UNPKG

p5

Version:

[![npm version](https://badge.fury.io/js/p5.svg)](https://www.npmjs.com/package/p5)

1,310 lines (1,262 loc) 79.5 kB
import { Vector } from '../p5.Vector.js'; import { MatrixInterface } from './MatrixInterface.js'; import '../../constants-BRcElHU3.js'; /** * @module Math */ const isPerfectSquare = (arr) => { const sqDimention = Math.sqrt(Array.from(arr).length); if (sqDimention % 1 !== 0) { throw new Error("Array length must be a perfect square."); } return true; }; let GLMAT_ARRAY_TYPE = Array; let isMatrixArray = (x) => Array.isArray(x); if (typeof Float32Array !== "undefined") { GLMAT_ARRAY_TYPE = Float32Array; isMatrixArray = (x) => Array.isArray(x) || x instanceof Float32Array; } class Matrix extends MatrixInterface { matrix; #sqDimention; constructor(...args) { super(...args); // This is default behavior when object // instantiated using createMatrix() if (isMatrixArray(args[0]) && isPerfectSquare(args[0])) { const sqDimention = Math.sqrt(Array.from(args[0]).length); this.#sqDimention = sqDimention; this.matrix = GLMAT_ARRAY_TYPE.from(args[0]); } else if (typeof args[0] === "number") { this.#sqDimention = Number(args[0]); this.matrix = this.#createIdentityMatrix(args[0]); } return this; } /** * Returns the 3x3 matrix if the dimensions are 3x3, otherwise returns `undefined`. * * This method returns the matrix if its dimensions are 3x3. * If the matrix is not 3x3, it returns `undefined`. * * @returns {Array|undefined} The 3x3 matrix or `undefined` if the matrix is not 3x3. */ get mat3() { if (this.#sqDimention === 3) { return this.matrix; } else { return undefined; } } /** * Returns the 4x4 matrix if the dimensions are 4x4, otherwise returns `undefined`. * * This method returns the matrix if its dimensions are 4x4. * If the matrix is not 4x4, it returns `undefined`. * * @returns {Array|undefined} The 4x4 matrix or `undefined` if the matrix is not 4x4. */ get mat4() { if (this.#sqDimention === 4) { return this.matrix; } else { return undefined; } } /** * Adds the corresponding elements of the given matrix to this matrix, if the dimentions are the same. * * @param {Matrix} matrix - The matrix to add to this matrix. It must have the same dimensions as this matrix. * @returns {Matrix} The resulting matrix after addition. * @throws {Error} If the matrices do not have the same dimensions. * * @example * const matrix1 = new p5.Matrix([1, 2, 3]); * const matrix2 = new p5.Matrix([4, 5, 6]); * matrix1.add(matrix2); // matrix1 is now [5, 7, 9] * * // p5.js script example * <div class="norender"><code> * function setup() { * * const matrix1 = new p5.Matrix([1, 2, 3, 4]); * const matrix2 = new p5.Matrix([5, 6, 7, 8]); * matrix1.add(matrix2); * console.log(matrix1.matrix); // Output: [6, 8, 10, 12] * } * </code></div> */ add(matrix) { if (this.matrix.length !== matrix.matrix.length) { throw new Error("Matrices must be of the same dimension to add."); } for (let i = 0; i < this.matrix.length; i++) { this.matrix[i] += matrix.matrix[i]; } return this; } /** * Sets the value of a specific element in the matrix in column-major order. * * A matrix is stored in column-major order, meaning elements are arranged column by column. * This function allows you to update or change the value of a specific element * in the matrix by specifying its index in the column-major order and the new value. * * Parameters: * - `index` (number): The position in the matrix where the value should be set. * Indices start from 0 and follow column-major order. * - `value` (any): The new value you want to assign to the specified element. * * Example: * If you have the following 3x3 matrix stored in column-major order: * ``` * [ * 1, 4, 7, // Column 1 * 2, 5, 8, // Column 2 * 3, 6, 9 // Column 3 * ] * ``` * Calling `setElement(4, 10)` will update the element at index 4 * (which corresponds to row 2, column 2 in row-major order) to `10`. * The updated matrix will look like this: * ``` * [ * 1, 4, 7, * 2, 10, 8, * 3, 6, 9 * ] * ``` * * This function is useful for modifying specific parts of the matrix without * having to recreate the entire structure. * * @param {Number} index - The position in the matrix where the value should be set. * Must be a non-negative integer less than the length of the matrix. * @param {Number} value - The new value to be assigned to the specified position in the matrix. * @returns {Matrix} The current instance of the Matrix, allowing for method chaining. * * @example * // Assuming matrix is an instance of Matrix with initial values [1, 2, 3, 4] matrix.setElement(2, 99); * // Now the matrix values are [1, 2, 99, 4] * * // p5.js script example * <div class="norender"><code> * function setup() { * * const matrix = new p5.Matrix([1, 2, 3, 4]); * matrix.setElement(2, 99); * console.log(matrix.matrix); // Output: [1, 2, 99, 4] * } * </code></div> */ setElement(index, value) { if (index >= 0 && index < this.matrix.length) { this.matrix[index] = value; } return this; } /** * Resets the current matrix to an identity matrix. * * This method replaces the current matrix with an identity matrix of the same dimensions. * An identity matrix is a square matrix with ones on the main diagonal and zeros elsewhere. * This is useful for resetting transformations or starting fresh with a clean matrix. * * @returns {Matrix} The current instance of the Matrix class, allowing for method chaining. * * @example * // Resetting a 4x4 matrix to an identity matrix * const matrix = new p5.Matrix(4); * matrix.scale(2, 2, 2); // Apply some transformations * console.log(matrix.matrix); // Output: Transformed matrix * matrix.reset(); // Reset to identity matrix * console.log(matrix.matrix); // Output: Identity matrix * * // p5.js script example * <div class="norender"><code> * function setup() { * * const matrix = new p5.Matrix(4); * matrix.scale(2, 2, 2); // Apply scaling transformation * console.log("Before reset:", matrix.matrix); * matrix.reset(); // Reset to identity matrix * console.log("After reset:", matrix.matrix); * } * </code></div> */ reset() { this.matrix = this.