UNPKG

opentype.js

Version:
1,838 lines (1,598 loc) 464 kB
/** * https://opentype.js.org v1.3.4 | (c) Frederik De Bleser and other contributors | MIT License | Uses tiny-inflate by Devon Govett and string.prototype.codepointat polyfill by Mathias Bynens */ /*! https://mths.be/codepointat v0.2.0 by @mathias */ if (!String.prototype.codePointAt) { (function() { var defineProperty = (function() { // IE 8 only supports `Object.defineProperty` on DOM elements try { var object = {}; var $defineProperty = Object.defineProperty; var result = $defineProperty(object, object, object) && $defineProperty; } catch(error) {} return result; }()); var codePointAt = function(position) { if (this == null) { throw TypeError(); } var string = String(this); var size = string.length; // `ToInteger` var index = position ? Number(position) : 0; if (index != index) { // better `isNaN` index = 0; } // Account for out-of-bounds indices: if (index < 0 || index >= size) { return undefined; } // Get the first code unit var first = string.charCodeAt(index); var second; if ( // check if it’s the start of a surrogate pair first >= 0xD800 && first <= 0xDBFF && // high surrogate size > index + 1 // there is a next code unit ) { second = string.charCodeAt(index + 1); if (second >= 0xDC00 && second <= 0xDFFF) { // low surrogate // https://mathiasbynens.be/notes/javascript-encoding#surrogate-formulae return (first - 0xD800) * 0x400 + second - 0xDC00 + 0x10000; } } return first; }; if (defineProperty) { defineProperty(String.prototype, 'codePointAt', { 'value': codePointAt, 'configurable': true, 'writable': true }); } else { String.prototype.codePointAt = codePointAt; } }()); } var TINF_OK = 0; var TINF_DATA_ERROR = -3; function Tree() { this.table = new Uint16Array(16); /* table of code length counts */ this.trans = new Uint16Array(288); /* code -> symbol translation table */ } function Data(source, dest) { this.source = source; this.sourceIndex = 0; this.tag = 0; this.bitcount = 0; this.dest = dest; this.destLen = 0; this.ltree = new Tree(); /* dynamic length/symbol tree */ this.dtree = new Tree(); /* dynamic distance tree */ } /* --------------------------------------------------- * * -- uninitialized global data (static structures) -- * * --------------------------------------------------- */ var sltree = new Tree(); var sdtree = new Tree(); /* extra bits and base tables for length codes */ var length_bits = new Uint8Array(30); var length_base = new Uint16Array(30); /* extra bits and base tables for distance codes */ var dist_bits = new Uint8Array(30); var dist_base = new Uint16Array(30); /* special ordering of code length codes */ var clcidx = new Uint8Array([ 16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15 ]); /* used by tinf_decode_trees, avoids allocations every call */ var code_tree = new Tree(); var lengths = new Uint8Array(288 + 32); /* ----------------------- * * -- utility functions -- * * ----------------------- */ /* build extra bits and base tables */ function tinf_build_bits_base(bits, base, delta, first) { var i, sum; /* build bits table */ for (i = 0; i < delta; ++i) { bits[i] = 0; } for (i = 0; i < 30 - delta; ++i) { bits[i + delta] = i / delta | 0; } /* build base table */ for (sum = first, i = 0; i < 30; ++i) { base[i] = sum; sum += 1 << bits[i]; } } /* build the fixed huffman trees */ function tinf_build_fixed_trees(lt, dt) { var i; /* build fixed length tree */ for (i = 0; i < 7; ++i) { lt.table[i] = 0; } lt.table[7] = 24; lt.table[8] = 152; lt.table[9] = 112; for (i = 0; i < 24; ++i) { lt.trans[i] = 256 + i; } for (i = 0; i < 144; ++i) { lt.trans[24 + i] = i; } for (i = 0; i < 8; ++i) { lt.trans[24 + 144 + i] = 280 + i; } for (i = 0; i < 112; ++i) { lt.trans[24 + 144 + 8 + i] = 144 + i; } /* build fixed distance tree */ for (i = 0; i < 5; ++i) { dt.table[i] = 0; } dt.table[5] = 32; for (i = 0; i < 32; ++i) { dt.trans[i] = i; } } /* given an array of code lengths, build a tree */ var offs = new Uint16Array(16); function tinf_build_tree(t, lengths, off, num) { var i, sum; /* clear code length count table */ for (i = 0; i < 16; ++i) { t.table[i] = 0; } /* scan symbol lengths, and sum code length counts */ for (i = 0; i < num; ++i) { t.table[lengths[off + i]]++; } t.table[0] = 0; /* compute offset table for distribution sort */ for (sum = 0, i = 0; i < 16; ++i) { offs[i] = sum; sum += t.table[i]; } /* create code->symbol translation table (symbols sorted by code) */ for (i = 0; i < num; ++i) { if (lengths[off + i]) { t.trans[offs[lengths[off + i]]++] = i; } } } /* ---------------------- * * -- decode functions -- * * ---------------------- */ /* get one bit from source stream */ function tinf_getbit(d) { /* check if tag is empty */ if (!d.bitcount--) { /* load next tag */ d.tag = d.source[d.sourceIndex++]; d.bitcount = 7; } /* shift bit out of tag */ var bit = d.tag & 1; d.tag >>>= 1; return bit; } /* read a num bit value from a stream and add base */ function tinf_read_bits(d, num, base) { if (!num) { return base; } while (d.bitcount < 24) { d.tag |= d.source[d.sourceIndex++] << d.bitcount; d.bitcount += 8; } var val = d.tag & (0xffff >>> (16 - num)); d.tag >>>= num; d.bitcount -= num; return val + base; } /* given a data stream and a tree, decode a symbol */ function tinf_decode_symbol(d, t) { while (d.bitcount < 24) { d.tag |= d.source[d.sourceIndex++] << d.bitcount; d.bitcount += 8; } var sum = 0, cur = 0, len = 0; var tag = d.tag; /* get more bits while code value is above sum */ do { cur = 2 * cur + (tag & 1); tag >>>= 1; ++len; sum += t.table[len]; cur -= t.table[len]; } while (cur >= 0); d.tag = tag; d.bitcount -= len; return t.trans[sum + cur]; } /* given a data stream, decode dynamic trees from it */ function tinf_decode_trees(d, lt, dt) { var hlit, hdist, hclen; var i, num, length; /* get 5 bits HLIT (257-286) */ hlit = tinf_read_bits(d, 5, 257); /* get 5 bits HDIST (1-32) */ hdist = tinf_read_bits(d, 5, 1); /* get 4 bits HCLEN (4-19) */ hclen = tinf_read_bits(d, 4, 4); for (i = 0; i < 19; ++i) { lengths[i] = 0; } /* read code lengths for code length alphabet */ for (i = 0; i < hclen; ++i) { /* get 3 bits code length (0-7) */ var clen = tinf_read_bits(d, 3, 0); lengths[clcidx[i]] = clen; } /* build code length tree */ tinf_build_tree(code_tree, lengths, 0, 19); /* decode code lengths for the dynamic trees */ for (num = 0; num < hlit + hdist;) { var sym = tinf_decode_symbol(d, code_tree); switch (sym) { case 16: /* copy previous code length 3-6 times (read 2 bits) */ var prev = lengths[num - 1]; for (length = tinf_read_bits(d, 2, 3); length; --length) { lengths[num++] = prev; } break; case 17: /* repeat code length 0 for 3-10 times (read 3 bits) */ for (length = tinf_read_bits(d, 3, 3); length; --length) { lengths[num++] = 0; } break; case 18: /* repeat code length 0 for 11-138 times (read 7 bits) */ for (length = tinf_read_bits(d, 7, 11); length; --length) { lengths[num++] = 0; } break; default: /* values 0-15 represent the actual code lengths */ lengths[num++] = sym; break; } } /* build dynamic trees */ tinf_build_tree(lt, lengths, 0, hlit); tinf_build_tree(dt, lengths, hlit, hdist); } /* ----------------------------- * * -- block inflate functions -- * * ----------------------------- */ /* given a stream and two trees, inflate a block of data */ function tinf_inflate_block_data(d, lt, dt) { while (1) { var sym = tinf_decode_symbol(d, lt); /* check for end of block */ if (sym === 256) { return TINF_OK; } if (sym < 256) { d.dest[d.destLen++] = sym; } else { var length, dist, offs; var i; sym -= 257; /* possibly get more bits from length code */ length = tinf_read_bits(d, length_bits[sym], length_base[sym]); dist = tinf_decode_symbol(d, dt); /* possibly get more bits from distance code */ offs = d.destLen - tinf_read_bits(d, dist_bits[dist], dist_base[dist]); /* copy match */ for (i = offs; i < offs + length; ++i) { d.dest[d.destLen++] = d.dest[i]; } } } } /* inflate an uncompressed block of data */ function tinf_inflate_uncompressed_block(d) { var length, invlength; var i; /* unread from bitbuffer */ while (d.bitcount > 8) { d.sourceIndex--; d.bitcount -= 8; } /* get length */ length = d.source[d.sourceIndex + 1]; length = 256 * length + d.source[d.sourceIndex]; /* get one's complement of length */ invlength = d.source[d.sourceIndex + 3]; invlength = 256 * invlength + d.source[d.sourceIndex + 2]; /* check length */ if (length !