 80, 0); * * describe('A diagonal line radiating from the top-left corner of a square.'); * } * </code> * </div> * * <div> * <code> * function setup() { * createCanvas(100, 100); * * background(200); * * // Use degrees. * angleMode(DEGREES); * * // Rotate 1/8 turn. * rotate(45); * * // Draw a line. * line(0, 0, 80, 0); * * describe('A diagonal line radiating from the top-left corner of a square.'); * } * </code> * </div> * * <div> * <code> * function setup() { * createCanvas(100, 100); * * background(50); * * // Calculate the angle to rotate. * let angle = TWO_PI / 7; * * // Move the origin to the center. * translate(50, 50); * * // Style the flower. * noStroke(); * fill(255, 50); * * // Draw the flower. * for (let i = 0; i < 7; i += 1) { * ellipse(0, 0, 80, 20); * rotate(angle); * } * * describe('A translucent white flower on a dark background.'); * } * </code> * </div> * * <div> * <code> * function setup() { * createCanvas(100, 100); * * background(50); * * // Use degrees. * angleMode(DEGREES); * * // Calculate the angle to rotate. * let angle = 360 / 7; * * // Move the origin to the center. * translate(50, 50); * * // Style the flower. * noStroke(); * fill(255, 50); * * // Draw the flower. * for (let i = 0; i < 7; i += 1) { * ellipse(0, 0, 80, 20); * rotate(angle); * } * * describe('A translucent white flower on a dark background.'); * } * </code> * </div> * * <div> * <code> * function setup() { * createCanvas(100, 100); * * describe('A white ball on a string oscillates left and right.'); * } * * function draw() { * background(200); * * // Calculate the coordinates. * let x = 30 * cos(frameCount * 0.05) + 50; * let y = 50; * * // Draw the oscillator. * line(50, y, x, y); * circle(x, y, 20); * } * </code> * </div> * * <div> * <code> * function setup() { * createCanvas(100, 100); * * // Use degrees. * angleMode(DEGREES); * * describe('A white ball on a string oscillates left and right.'); * } * * function draw() { * background(200); * * // Calculate the coordinates. * let x = 30 * cos(frameCount * 2.86) + 50; * let y = 50; * * // Draw the oscillator. * line(50, y, x, y); * circle(x, y, 20); * } * </code> * </div> * * <div> * <code> * function setup() { * createCanvas(100, 100); * * background(200); * * // Draw the upper line. * rotate(PI / 6); * line(0, 0, 80, 0); * * // Use degrees. * angleMode(DEGREES); * * // Draw the lower line. * rotate(30); * line(0, 0, 80, 0); * * describe('Two diagonal lines radiating from the top-left corner of a square. The lines are oriented 30 degrees from the edges of the square and 30 degrees apart from each other.'); * } * </code> * </div> */ /** * @method angleMode * @return {(RADIANS|DEGREES)} mode either RADIANS or DEGREES */ fn.angleMode = function(mode) { // p5._validateParameters('angleMode', arguments); if (typeof mode === 'undefined') { return this._angleMode; } else if (mode === DEGREES || mode === RADIANS) { const prevMode = this._angleMode; // No change if(mode === prevMode) return; // Otherwise adjust pRotation according to new mode // This is necessary for acceleration events to work properly if(mode === RADIANS) { // Change pRotation to radians this.pRotationX = this.pRotationX * DEG_TO_RAD; this.pRotationY = this.pRotationY * DEG_TO_RAD; this.pRotationZ = this.pRotationZ * DEG_TO_RAD; } else { // Change pRotation to degrees this.pRotationX = this.pRotationX * RAD_TO_DEG; this.pRotationY = this.pRotationY * RAD_TO_DEG; this.pRotationZ = this.pRotationZ * RAD_TO_DEG; } this._angleMode = mode; } }; /** * converts angles from the current angleMode to RADIANS * * @method _toRadians * @private * @param {Number} angle * @returns {Number} */ fn._toRadians = function(angle) { if (this._angleMode === DEGREES) { return angle * DEG_TO_RAD; } return angle; }; /** * converts angles from the current angleMode to DEGREES * * @method _toDegrees * @private * @param {Number} angle * @returns {Number} */ fn._toDegrees = function(angle) { if (this._angleMode === RADIANS) { return angle * RAD_TO_DEG; } return angle; }; /** * converts angles from RADIANS into the current angleMode * * @method _fromRadians * @private * @param {Number} angle * @returns {Number} */ fn._fromRadians = function(angle) { if (this._angleMode === DEGREES) { return angle * RAD_TO_DEG; } return angle; }; /** * converts angles from DEGREES into the current angleMode * * @method _fromDegrees * @private * @param {Number} angle * @returns {Number} */ fn._fromDegrees = function(angle) { if (this._angleMode === RADIANS) { return angle * DEG_TO_RAD; } return angle; }; } if(typeof p5 !== 'undefined'){ trigonometry(p5, p5.prototype); } export { trigonometry as default };