#createIdentityMatrix(this.#sqDimention); return this; } /** * Replace the entire contents of a NxN matrix. * * This method allows you to replace the values of the current matrix with * those from another matrix, an array, or individual arguments. The input * can be a `Matrix` instance, an array of numbers, or individual numbers * that match the dimensions of the current matrix. The values are copied * without referencing the source object, ensuring that the original input * remains unchanged. * * If the input dimensions do not match the current matrix, an error will * be thrown to ensure consistency. * * @param {Matrix|Float32Array|Number[]} [inMatrix] - The input matrix, array, * or individual numbers to replace the current matrix values. * @returns {Matrix} The current instance of the Matrix class, allowing for * method chaining. * * @example * // Replacing the contents of a matrix with another matrix * const matrix1 = new p5.Matrix([1, 2, 3, 4]); * const matrix2 = new p5.Matrix([5, 6, 7, 8]); * matrix1.set(matrix2); * console.log(matrix1.matrix); // Output: [5, 6, 7, 8] * * // Replacing the contents of a matrix with an array * const matrix = new p5.Matrix([1, 2, 3, 4]); * matrix.set([9, 10, 11, 12]); * console.log(matrix.matrix); // Output: [9, 10, 11, 12] * * // Replacing the contents of a matrix with individual numbers * const matrix = new p5.Matrix(4); // Creates a 4x4 identity matrix * matrix.set(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16); * console.log(matrix.matrix); // Output: [1, 2, 3, ..., 16] * * // p5.js script example * <div class="norender"><code> * function setup() { * * const matrix = new p5.Matrix([1, 2, 3, 4]); * console.log("Before set:", matrix.matrix); * matrix.set([5, 6, 7, 8]); * console.log("After set:", matrix.matrix); // Output: [5, 6, 7, 8] * } * </code></div> */ set(inMatrix) { let refArray = GLMAT_ARRAY_TYPE.from([...arguments]); if (inMatrix instanceof Matrix) { refArray = GLMAT_ARRAY_TYPE.from(inMatrix.matrix); } else if (isMatrixArray(inMatrix)) { refArray = GLMAT_ARRAY_TYPE.from(inMatrix); } if (refArray.length !== this.matrix.length) { p5._friendlyError( `Expected same dimensions values but received different ${refArray.length}.`, "p5.Matrix.set" ); return this; } this.matrix = refArray; return this; } /** * Gets a copy of the matrix, returns a p5.Matrix object. * * This method creates a new instance of the `Matrix` class and copies the * current matrix values into it. The returned matrix is independent of the * original, meaning changes to the copy will not affect the original matrix. * * This is useful when you need to preserve the current state of a matrix * while performing operations on a duplicate. * * @return {p5.Matrix} A new instance of the `Matrix` class containing the * same values as the original matrix. * * @example * // p5.js script example * <div class="norender"><code> * function setup() { * * const originalMatrix = new p5.Matrix([1, 2, 3, 4]); * const copiedMatrix = originalMatrix.get(); * console.log("Original Matrix:", originalMatrix.matrix); // Output: [1, 2, 3, 4] * console.log("Copied Matrix:", copiedMatrix.matrix); // Output: [1, 2, 3, 4] * * // Modify the copied matrix * copiedMatrix.setElement(2, 99); * console.log("Modified Copied Matrix:", copiedMatrix.matrix); // Output: [1, 2, 99, 4] * console.log("Original Matrix remains unchanged:", originalMatrix.matrix); // Output: [1, 2, 3, 4] * } * </code></div> */ get() { return new Matrix(this.matrix); // TODO: Pass p5 } /** * Return a copy of this matrix. * If this matrix is 4x4, a 4x4 matrix with exactly the same entries will be * generated. The same is true if this matrix is 3x3 or any NxN matrix. * * This method is useful when you need to preserve the current state of a matrix * while performing operations on a duplicate. The returned matrix is independent * of the original, meaning changes to the copy will not affect the original matrix. * * @return {p5.Matrix} The result matrix. * * @example * // p5.js script example * <div class="norender"><code> * function setup() { * * const originalMatrix = new p5.Matrix([1, 2, 3, 4, 5, 6, 7, 8, 9]); * const copiedMatrix = originalMatrix.copy(); * console.log("Original Matrix:", originalMatrix.matrix); * console.log("Copied Matrix:", copiedMatrix.matrix); * * // Modify the copied matrix * copiedMatrix.setElement(4, 99); * console.log("Modified Copied Matrix:", copiedMatrix.matrix); * console.log("Original Matrix remains unchanged:", originalMatrix.matrix); * } * </code></div> */ copy() { return new Matrix(this.matrix); } /** * Creates a copy of the current matrix instance. * This method is useful when you need a duplicate of the matrix * without modifying the original one. * * @returns {Matrix} A new matrix instance that is a copy of the current matrix. * * @example * // p5.js script example * <div class="norender"><code> * function setup() { * * const originalMatrix = new p5.Matrix([1, 2, 3, 4, 5, 6, 7, 8, 9]); * const clonedMatrix = originalMatrix.clone(); * console.log("Original Matrix:", originalMatrix.matrix); * console.log("Cloned Matrix:", clonedMatrix.matrix); * * // Modify the cloned matrix * clonedMatrix.setElement(4, 99); * console.log("Modified