== (~invlength & 0x0000ffff)) { return TINF_DATA_ERROR; } d.sourceIndex += 4; /* copy block */ for (i = length; i; --i) { d.dest[d.destLen++] = d.source[d.sourceIndex++]; } /* make sure we start next block on a byte boundary */ d.bitcount = 0; return TINF_OK; } /* inflate stream from source to dest */ function tinf_uncompress(source, dest) { var d = new Data(source, dest); var bfinal, btype, res; do { /* read final block flag */ bfinal = tinf_getbit(d); /* read block type (2 bits) */ btype = tinf_read_bits(d, 2, 0); /* decompress block */ switch (btype) { case 0: /* decompress uncompressed block */ res = tinf_inflate_uncompressed_block(d); break; case 1: /* decompress block with fixed huffman trees */ res = tinf_inflate_block_data(d, sltree, sdtree); break; case 2: /* decompress block with dynamic huffman trees */ tinf_decode_trees(d, d.ltree, d.dtree); res = tinf_inflate_block_data(d, d.ltree, d.dtree); break; default: res = TINF_DATA_ERROR; } if (res !== TINF_OK) { throw new Error('Data error'); } } while (!bfinal); if (d.destLen < d.dest.length) { if (typeof d.dest.slice === 'function') { return d.dest.slice(0, d.destLen); } else { return d.dest.subarray(0, d.destLen); } } return d.dest; } /* -------------------- * * -- initialization -- * * -------------------- */ /* build fixed huffman trees */ tinf_build_fixed_trees(sltree, sdtree); /* build extra bits and base tables */ tinf_build_bits_base(length_bits, length_base, 4, 3); tinf_build_bits_base(dist_bits, dist_base, 2, 1); /* fix a special case */ length_bits[28] = 0; length_base[28] = 258; var tinyInflate = tinf_uncompress; // The Bounding Box object function derive(v0, v1, v2, v3, t) { return Math.pow(1 - t, 3) * v0 + 3 * Math.pow(1 - t, 2) * t * v1 + 3 * (1 - t) * Math.pow(t, 2) * v2 + Math.pow(t, 3) * v3; } /** * A bounding box is an enclosing box that describes the smallest measure within which all the points lie. * It is used to calculate the bounding box of a glyph or text path. * * On initialization, x1/y1/x2/y2 will be NaN. Check if the bounding box is empty using `isEmpty()`. * * @exports opentype.BoundingBox * @class * @constructor */ function BoundingBox() { this.x1 = Number.NaN; this.y1 = Number.NaN; this.x2 = Number.NaN; this.y2 = Number.NaN; } /** * Returns true if the bounding box is empty, that is, no points have been added to the box yet. */ BoundingBox.prototype.isEmpty = function() { return isNaN(this.x1) || isNaN(this.y1) || isNaN(this.x2) || isNaN(this.y2); }; /** * Add the point to the bounding box. * The x1/y1/x2/y2 coordinates of the bounding box will now encompass the given point. * @param {number} x - The X coordinate of the point. * @param {number} y - The Y coordinate of the point. */ BoundingBox.prototype.addPoint = function(x, y) { if (typeof x === 'number') { if (isNaN(this.x1) || isNaN(this.x2)) { this.x1 = x; this.x2 = x; } if (x < this.x1) { this.x1 = x; } if (x > this.x2) { this.x2 = x; } } if (typeof y === 'number') { if (isNaN(this.y1) || isNaN(this.y2)) { this.y1 = y; this.y2 = y; } if (y < this.y1) { this.y1 = y; } if (y > this.y2) { this.y2 = y; } } }; /** * Add a X coordinate to the bounding box. * This extends the bounding box to include the X coordinate. * This function is used internally inside of addBezier. * @param {number} x - The X coordinate of the point. */ BoundingBox.prototype.addX = function(x) { this.addPoint(x, null); }; /** * Add a Y coordinate to the bounding box. * This extends the bounding box to include the Y coordinate. * This function is used internally inside of addBezier. * @param {number} y - The Y coordinate of the point. */ BoundingBox.prototype.addY = function(y) { this.addPoint(null, y); }; /** * Add a Bézier curve to the bounding box. * This extends the bounding box to include the entire Bézier. * @param {number} x0 - The starting X coordinate. * @param {number} y0 - The starting Y coordinate. * @param {number} x1 - The X coordinate of the first control point. * @param {number} y1 - The Y coordinate of the first control point. * @param {number} x2 - The X coordinate of the second control point. * @param {number} y2 - The Y coordinate of the second control point. * @param {number} x - The ending X coordinate. * @param {number} y - The ending Y coordinate. */ BoundingBox.prototype.addBezier = function(x0, y0, x1, y1, x2, y2, x, y) { // This code is based on http://nishiohirokazu.blogspot.com/2009/06/how-to-calculate-bezier-curves-bounding.html // and https://github.com/icons8/svg-path-bounding-box var p0 = [x0, y0]; var p1 = [x1, y1]; var p2 = [x2, y2]; var p3 = [x, y]; this.addPoint(x0, y0); this.addPoint(x, y); for (var i = 0; i <= 1; i++) { var b = 6 * p0[i] - 12 * p1[i] + 6 * p2[i]; var a = -3 * p0[i] + 9 * p1[i] - 9 * p2[i] + 3 * p3[i]; var c = 3 * p1[i] - 3 * p0[i]; if (a === 0) { if (b === 0) { continue; } var t = -c / b; if (0 < t && t < 1) { if (i === 0) { this.addX(derive(p0[i], p1[i], p2[i], p3[i], t)); } if (i === 1) { this.addY(derive(p0[i], p1[i], p2[i], p3[i], t)); } } continue; } var b2ac = Math.pow(b, 2) - 4 * c * a; if (b2ac < 0) { continue; } var t1 = (-b + Math.sqrt(b2ac)) / (2 * a); if (0 < t1 && t1 < 1) { if (i === 0) { this.addX(derive(p0[i], p1[i], p2[i], p3[i], t1)); } if (i === 1) { this.addY(derive(p0[i], p1[i], p2[i], p3[i], t1)); } } var t2 = (-b - Math.sqrt(b2ac)) / (2 * a); if (0 < t2 && t2 < 1) { if (i === 0) { this.addX(derive(p0[i], p1[i], p2[i], p3[i], t2)); } if (i === 1) { this.addY(derive(p0[i], p1[i], p2[i], p3[i], t2)); } } } }; /** * Add a quadratic curve to the bounding box. * This extends the bounding box to include the entire quadratic curve. * @param {number} x0 - The starting X coordinate. * @param {number} y0 - The starting Y coordinate. * @param {number} x1 - The X coordinate of the control point. * @param {number} y1 - The Y coordinate of the control point. * @param {number} x - The ending X coordinate. * @param {number} y - The ending Y coordinate. */ BoundingBox.prototype.addQuad = function(x0, y0, x1, y1, x, y) { var cp1x = x0 + 2 / 3 * (x1 - x0); var cp1y = y0 + 2 / 3 * (y1 - y0); var cp2x = cp1x + 1 / 3 * (x - x0); var cp2y = cp1y + 1 / 3 * (y - y0); this.addBezier(x0, y0, cp1x, cp1y, cp2x, cp2y, x, y); }; // Geometric objects /** * A bézier path containing a set of path commands similar to a SVG path. * Paths can be drawn on a context using `draw`. * @exports opentype.Path * @class * @constructor */ function Path() { this.commands = []; this.fill = 'black'; this.stroke = null; this.strokeWidth = 1; } /** * @param {number} x * @param {number} y */ Path.prototype.moveTo = function(x, y) { this.commands.push({ type: 'M', x: x, y: y }); }; /** * @param {number} x * @param {number} y */ Path.prototype.lineTo = function(x, y) { this.commands.push({ type: 'L', x: x, y: y }); }; /** * Draws cubic curve * @function * curveTo * @memberof opentype.Path.prototype * @param {number} x1 - x of control 1 * @param {number} y1 - y of control 1 * @param {number} x2 - x of control 2 * @param {number} y2 - y of control 2 * @param {number} x - x of path point * @param {number} y - y of path point */ /** * Draws cubic curve * @function * bezierCurveTo * @memberof opentype.Path.prototype * @param {number} x1 - x of control 1 * @param {number} y1 - y of control 1 * @param {number} x2 - x of control 2 * @param {number} y2 - y of control 2 * @param {number} x - x of path point * @param {number} y - y of path point * @see curveTo */ Path.prototype.curveTo = Path.prototype.bezierCurveTo = function(x1, y1, x2, y2, x, y) { this.commands.push({ type: 'C', x1: x1, y1: y1, x2: x2, y2: y2, x: x, y: y }); }; /** * Draws quadratic curve * @function * quadraticCurveTo * @memberof opentype.Path.prototype * @param {number} x1 - x of control * @param {number} y1 - y of control * @param {number} x - x of path point * @param {number} y - y of path point */ /** * Draws quadratic curve * @function * quadTo * @memberof opentype.Path.prototype * @param {number} x1 - x of control * @param {number} y1 - y of control * @param {number} x - x of path point * @param {number} y - y of path point */ Path.prototype.quadTo = Path.prototype.quadraticCurveTo = function(x1, y1, x, y) { this.commands.push({ type: 'Q', x1: x1, y1: y1, x: x, y: y }); }; /** * Closes the path * @function closePath * @memberof opentype.Path.prototype */ /** * Close the path * @function close * @memberof opentype.Path.prototype */ Path.prototype.close = Path.prototype.closePath = function() { this.commands.push({ type: 'Z' }); }; /** * Add the given path or list of commands to the commands of this path. * @param {Array} pathOrCommands - another opentype.Path, an opentype.BoundingBox, or an array of commands. */ Path.prototype.extend = function(pathOrCommands) { if (pathOrCommands.commands) { pathOrCommands = pathOrCommands.commands; } else if (pathOrCommands instanceof BoundingBox) { var box = pathOrCommands; this.moveTo(box.x1, box.y1); this.lineTo(box.x2, box.y1); this.lineTo(box.x2, box.y2); this.lineTo(box.x1, box.y2); this.close(); return; } Array.prototype.push.apply(this.commands, pathOrCommands); }; /** * Calculate the bounding box of the path. * @returns {opentype.BoundingBox} */ Path.prototype.getBoundingBox = function() { var box = new BoundingBox(); var startX = 0; var startY = 0; var prevX = 0; var prevY = 0; for (var i = 0; i < this.commands.length; i++) { var cmd = this.commands[i]; switch (cmd.type) { case 'M': box.addPoint(cmd.x, cmd.y); startX = prevX = cmd.x; startY = prevY = cmd.y; break; case 'L': box.addPoint(cmd.x, cmd.y); prevX = cmd.x; prevY = cmd.y; break; case 'Q': box.addQuad(prevX, prevY, cmd.x1, cmd.y1, cmd.x, cmd.y); prevX = cmd.x; prevY = cmd.y; break; case 'C': box.addBezier(prevX, prevY, cmd.x1, cmd.y1, cmd.x2, cmd.y2, cmd.x, cmd.y); prevX = cmd.x; prevY = cmd.y; break; case 'Z': prevX = startX; prevY = startY; break; default: throw new Error('Unexpected path command ' + cmd.type); } } if (box.isEmpty()) { box.addPoint(0, 0); } return box; }; /** * Draw the path to a 2D context. * @param {CanvasRenderingContext2D} ctx - A 2D drawing context. */ Path.prototype.draw = function(ctx) { ctx.beginPath(); for (var i = 0; i < this.commands.length; i += 1) { var cmd = this.commands[i]; if (cmd.type === 'M') { ctx.moveTo(cmd.x, cmd.y); } else if (cmd.type === 'L') { ctx.lineTo(cmd.x, cmd.y); } else if (cmd.type === 'C') { ctx.bezierCurveTo(cmd.x1, cmd.y1, cmd.x2, cmd.y2, cmd.x, cmd.y); } else if (cmd.type === 'Q') { ctx.quadraticCurveTo(cmd.x1, cmd.y1, cmd.x, cmd.y); } else if (cmd.type === 'Z') { ctx.closePath(); } } if (this.fill) { ctx.fillStyle = this.fill; ctx.fill(); } if (this.stroke) { ctx.strokeStyle = this.stroke; ctx.lineWidth = this.strokeWidth; ctx.stroke(); } }; /** * Convert the Path to a string of path data instructions * See http://www.w3.org/TR/SVG/paths.html#PathData * @param {number} [decimalPlaces=2] - The amount of decimal places for floating-point values * @return {string} */ Path.prototype.toPathData = function(decimalPlaces) { decimalPlaces = decimalPlaces !== undefined ? decimalPlaces : 2; function floatToString(v) { if (Math.round(v) === v) { return '' + Math.round(v); } else { return v.toFixed(decimalPlaces); } } function packValues() { var arguments$1 = arguments; var s = ''; for (var i = 0; i < arguments.length; i += 1) { var v = arguments$1[i]; if (v >= 0 && i > 0) { s += ' '; } s += floatToString(v); } return s; } var d = ''; for (var i = 0; i < this.commands.length; i += 1) { var cmd = this.commands[i]; if (cmd.type === 'M') { d += 'M' + packValues(cmd.x, cmd.y); } else if (cmd.type === 'L') { d += 'L' + packValues(cmd.x, cmd.y); } else if (cmd.type === 'C') { d += 'C' + packValues(cmd.x1, cmd.y1, cmd.x2, cmd.y2, cmd.x, cmd.y); } else if (cmd.type === 'Q') { d += 'Q' + packValues(cmd.x1, cmd.y1, cmd.x, cmd.y); } else if (cmd.type === 'Z') { d += 'Z'; } } return d; }; /** * Convert the path to an SVG <path> element, as a string. * @param {number} [decimalPlaces=2] - The amount of decimal places for floating-point values * @return {string} */ Path.prototype.toSVG = function(decimalPlaces) { var svg = '<path d="'; svg += this.toPathData(decimalPlaces); svg += '"'; if (this.fill && this.fill !