Cloned Matrix:", clonedMatrix.matrix); * console.log("Original Matrix remains unchanged:", originalMatrix.matrix); * } * </code></div> */ clone() { return this.copy(); } /** * Returns the diagonal elements of the matrix in the form of an array. * A NxN matrix will return an array of length N. * * This method extracts the diagonal elements of the matrix, which are the * elements where the row index equals the column index. For example, in a * 3x3 matrix: * ``` * [ * 1, 2, 3, * 4, 5, 6, * 7, 8, 9 * ] * ``` * The diagonal elements are [1, 5, 9]. * * This is useful for operations that require the main diagonal of a matrix, * such as calculating the trace of a matrix or verifying if a matrix is diagonal. * * @return {Number[]} An array obtained by arranging the diagonal elements * of the matrix in ascending order of index. * * @example * // Extracting the diagonal elements of a matrix * const matrix = new p5.Matrix([1, 2, 3, 4, 5, 6, 7, 8, 9]); * const diagonal = matrix.diagonal(); // [1, 5, 9] * * // p5.js script example * <div class="norender"><code> * function setup() { * * const matrix = new p5.Matrix([1, 2, 3, 4, 5, 6, 7, 8, 9]); * const diagonal = matrix.diagonal(); * console.log("Diagonal elements:", diagonal); // Output: [1, 5, 9] * } * </code></div> */ diagonal() { const diagonal = []; for (let i = 0; i < this.#sqDimention; i++) { diagonal.push(this.matrix[i * (this.#sqDimention + 1)]); } return diagonal; } /** * This function is only for 3x3 matrices A function that returns a row vector of a NxN matrix. * * This method extracts a specific row from the matrix and returns it as a `p5.Vector`. * The row is determined by the `columnIndex` parameter, which specifies the column * index of the matrix. This is useful for operations that require working with * individual rows of a matrix, such as row transformations or dot products. * * @param {Number} columnIndex - The index of the column to extract as a row vector. * Must be a non-negative integer less than the matrix dimension. * @return {p5.Vector} A `p5.Vector` representing the extracted row of the matrix. * * @example * // Extracting a row vector from a 3x3 matrix * const matrix = new p5.Matrix([1, 2, 3, 4, 5, 6, 7, 8, 9]); * const rowVector = matrix.row(1); // Returns a vector [2, 5, 8] * * // p5.js script example * <div class="norender"><code> * function setup() { * * const matrix = new p5.Matrix([1, 2, 3, 4, 5, 6, 7, 8, 9]); * const rowVector = matrix.row(1); // Extract the second row (index 1) * console.log("Row Vector:", rowVector.toString()); // Output: Row Vector: [2, 5, 8] * } * </code></div> */ row(columnIndex) { const columnVector = []; for (let i = 0; i < this.#sqDimention; i++) { columnVector.push(this.matrix[i * this.#sqDimention + columnIndex]); } return new Vector(...columnVector); } /** * A function that returns a column vector of a NxN matrix. * * This method extracts a specific column from the matrix and returns it as a `p5.Vector`. * The column is determined by the `rowIndex` parameter, which specifies the row index * of the matrix. This is useful for operations that require working with individual * columns of a matrix, such as column transformations or dot products. * * @param {Number} rowIndex - The index of the row to extract as a column vector. * Must be a non-negative integer less than the matrix dimension. * @return {p5.Vector} A `p5.Vector` representing the extracted column of the matrix. * * @example * // Extracting a column vector from a 3x3 matrix * const matrix = new p5.Matrix([1, 2, 3, 4, 5, 6, 7, 8, 9]); * const columnVector = matrix.column(1); // Returns a vector [4, 5, 6] * * // p5.js script example * <div class="norender"><code> * function setup() { * * const matrix = new p5.Matrix([1, 2, 3, 4, 5, 6, 7, 8, 9]); * const columnVector = matrix.column(1); // Extract the second column (index 1) * console.log("Column Vector:", columnVector.toString()); // Output: Column Vector: [4, 5, 6] * } * </code></div> */ column(rowIndex) { const rowVector = []; for (let i = 0; i < this.#sqDimention; i++) { rowVector.push(this.matrix[rowIndex * this.#sqDimention + i]); } return new Vector(...rowVector); } /** * Transposes the given matrix `a` based on the square dimension of the matrix. * * This method rearranges the elements of the matrix such that the rows become columns * and the columns become rows. It handles matrices of different dimensions (4x4, 3x3, NxN) * by delegating to specific transpose methods for each case. * * If no argument is provided, the method transposes the current matrix instance. * If an argument is provided, it transposes the given matrix `a` and updates the current matrix. * * @param {Array} [a] - The matrix to be transposed. It should be a 2D array where each sub-array represents a row. * If omitted, the current matrix instance is transposed. * @returns {Matrix} - The current instance of the Matrix class, allowing for method chaining. * * @example * // Transposing a 3x3 matrix * const matrix = new p5.Matrix([1, 2, 3, 4, 5, 6, 7, 8, 9]); * matrix.transpose(); * console.log(matrix.matrix); // Output: [1, 4, 7, 2, 5, 8, 3, 6, 9] * * // Transposing a 4x4 matrix * const matrix4x4 = new p5.Matrix(4); * matrix4x4.transpose(); * console.log(matrix4x4.matrix); // Output: Transposed 4x4 identity matrix * * // p5.js script example * <div class="norender"><code> * function setup() { * * const matrix = new p5.Matrix([1, 2, 3, 4, 5, 6, 7, 8, 9]); * console.log("Before transpose:", matrix.matrix); * matrix.transpose(); * console.log("After transpose:", matrix.matrix); // Output: [1, 4, 7, 2, 5, 8, 3, 6, 9] * } * </code></div> */ transpose(a) { if (this.#sqDimention === 4) { return this.#transpose4x4(a); } else if (this.#sqDimention === 3) { return this.#transpose3x3(a); } else { return this.#transposeNxN(a); } } /** * Multiplies the current matrix with another matrix or matrix-like array. * * This method supports several types of input: * - Another Matrix instance * - A matrix-like array (must be a perfect square, e.g., 4x4 or 3x3) * - Multiple arguments that form a perfect square matrix * * If the input is the same as the current matrix, a copy is made to avoid modifying the original matrix. * * The method determines the appropriate multiplication strategy based on the dimensions of the current matrix * and the input matrix. It supports 3x3, 4x4, and NxN matrices. * * @param {Matrix|Array|...number} multMatrix - The matrix or matrix-like array to multiply with. * @returns {Matrix|undefined} The resulting matrix after multiplication, or undefined if the input is invalid. * @chainable * * @example * // Multiplying two 3x3 matrices * const matrix1 = new p5.Matrix([1, 2, 3, 4, 5, 6, 7, 8, 9]); * const matrix2 = new p5.Matrix([9, 8, 7, 6, 5, 4, 3, 2, 1]); * matrix1.mult(matrix2); * console.log(matrix1.matrix); // Output: [30, 24, 18, 84, 69, 54, 138, 114, 90] * * // Multiplying a 4x4 matrix with another 4x4 matrix * const matrix4x4_1 = new p5.Matrix(4); // Identity matrix * const matrix4x4_2 = new p5.Matrix([1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 2, 3, 1]); * matrix4x4_1.mult(matrix4x4_2); * console.log(matrix4x4_1.matrix); // Output: [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 2, 3, 1] * * // p5.js script example * <div class="norender"><code> * function setup() { * * const matrix1 = new p5.Matrix([1, 2, 3, 4, 5, 6, 7, 8, 9]); * const matrix2 = new p5.Matrix([9, 8, 7, 6, 5, 4, 3, 2, 1]); * console.log("Before multiplication:", matrix1.matrix); * matrix1.mult(matrix2); * console.log("After multiplication:", matrix1.matrix); // Output: [30, 24, 18, 84, 69, 54, 138, 114, 90] * } * </code></div> */ mult(multMatrix) { let _src; if (multMatrix === this || multMatrix === this.matrix) { _src = this.copy().matrix; // only need to allocate in this rare case } else if (multMatrix instanceof Matrix) { _src = multMatrix.matrix; } else if (isMatrixArray(multMatrix) && isPerfectSquare(multMatrix)) { _src = multMatrix; } else if (isPerfectSquare(arguments)) { _src = Array.from(arguments); } else ; if (this.#sqDimention === 4 && _src.length === 16) { return this.#mult4x4(_src); } else if (this.#sqDimention === 3 && _src.length === 9) { return this.#mult3x3(_src); } else { return this.#multNxN(_src); } } /** * Takes a vector and returns the vector resulting from multiplying to that vector by this matrix from left. This function is only for 3x3 matrices. * * This method applies the current 3x3 matrix to a given vector, effectively * transforming the vector using the matrix. The resulting vector is returned * as a new vector or stored in the provided target vector. * * @param {p5.Vector} multVector - The vector to which this matrix applies. * @param {p5.Vector} [target] - The vector to receive the result. If not provided, * a copy of the input vector will be created and returned. * @return {p5.Vector} - The transformed vector after applying the matrix. * * @example * // Multiplying a 3x3 matrix with a vector * const matrix = new p5.Matrix([1, 2, 3, 4, 5, 6, 7, 8, 9]); * const vector = new p5.Vector(1, 2, 3); * const result = matrix.multiplyVec(vector); * console.log(result.toString()); // Output: Transformed vector * * // p5.js script example * <div class="norender"><code> * function setup() { * * const matrix = new p5.Matrix([1, 2, 3, 4, 5, 6, 7, 8, 9]); * const vector = new p5.Vector(1, 2, 3); * const result = matrix.multiplyVec(vector); * console.log("Original Vector:", vector.toString()); // Output : Original Vector: [1, 2, 3] * console.log("Transformed Vector:", result.toString()); // Output : Transformed Vector: [30, 36, 42] * } * </code></div> */ multiplyVec(multVector, target) { if (target === undefined) { target = multVector.copy(); } for (let i = 0; i < this.#sqDimention; i++) { target.values[i] = this.row(i).dot(multVector); } return target; } /** * Inverts a given matrix. * * This method inverts a matrix based on its dimensions. Currently, it supports * 3x3 and 4x4 matrices. If the matrix dimension is greater than 4, an error is thrown. * * For 4x4 matrices, it uses a specialized algorithm to compute the inverse. * For 3x3 matrices, it uses a different algorithm optimized for smaller matrices. * * If the matrix is singular (non-invertible), the method will return `null`. * * @param {Array} a - The matrix to be inverted. It should be a 2D array representing the matrix. * @returns {Array|null} - The inverted matrix, or `null` if the matrix is singular. * @throws {Error} - Throws an error if the matrix dimension is greater than 4. * * @example * // Inverting a 3x3 matrix * const matrix = new p5.Matrix([1, 2, 3, 0, 1, 4, 5, 6, 0]); * const invertedMatrix = matrix.invert(); * console.log(invertedMatrix.matrix); // Output: Inverted 3x3 matrix * * // Inverting a 4x4 matrix * const matrix4x4 = new p5.Matrix(4); // Identity matrix * matrix4x4.scale(2, 2, 2); * const invertedMatrix4x4 = matrix4x4.invert(); * console.log(invertedMatrix4x4.matrix); // Output: Inverted 4x4 matrix * * // p5.js script example * <div class="norender"><code> * function setup() { * * const matrix = new p5.Matrix([1, 2, 3, 0, 1, 4, 5, 6, 0]); * console.log("Original Matrix:", matrix.matrix); * const invertedMatrix = matrix.invert(); * if (invertedMatrix) { * console.log("Inverted Matrix:", invertedMatrix.matrix); * } else { * console.log("Matrix is singular and cannot be inverted."); * } * } * </code></div> */ invert(a) { if (this.#sqDimention === 4) { return this.#invert4x4(a); } else if (this.#sqDimention === 3) { return this.#invert3x3(a); } else { throw new Error( "Invert is not implemented for N>4 at the moment, we are working on it" ); } } /** * Creates a 3x3 matrix whose entries are the top left 3x3 part and returns it. This function is only for 4x4 matrices. * * This method extracts the top-left 3x3 portion of a 4x4 matrix and creates a new * 3x3 matrix from it. This is particularly useful in 3D graphics for operations * that require only the rotational or scaling components of a transformation matrix. * * If the current matrix is not 4x4, an error is thrown to ensure the method is used * correctly. The resulting 3x3 matrix is independent of the original matrix, meaning * changes to the new matrix will not affect the original. * * @return {p5.Matrix} A new 3x3 matrix containing the top-left portion of the original 4x4 matrix. * @throws {Error} If the current matrix is not 4x4. * * @example * // Extracting a 3x3 submatrix from a 4x4 matrix * const matrix4x4 = new p5.Matrix(4); // Creates a 4x4 identity matrix * matrix4x4.scale(2, 2, 2); // Apply scaling transformation * const subMatrix3x3 = matrix4x4.createSubMatrix3x3(); * console.log("Original 4x4 Matrix:", matrix4x4.matrix); * console.log("Extracted 3x3 Submatrix:", subMatrix3x3.matrix); * * // p5.js script example * <div class="norender"><code> * function setup() { * * const matrix4x4 = new p5.Matrix(4); // Creates a 4x4 identity matrix * matrix4x4.scale(2, 2, 2); // Apply scaling transformation * console.log("Original 4x4 Matrix:", matrix4x4.matrix); * * const subMatrix3x3 = matrix4x4.createSubMatrix3x3(); * console.log("Extracted 3x3 Submatrix:", subMatrix3x3.matrix); * } * </code></div> */ createSubMatrix3x3() { if (this.#sqDimention === 4) { const result = new Matrix(3); result.mat3[0] = this.matrix[0]; result.mat3[1] = this.matrix[1]; result.mat3[2] = this.matrix[2]; result.mat3[3] = this.matrix[4]; result.mat3[4] = this.matrix[5]; result.mat3[5] = this.matrix[6]; result.mat3[6] = this.matrix[8]; result.mat3[7] = this.matrix[9]; result.mat3[8] = this.matrix[10]; return result; } else { throw new Error("Matrix dimension must be 4 to create a 3x3 submatrix."); } } /** * Converts a 4×4 matrix to its 3×3 inverse transpose transform. * This is commonly used in MVMatrix to NMatrix conversions, particularly * in 3D graphics for transforming normal vectors. * * This method extracts the top-left 3×3 portion of a 4×4 matrix, inverts it, * and then transposes the result. If the matrix is singular (non-invertible), * the resulting matrix will be zeroed out. * * @param {p5.Matrix} mat4 - The 4×4 matrix to be converted. * @returns {Matrix} The current instance of the Matrix class, allowing for method chaining. * @throws {Error} If the current matrix is not 3×3. * * @example * // Converting a 4×4 matrix to its 3×3 inverse transpose * const mat4 = new p5.Matrix(4); // Create a 4×4 identity matrix * mat4.scale(2, 2, 2); // Apply scaling transformation * const mat3 = new p5.Matrix(3); // Create a 3×3 matrix * mat3.inverseTranspose4x4(mat4); * console.log("Converted 3×3 Matrix:", mat3.matrix); * * // p5.js script example * <div class="norender"><code> * function setup() { * * const mat4 = new p5.Matrix(4); // Create a 4×4 identity matrix * mat4.scale(2, 2, 2); // Apply scaling transformation * console.log("Original 4×4 Matrix:", mat4.matrix); * * const mat3 = new p5.Matrix(3); // Create a 3×3 matrix * mat3.inverseTranspose4x4(mat4); * console.log("Converted 3×3 Matrix:", mat3.matrix); * } * </code></div> */ inverseTranspose4x4({ mat4 }) { if (this.#sqDimention !== 3) { throw new Error("This function only works with 3×3 matrices."); } else { // Convert mat4 -> mat3 by extracting the top-left 3×3 portion this.matrix[0] = mat4[0]; this.matrix[1] = mat4[1]; this.matrix[2] = mat4[2]; this.matrix[3] = mat4[4]; this.matrix[4] = mat4[5]; this.matrix[5] = mat4[6]; this.matrix[6] = mat4[8]; this.matrix[7] = mat4[9]; this.matrix[8] = mat4[10]; } const inverse = this.invert(); // Check if inversion succeeded if (inverse) { inverse.transpose(this.matrix); } else { // In case of singularity, zero out the matrix for (let i = 0; i < 9; i++) { this.matrix[i] = 0; } } return this; } /** * Applies a transformation matrix to the current matrix. * * This method multiplies the current matrix by another matrix, which can be provided * in several forms: another Matrix instance, an array representing a matrix, or as * individual arguments representing the elements of a 4x4 matrix. * * This operation is useful for combining transformations such as translation, rotation, * scaling, and perspective projection into a single matrix. By applying a transformation * matrix, you can modify the current matrix to represent a new transformation. * * @param {Matrix|Array|number} multMatrix - The matrix to multiply with. This can be: * - An instance of the Matrix class. * - An array of 16 numbers representing a 4x4 matrix. * - 16 individual numbers representing the elements of a 4x4 matrix. * @returns {Matrix} The current matrix after applying the transformation. * * @example * <div class="norender"><code> * function setup() { * * // Assuming `matrix` is an instance of Matrix * const anotherMatrix = new p5.Matrix(4); * const anotherMatrix = [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1]; * matrix.apply(anotherMatrix); * * // Applying a transformation using an array * const matrixArray = [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1]; * matrix.apply(matrixArray); * * // Applying a transformation using individual arguments * matrix.apply(1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1); * * * // Create a 4x4 identity matrix * const matrix = new p5.Matrix(4); * console.log("Original Matrix:", matrix.matrix); * * // Create a scaling transformation matrix * const scalingMatrix = new p5.Matrix([2, 0, 0, 0, 0, 2, 0, 0, 0, 0, 2, 0, 0, 0, 0, 1]); * * // Apply the scaling transformation * matrix.apply(scalingMatrix); * console.log("After Scaling Transformation:", matrix.matrix); * * // Apply a translation transformation using an array * const translationMatrix = [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 5, 5, 5, 1]; * matrix.apply(translationMatrix); * console.log("After Translation Transformation:", matrix.matrix); * } * </code></div> */ apply(multMatrix) { let _src; if (multMatrix === this || multMatrix === this.matrix) { _src = this.copy().matrix; // only need to allocate in this rare case } else if (multMatrix instanceof Matrix) { _src = multMatrix.matrix; } else if (isMatrixArray(multMatrix)) { _src = multMatrix; } else if (arguments.length === 16) { _src = arguments; } else { return; // nothing to do. } const mat4 = this.matrix; // each row is used for the multiplier const m0 = mat4[0]; const m4 = mat4[4]; const m8 = mat4[8]; const m12 = mat4[12]; mat4[0] = _src[0] * m0 + _src[1] * m4 + _src[2] * m8 + _src[3] * m12; mat4[4] = _src[4] * m0 + _src[5] * m4 + _src[6] * m8 + _src[7] * m12; mat4[8] = _src[8] * m0 + _src[9] * m4 + _src[10] * m8 + _src[11] * m12; mat4[12] = _src[12] * m0 + _src[13] * m4 + _src[14] * m8 + _src[15] * m12; const m1 = mat4[1]; const m5 = mat4[5]; const m9 = mat4[9]; const m13 = mat4[13]; mat4[1] = _src[0] * m1 + _src[1] * m5 + _src[2] * m9 + _src[3] * m13; mat4[5] = _src[4] * m1 + _src[5] * m5 + _src[6] * m9 + _src[7] * m13; mat4[9] = _src[8] * m1 + _src[9] * m5 + _src[10] * m9 + _src[11] * m13; mat4[13] = _src[12] * m1 + _src[13] * m5 + _src[14] * m9 + _src[15] * m13; const m2 = mat4[2]; const m6 = mat4[6]; const m10 = mat4[10]; const m14 = mat4[14]; mat4[2] = _src[0] * m2 + _src[1] * m6 + _src[2] * m10 + _src[3] * m14; mat4[6] = _src[4] * m2 + _src[5] * m6 + _src[6] * m10 + _src[7] * m14; mat4[10] = _src[8] * m2 + _src[9] * m6 + _src[10] * m10 + _src[11] * m14; mat4[14] = _src[12] * m2 + _src[13] * m6 + _src[14] * m10 + _src[15] * m14; const m3 = mat4[3]; const m7 = mat4[7]; const m11 = mat4[11]; const m15 = mat4[15]; mat4[3] = _src[0] * m3 + _src[1] * m7 + _src[2] * m11 + _src[3] * m15; mat4[7] = _src[4] * m3 + _src[5] * m7 + _src[6] * m11 + _src[7] * m15; mat4[11] = _src[8] * m3 + _src[9] * m7 + _src[10] * m11 + _src[11] * m15; mat4[15] = _src[12] * m3 + _src[13] * m7 + _src[14] * m11 + _src[15] * m15; return this; } /** * Scales a p5.Matrix by scalars or a vector. * * This method applies a scaling transformation to the current matrix. * Scaling is a transformation that enlarges or shrinks objects by a scale factor * along the x, y, and z axes. The scale factors can be provided as individual * numbers, an array, or a `p5.Vector`. * * If a `p5.Vector` or an array is provided, the x, y, and z components are extracted * from it. If the z component is not provided, it defaults to 1 (no scaling along the z-axis). * * @param {p5.Vector|Float32Array|Number[]} s - The vector or scalars to scale by. * Can be a `p5.Vector`, an array, or individual numbers. * @returns {Matrix} The current instance of the Matrix class, allowing for method chaining. * * @example * // Scaling a matrix by individual scalars * const matrix = new p5.Matrix(4); // Create a 4x4 identity matrix * matrix.scale(2, 3, 4); // Scale by 2 along x, 3 along y, and 4 along z * console.log(matrix.matrix); * * // Scaling a matrix by a p5.Vector * const scaleVector = new p5.Vector(2, 3, 4); * matrix.scale(scaleVector); * console.log(matrix.matrix); * * // Scaling a matrix by an array * const scaleArray = [2, 3, 4]; * matrix.scale(scaleArray); * console.log(matrix.matrix); * * // p5.js script example * <div class="norender"><code> * function setup() { * * const matrix = new p5.Matrix(4); // Create a 4x4 identity matrix * console.log("Original Matrix:", matrix.matrix); * * // Scale the matrix by individual scalars * matrix.scale(2, 3, 4); * console.log("Scaled Matrix (2, 3, 4):", matrix.matrix); * * // Scale the matrix by a p5.Vector * const scaleVector = new p5.Vector(1.5, 2.5, 3.5); * matrix.scale(scaleVector); * console.log("Scaled Matrix (Vector):", matrix.matrix); * * // Scale the matrix by an array * const scaleArray = [0.5, 0.5, 0.5]; * matrix.scale(scaleArray); * console.log("Scaled Matrix (Array):", matrix.matrix); * } * </code></div> */ scale(x, y, z) { if (x instanceof Vector) { // x is a vector, extract the components from it. y = x.y; z = x.z; x = x.x; // must be last } else if (x instanceof Array) { // x is an array, extract the components from it. y = x[1]; z = x[2]; x = x[0]; // must be last } this.matrix[0] *= x; this.matrix[1] *= x; this.matrix[2] *= x; this.matrix[3] *= x; this.matrix[4] *= y; this.matrix[5] *= y; this.matrix[6] *= y; this.matrix[7] *= y; this.matrix[8] *= z; this.matrix[9] *= z; this.matrix[10] *= z; this.matrix[11] *= z; return this; } /** * Rotate the Matrix around a specified axis by a given angle. * * This method applies a rotation transformation to the matrix, modifying its orientation * in 3D space. The rotation is performed around the provided axis, which can be defined * as a `p5.Vector` or an array of numbers representing the x, y, and z components of the axis. * Rotate our Matrix around an axis by the given angle. * @param {Number} a The angle of rotation in radians. * Angles in radians are a measure of rotation, where 2π radians * represent a full circle (360 degrees). For example: * - π/2 radians = 90 degrees (quarter turn) * - π radians = 180 degrees (half turn) * - 2π radians = 360 degrees (full turn) * Use `Math.PI` for π or `p5`'s `PI` constant if using p5.js. * @param {p5.Vector|Number[]} axis The axis or axes to rotate around. * This defines the direction of the rotation. * - If using a `p5.Vector`, it should represent * the x, y, and z components of the axis. * - If using an array, it should be in the form * [x, y, z], where x, y, and z are numbers. * For example: * - [1, 0, 0] rotates around the x-axis. * - [0, 1, 0] rotates around the y-axis. * - [0, 0, 1] rotates around the z-axis. * * @chainable * inspired by Toji's gl-matrix lib, mat4 rotation * * @example * // p5.js script example * <div class="norender"><code> * function setup() { * const matrix = new p5.Matrix(4); // Create a 4x4 identity matrix * console.log("Original Matrix:", matrix.matrix.slice().toString()); // [1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1] * * // Translate the matrix by a 3D vector * matrix.rotate4x4(Math.PI, [1,0,0]); * console.log("After rotation of PI degrees on vector [1,0,0]:", matrix.matrix.slice().toString()); // [1,0,0,0,0,-1,1.2246468525851679e-16,0,0,-1.2246468525851679e-16,-1,0,0,0,0,1] * } * </code></div> */ rotate4x4(a, x, y, z) { if (x instanceof Vector) { // x is a vector, extract the components from it. y = x.y; z = x.z; x = x.x; //must be last } else if (x instanceof Array) { // x is an array, extract the components from it. y = x[1]; z = x[2]; x = x[0]; //must be last } const len = Math.sqrt(x * x + y * y + z * z); x *= 1 / len; y *= 1 / len; z *= 1 / len; const a00 = this.matrix[0]; const a01 = this.matrix[1]; const a02 = this.matrix[2]; const a03 = this.matrix[3]; const a10 = this.matrix[4]; const a11 = this.matrix[5]; const a12 = this.matrix[6]; const a13 = this.matrix[7]; const a20 = this.matrix[8]; const a21 = this.matrix[9]; const a22 = this.matrix[10]; const a23 = this.matrix[11]; //sin,cos, and tan of respective angle const sA = Math.sin(a); const cA = Math.cos(a); const tA = 1 - cA; // Construct the elements of the rotation matrix const b00 = x * x * tA + cA; const b01 = y * x * tA + z * sA; const b02 = z * x * tA - y * sA; const b10 = x * y * tA - z * sA; const b11 = y * y * tA + cA; const b12 = z * y * tA + x * sA; const b20 = x * z * tA + y * sA; const b21 = y * z * tA - x * sA; const b22 = z * z * tA + cA; // rotation-specific matrix multiplication this.matrix[0] = a00 * b00 + a10 * b01 + a20 * b02; this.matrix[1] = a01 * b00 + a11 * b01 + a21 * b02; this.matrix[2] = a02 * b00 + a12 * b01 + a22 * b02; this.matrix[3] = a03 * b00 + a13 * b01 + a23 * b02; this.matrix[4] = a00 * b10 + a10 * b11 + a20 * b12; this.matrix[5] = a01 * b10 + a11 * b11 + a21 * b12; this.matrix[6] = a02 * b10 + a12 * b11 + a22 * b12; this.matrix[7] = a03 * b10 + a13 * b11 + a23 * b12; this.matrix[8] = a00 * b20 + a10 * b21 + a20 * b22; this.matrix[9] = a01 * b20 + a11 * b21 + a21 * b22; this.matrix[10] = a02 * b20 + a12 * b21 + a22 * b22; this.matrix[11] = a03 * b20 + a13 * b21 + a23 * b22; return this; } /** * Translates the current matrix by a given vector. * * This method applies a translation transformation to the current matrix. * Translation moves the matrix by a specified amount along the x, y, and z axes. * The input vector can be a 2D or 3D vector. If the z-component is not provided, * it defaults to 0, meaning no translation along the z-axis. * * @param {Number[]} v - A vector representing the translation. It should be an array * with two or three elements: [x, y, z]. The z-component is optional. * @returns {Matrix} The current instance of the Matrix class, allowing for method chaining. * * @example * // Translating a matrix by a 3D vector * const matrix = new p5.Matrix(4); // Create a 4x4 identity matrix * matrix.translate([10, 20, 30]); // Translate by 10 units along x, 20 along y, and 30 along z * console.log(matrix.matrix); * * // Translating a matrix by a 2D vector * matrix.translate([5, 15]); // Translate by 5 units along x and 15 along y * console.log(matrix.matrix); * * // p5.js script example * <div class="norender"><code> * function setup() { * const matrix = new p5.Matrix(4); // Create a 4x4 identity matrix * console.log("Original Matrix:", matrix.matrix.slice().toString()); // [1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1] * * // Translate the matrix by a 3D vector * matrix.translate([10, 20, 30]); * console.log("After 3D Translation (10, 20, 30):", matrix.matrix.slice().toString()); // [1,0,0,0,0,1,0,0,0,0,1,0,10,20,30,1] * * // Translate the matrix by a 2D vector * matrix.translate([5, 15]); * console.log("After 2D Translation (5, 15):", matrix.matrix.slice().toString()); // [1,0,0,0,0,1,0,0,0,0,1,0,15,35,30,1] * } * </code></div> */ translate(v) { const x = v[0], y = v[1], z = v[2] || 0; this.matrix[12] += this.matrix[0] * x + this.matrix[4] * y + this.matrix[8] * z; this.matrix[13] += this.matrix[1] * x + this.matrix[5] * y + this.matrix[9] * z; this.matrix[14] += this.matrix[2] * x + this.matrix[6] * y + this.matrix[10] * z; this.matrix[15] += this.matrix[3] * x + this.matrix[7] * y + this.matrix[11] * z; return this; } /** * Rotates the matrix around the X-axis by a given angle. * * This method modifies the current matrix to apply a rotation transformation * around the X-axis. The rotation angle is specified in radians. * * Rotating around the X-axis means that the Y and Z coordinates of the matrix * are transformed while the X coordinates remain unchanged. This is commonly * used in 3D graphics to create animations or transformations along the X-axis. * * @param {Number} a - The angle in radians to rotate the matrix by. * * @example * // Rotating a matrix around the X-axis * const matrix = new p5.Matrix(4); // Create a 4x4 identity matrix * matrix.rotateX(Math.PI / 4); // Rotate 45 degrees around the X-axis * console.log(matrix.matrix); * * // p5.js script example * <div class="norender"><code> * function setup() { * * const matrix = new p5.Matrix(4); // Create a 4x4 identity matrix * console.log("Original Matrix:", matrix.matrix); * * // Rotate the matrix 45 degrees (PI/4 radians) around the X-axis * matrix.rotateX(Math.PI / 4); * console.log("After Rotation (X-axis, 45 degrees):", matrix.matrix); * } * </code></div> */ rotateX(a) { this.rotate4x4(a, 1, 0, 0); } /** * Rotates the matrix around the Y-axis by a given angle. * * This method modifies the current matrix to apply a rotation transformation * around the Y-axis. The rotation is performed in 3D space, and the angle * is specified in radians. Rotating around the Y-axis means that the X and Z * coordinates of the matrix are transformed while the Y coordinates remain * unchanged. This is commonly used in 3D graphics to create animations or * transformations along the Y-axis. * * @param {Number} a - The angle in radians to rotate the matrix by. Positive * values rotate the matrix counterclockwise, and negative values rotate it * clockwise. * * @example * // Rotating a matrix around the Y-axis * const matrix = new p5.Matrix(4); // Create a 4x4 identity matrix * matrix.rotateY(Math.PI / 4); // Rotate 45 degrees around the Y-axis * console.log(matrix.matrix); * * // p5.js script example * <div class="norender"><code> * function setup() { * * const matrix = new p5.Matrix(4); // Create a 4x4 identity matrix * console.log("Original Matrix:", matrix.matrix); * * // Rotate the matrix 45 degrees (PI/4 radians) around the Y-axis * matrix.rotateY(Math.PI / 4); * console.log("After Rotation (Y-axis, 45 degrees):", matrix.matrix); * } * </code></div> */ rotateY(a) { this.rotate4x4(a, 0, 1, 0); } /** * Rotates the matrix around the Z-axis by a given angle. * * This method modifies the current matrix to apply a rotation transformation * around the Z-axis. The rotation is performed in a 4x4 matrix context, which * is commonly used in 3D graphics to handle transformations. Rotating around * the Z-axis means that the X and Y coordinates of the matrix are transformed * while the Z coordinates remain unchanged. * * @param {Number} a - The angle in radians to rotate the matrix by. Positive * values rotate the matrix counterclockwise, and negative values rotate it * clockwise. * * @returns {Matrix} The current instance of the Matrix class, allowing for * method chaining. * * @example * // Rotating a matrix around the Z-axis * const matrix = new p5.Matrix(4); // Create a 4x4 identity matrix * matrix.rotateZ(Math.PI / 4); // Rotate 45 degrees around the Z-axis * console.log(matrix.matrix); * * // p5.js script example * <div class="norender"><code> * function setup() { * * const matrix = new p5.Matrix(4); // Create a 4x4 identity matrix * console.log("Original Matrix:", matrix.matrix); * * // Rotate the matrix 45 degrees (PI/4 radians) around the Z-axis * matrix.rotateZ(Math.PI / 4); * console.log("After Rotation (Z-axis, 45 degrees):", matrix.matrix); * } * </code></div> */ rotateZ(a) { this.rotate4x4(a, 0, 0, 1); } /** * Sets the perspective projection matrix. * * This method modifies the current matrix to represent a perspective projection. * Perspective projection is commonly used in 3D graphics to simulate the effect * of objects appearing smaller as they move further away from the camera. * * The perspective matrix is defined by the field of view (fovy), aspect ratio, * and the near and far clipping planes. The near and far clipping planes define * the range of depth that will be rendered, with anything outside this range * being clipped. * * @param {Number} fovy - The field of view in the y direction, in radians. * @param {Number} aspect - The aspect ratio of the viewport (width / height). * @param {Number} near - The distance to the near clipping plane. Must be greater than 0. * @param {Number} far - The distance to the far clipping plane. Must be greater than the near value. * @returns {Matrix} The current instance of the Matrix class, allowing for method chaining. * * @example * // Setting a perspective projection matrix * const matrix = new p5.Matrix(4); // Create a 4x4 identity matrix * matrix.perspective(Math.PI / 4, 1.5, 0.1, 100); // Set perspective projection * console.log(matrix.matrix); * * // p5.js script example * <div class="norender"><code> * function setup() { * * const matrix = new p5.Matrix(4); // Create a 4x4 identity matrix * console.log("Original Matrix:", matrix.matrix); * * // Set a perspective projection with a 45-degree field of view, * // an aspect ratio of 1.5, and near/far clipping planes at 0.1 and 100. * matrix.perspective(Math.PI / 4, 1.5, 0.1, 100); * console.log("Perspective Matrix:", matrix.matrix); * } * </code></div> */ perspective(fovy, aspect, near, far) { const f = 1.0 / Math.tan(fovy / 2), nf = 1 / (near - far); this.matrix[0] = f / aspect; this.matrix[1] = 0; this.matrix[2] = 0; this.matrix[3] = 0; this.matrix[4] = 0; this.matrix[5] = f; this.matrix[6] = 0; this.matrix[7] = 0; this.matrix[8] = 0; this.matrix[9] = 0; this.matrix[10] = (far + near) * nf; this.matrix[11] = -1; this.matrix