== 'black') { if (this.fill === null) { svg += ' fill="none"'; } else { svg += ' fill="' + this.fill + '"'; } } if (this.stroke) { svg += ' stroke="' + this.stroke + '" stroke-width="' + this.strokeWidth + '"'; } svg += '/>'; return svg; }; /** * Convert the path to a DOM element. * @param {number} [decimalPlaces=2] - The amount of decimal places for floating-point values * @return {SVGPathElement} */ Path.prototype.toDOMElement = function(decimalPlaces) { var temporaryPath = this.toPathData(decimalPlaces); var newPath = document.createElementNS('http://www.w3.org/2000/svg', 'path'); newPath.setAttribute('d', temporaryPath); return newPath; }; // Run-time checking of preconditions. function fail(message) { throw new Error(message); } // Precondition function that checks if the given predicate is true. // If not, it will throw an error. function argument(predicate, message) { if (!predicate) { fail(message); } } var check = { fail: fail, argument: argument, assert: argument }; // Data types used in the OpenType font file. var LIMIT16 = 32768; // The limit at which a 16-bit number switches signs == 2^15 var LIMIT32 = 2147483648; // The limit at which a 32-bit number switches signs == 2 ^ 31 /** * @exports opentype.decode * @class */ var decode = {}; /** * @exports opentype.encode * @class */ var encode = {}; /** * @exports opentype.sizeOf * @class */ var sizeOf = {}; // Return a function that always returns the same value. function constant(v) { return function() { return v; }; } // OpenType data types ////////////////////////////////////////////////////// /** * Convert an 8-bit unsigned integer to a list of 1 byte. * @param {number} * @returns {Array} */ encode.BYTE = function(v) { check.argument(v >= 0 && v <= 255, 'Byte value should be between 0 and 255.'); return [v]; }; /** * @constant * @type {number} */ sizeOf.BYTE = constant(1); /** * Convert a 8-bit signed integer to a list of 1 byte. * @param {string} * @returns {Array} */ encode.CHAR = function(v) { return [v.charCodeAt(0)]; }; /** * @constant * @type {number} */ sizeOf.CHAR = constant(1); /** * Convert an ASCII string to a list of bytes. * @param {string} * @returns {Array} */ encode.CHARARRAY = function(v) { if (typeof v === 'undefined') { v = ''; console.warn('Undefined CHARARRAY encountered and treated as an empty string. This is probably caused by a missing glyph name.'); } var b = []; for (var i = 0; i < v.length; i += 1) { b[i] = v.charCodeAt(i); } return b; }; /** * @param {Array} * @returns {number} */ sizeOf.CHARARRAY = function(v) { if (typeof v === 'undefined') { return 0; } return v.length; }; /** * Convert a 16-bit unsigned integer to a list of 2 bytes. * @param {number} * @returns {Array} */ encode.USHORT = function(v) { return [(v >> 8) & 0xFF, v & 0xFF]; }; /** * @constant * @type {number} */ sizeOf.USHORT = constant(2); /** * Convert a 16-bit signed integer to a list of 2 bytes. * @param {number} * @returns {Array} */ encode.SHORT = function(v) { // Two's complement if (v >= LIMIT16) { v = -(2 * LIMIT16 - v); } return [(v >> 8) & 0xFF, v & 0xFF]; }; /** * @constant * @type {number} */ sizeOf.SHORT = constant(2); /** * Convert a 24-bit unsigned integer to a list of 3 bytes. * @param {number} * @returns {Array} */ encode.UINT24 = function(v) { return [(v >> 16) & 0xFF, (v >> 8) & 0xFF, v & 0xFF]; }; /** * @constant * @type {number} */ sizeOf.UINT24 = constant(3); /** * Convert a 32-bit unsigned integer to a list of 4 bytes. * @param {number} * @returns {Array} */ encode.ULONG = function(v) { return [(v >> 24) & 0xFF, (v >> 16) & 0xFF, (v >> 8) & 0xFF, v & 0xFF]; }; /** * @constant * @type {number} */ sizeOf.ULONG = constant(4); /** * Convert a 32-bit unsigned integer to a list of 4 bytes. * @param {number} * @returns {Array} */ encode.LONG = function(v) { // Two's complement if (v >= LIMIT32) { v = -(2 * LIMIT32 - v); } return [(v >> 24) & 0xFF, (v >> 16) & 0xFF, (v >> 8) & 0xFF, v & 0xFF]; }; /** * @constant * @type {number} */ sizeOf.LONG = constant(4); encode.FIXED = encode.ULONG; sizeOf.FIXED = sizeOf.ULONG; encode.FWORD = encode.SHORT; sizeOf.FWORD = sizeOf.SHORT; encode.UFWORD = encode.USHORT; sizeOf.UFWORD = sizeOf.USHORT; /** * Convert a 32-bit Apple Mac timestamp integer to a list of 8 bytes, 64-bit timestamp. * @param {number} * @returns {Array} */ encode.LONGDATETIME = function(v) { return [0, 0, 0, 0, (v >> 24) & 0xFF, (v >> 16) & 0xFF, (v >> 8) & 0xFF, v & 0xFF]; }; /** * @constant * @type {number} */ sizeOf.LONGDATETIME = constant(8); /** * Convert a 4-char tag to a list of 4 bytes. * @param {string} * @returns {Array} */ encode.TAG = function(v) { check.argument(v.length === 4, 'Tag should be exactly 4 ASCII characters.'); return [v.charCodeAt(0), v.charCodeAt(1), v.charCodeAt(2), v.charCodeAt(3)]; }; /** * @constant * @type {number} */ sizeOf.TAG = constant(4); // CFF data types /////////////////////////////////////////////////////////// encode.Card8 = encode.BYTE; sizeOf.Card8 = sizeOf.BYTE; encode.Card16 = encode.USHORT; sizeOf.Card16 = sizeOf.USHORT; encode.OffSize = encode.BYTE; sizeOf.OffSize = sizeOf.BYTE; encode.SID = encode.USHORT; sizeOf.SID = sizeOf.USHORT; // Convert a numeric operand or charstring number to a variable-size list of bytes. /** * Convert a numeric operand or charstring number to a variable-size list of bytes. * @param {number} * @returns {Array} */ encode.NUMBER = function(v) { if (v >= -107 && v <= 107) { return [v + 139]; } else if (v >= 108 && v <= 1131) { v = v - 108; return [(v >> 8) + 247, v & 0xFF]; } else if (v >= -1131 && v <= -108) { v = -v - 108; return [(v >> 8) + 251, v & 0xFF]; } else if (v >= -32768 && v <= 32767) { return encode.NUMBER16(v); } else { return encode.NUMBER32(v); } }; /** * @param {number} * @returns {number} */ sizeOf.NUMBER = function(v) { return encode.NUMBER(v).length; }; /** * Convert a signed number between -32768 and +32767 to a three-byte value. * This ensures we always use three bytes, but is not the most compact format. * @param {number} * @returns {Array} */ encode.NUMBER16 = function(v) { return [28, (v >> 8) & 0xFF, v & 0xFF]; }; /** * @constant * @type {number} */ sizeOf.NUMBER16 = constant(3); /** * Convert a signed number between -(2^31) and +(2^31-1) to a five-byte value. * This is useful if you want to be sure you always use four bytes, * at the expense of wasting a few bytes for smaller numbers. * @param {number} * @returns {Array} */ encode.NUMBER32 = function(v) { return [29, (v >> 24) & 0xFF, (v >> 16) & 0xFF, (v >> 8) & 0xFF, v & 0xFF]; }; /** * @constant * @type {number} */ sizeOf.NUMBER32 = constant(5); /** * @param {number} * @returns {Array} */ encode.REAL = function(v) { var value = v.toString(); // Some numbers use an epsilon to encode the value. (e.g. JavaScript will store 0.0000001 as 1e-7) // This code converts it back to a number without the epsilon. var m = /\.(\d*?)(?:9{5,20}|0{5,20})\d{0,2}(?:e(.+)|$)/.exec(value); if (m) { var epsilon = parseFloat('1e' + ((m[2] ? +m[2] : 0) + m[1].length)); value = (Math.round(v * epsilon) / epsilon).toString(); } var nibbles = ''; for (var i = 0, ii = value.length; i < ii; i += 1) { var c = value[i]; if (c === 'e') { nibbles += value[++i] === '-' ? 'c' : 'b'; } else if (c === '.') { nibbles += 'a'; } else if (c === '-') { nibbles += 'e'; } else { nibbles += c; } } nibbles += (nibbles.length & 1) ? 'f' : 'ff'; var out = [30]; for (var i$1 = 0, ii$1 = nibbles.length; i$1 < ii$1; i$1 += 2) { out.push(parseInt(nibbles.substr(i$1, 2), 16)); } return out; }; /** * @param {number} * @returns {number} */ sizeOf.REAL = function(v) { return encode.REAL(v).length; }; encode.NAME = encode.CHARARRAY; sizeOf.NAME = sizeOf.CHARARRAY; encode.STRING = encode.CHARARRAY; sizeOf.STRING = sizeOf.CHARARRAY; /** * @param {DataView} data * @param {number} offset * @param {number} numBytes * @returns {string} */ decode.UTF8 = function(data, offset, numBytes) { var codePoints = []; var numChars = numBytes; for (var j = 0; j < numChars; j++, offset += 1) { codePoints[j] = data.getUint8(offset); } return String.fromCharCode.apply(null, codePoints); }; /** * @param {DataView} data * @param {number} offset * @param {number} numBytes * @returns {string} */ decode.UTF16 = function(data, offset, numBytes) { var codePoints = []; var numChars = numBytes / 2; for (var j = 0; j < numChars; j++, offset += 2) { codePoints[j] = data.getUint16(offset); } return String.fromCharCode.apply(null, codePoints); }; /** * Convert a JavaScript string to UTF16-BE. * @param {string} * @returns {Array} */ encode.UTF16 = function(v) { var b = []; for (var i = 0; i < v.length; i += 1) { var codepoint = v.charCodeAt(i); b[b.length] = (codepoint >> 8) & 0xFF; b[b.length] = codepoint & 0xFF; } return b; }; /** * @param {string} * @returns {number} */ sizeOf.UTF16 = function(v) { return v.length * 2; }; // Data for converting old eight-bit Macintosh encodings to Unicode. // This representation is optimized for decoding; encoding is slower // and needs more memory. The assumption is that all opentype.js users // want to open fonts, but saving a font will be comparatively rare // so it can be more expensive. Keyed by IANA character set name. // // Python script for generating these strings: // // s = u''.join([chr(c).decode('mac_greek') for c in range(128, 256)]) // print(s.encode('utf-8')) /** * @private */ var eightBitMacEncodings = { 'x-mac-croatian': // Python: 'mac_croatian' 'ÄÅÇÉÑÖÜáàâäãåçéèêëíìîïñóòôöõúùûü†°¢£§•¶ß®Š™´¨≠ŽØ∞±≤≥∆µ∂∑∏š∫ªºΩžø' + '¿¡¬√ƒ≈ƫȅ ÀÃÕŒœĐ—“”‘’÷◊©⁄€‹›Æ»–·‚„‰ÂćÁčÈÍÎÏÌÓÔđÒÚÛÙıˆ˜¯πË˚¸Êæˇ', 'x-mac-cyrillic': // Python: 'mac_cyrillic' 'АБВГДЕЖЗИЙКЛМНОПРСТУФХЦЧШЩЪЫЬЭЮЯ†°Ґ£§•¶І®©™Ђђ≠Ѓѓ∞±≤≥іµґЈЄєЇїЉљЊњ' + 'јЅ¬√ƒ≈∆«»… ЋћЌќѕ–—“”‘’÷„ЎўЏџ№Ёёяабвгдежзийклмнопрстуфхцчшщъыьэю', 'x-mac-gaelic': // http://unicode.org/Public/MAPPINGS/VENDORS/APPLE/GAELIC.TXT 'ÄÅÇÉÑÖÜáàâäãåçéèêëíìîïñóòôöõúùûü†°¢£§•¶ß®©™´¨≠ÆØḂ±≤≥ḃĊċḊḋḞḟĠġṀæø' + 'ṁṖṗɼƒſṠ«»… ÀÃÕŒœ–—“”‘’ṡẛÿŸṪ€‹›Ŷŷṫ·Ỳỳ⁊ÂÊÁËÈÍÎÏÌÓÔ♣ÒÚÛÙıÝýŴŵẄẅẀẁẂẃ', 'x-mac-greek': // Python: 'mac_greek' 'Ĺ²É³ÖÜ΅àâä΄¨çéèê룙î‰ôö¦€ùûü†ΓΔΘΛΞΠß®©ΣΪ§≠°·Α±≤≥¥ΒΕΖΗΙΚΜΦΫΨΩ' + 'άΝ¬ΟΡ≈Τ«»… ΥΧΆΈœ–―“”‘’÷ΉΊΌΎέήίόΏύαβψδεφγηιξκλμνοπώρστθωςχυζϊϋΐΰ\u00AD', 'x-mac-icelandic': // Python: 'mac_iceland' 'ÄÅÇÉÑÖÜáàâäãåçéèêëíìîïñóòôöõúùûüݰ¢£§•¶ß®©™´¨≠ÆØ∞±≤≥¥µ∂∑∏π∫ªºΩæø' + '¿¡¬√ƒ≈∆«»… ÀÃÕŒœ–—“”‘’÷◊ÿŸ⁄€ÐðÞþý·‚„‰ÂÊÁËÈÍÎÏÌÓÔÒÚÛÙıˆ˜¯˘˙˚¸˝˛ˇ', 'x-mac-inuit': // http://unicode.org/Public/MAPPINGS/VENDORS/APPLE/INUIT.TXT 'ᐃᐄᐅᐆᐊᐋᐱᐲᐳᐴᐸᐹᑉᑎᑏᑐᑑᑕᑖᑦᑭᑮᑯᑰᑲᑳᒃᒋᒌᒍᒎᒐᒑ°ᒡᒥᒦ•¶ᒧ®©™ᒨᒪᒫᒻᓂᓃᓄᓅᓇᓈᓐᓯᓰᓱᓲᓴᓵᔅᓕᓖᓗ' + 'ᓘᓚᓛᓪᔨᔩᔪᔫᔭ… ᔮᔾᕕᕖᕗ–—“”‘’ᕘᕙᕚᕝᕆᕇᕈᕉᕋᕌᕐᕿᖀᖁᖂᖃᖄᖅᖏᖐᖑᖒᖓᖔᖕᙱᙲᙳᙴᙵᙶᖖᖠᖡᖢᖣᖤᖥᖦᕼŁł', 'x-mac-ce': // Python: 'mac_latin2' 'ÄĀāÉĄÖÜáąČäčĆć鏟ĎíďĒēĖóėôöõúĚěü†°Ę£§•¶ß®©™ę¨≠ģĮįĪ≤≥īĶ∂∑łĻļĽľĹĺŅ' + 'ņѬ√ńŇ∆«»… ňŐÕőŌ–—“”‘’÷◊ōŔŕŘ‹›řŖŗŠ‚„šŚśÁŤťÍŽžŪÓÔūŮÚůŰűŲųÝýķŻŁżĢˇ', macintosh: // Python: 'mac_roman' 'ÄÅÇÉÑÖÜáàâäãåçéèêëíìîïñóòôöõúùûü†°¢£§•¶ß®©™´¨≠ÆØ∞±≤≥¥µ∂∑∏π∫ªºΩæø' + '¿¡¬√ƒ≈∆«»… ÀÃÕŒœ–—“”‘’÷◊ÿŸ⁄€‹›fifl‡·‚„‰ÂÊÁËÈÍÎÏÌÓÔÒÚÛÙıˆ˜¯˘˙˚¸˝˛ˇ', 'x-mac-romanian': // Python: 'mac_romanian' 'ÄÅÇÉÑÖÜáàâäãåçéèêëíìîïñóòôöõúùûü†°¢£§•¶ß®©™´¨≠ĂȘ∞±≤≥¥µ∂∑∏π∫ªºΩăș' + '¿¡¬√ƒ≈∆«»… ÀÃÕŒœ–—“”‘’÷◊ÿŸ⁄€‹›Țț‡·‚„‰ÂÊÁËÈÍÎÏÌÓÔÒÚÛÙıˆ˜¯˘˙˚¸˝˛ˇ', 'x-mac-turkish': // Python: 'mac_turkish' 'ÄÅÇÉÑÖÜáàâäãåçéèêëíìîïñóòôöõúùûü†°¢£§•¶ß®©™´¨≠ÆØ∞±≤≥¥µ∂∑∏π∫ªºΩæø' + '¿¡¬√ƒ≈∆«»… ÀÃÕŒœ–—“”‘’÷◊ÿŸĞğİıŞş‡·‚„‰ÂÊÁËÈÍÎÏÌÓÔÒÚÛÙˆ˜¯˘˙˚¸˝˛ˇ' }; /** * Decodes an old-style Macintosh string. Returns either a Unicode JavaScript * string, or 'undefined' if the encoding is unsupported. For example, we do * not support Chinese, Japanese or Korean because these would need large * mapping tables. * @param {DataView} dataView * @param {number} offset * @param {number} dataLength * @param {string} encoding * @returns {string} */ decode.MACSTRING = function(dataView, offset, dataLength, encoding) { var table = eightBitMacEncodings[encoding]; if (table === undefined) { return undefined; } var result = ''; for (var i = 0; i < dataLength; i++) { var c = dataView.getUint8(offset + i); // In all eight-bit Mac encodings, the characters 0x00..0x7F are // mapped to U+0000..U+007F; we only need to look up the others. if (c <= 0x7F) { result += String.fromCharCode(c); } else { result += table[c & 0x7F]; } } return result; }; // Helper function for encode.MACSTRING. Returns a dictionary for mapping // Unicode character codes to their 8-bit MacOS equivalent. This table // is not exactly a super cheap data structure, but we do not care because // encoding Macintosh strings is only rarely needed in typical applications. var macEncodingTableCache = typeof WeakMap === 'function' && new WeakMap(); var macEncodingCacheKeys; var getMacEncodingTable = function (encoding) { // Since we use encoding as a cache key for WeakMap, it has to be // a String object and not a literal. And at least on NodeJS 2.10.1, // WeakMap requires that the same String instance is passed for cache hits. if (!macEncodingCacheKeys) { macEncodingCacheKeys = {}; for (var e in eightBitMacEncodings) { /*jshint -W053 */ // Suppress "Do not use String as a constructor." macEncodingCacheKeys[e] = new String(e); } } var cacheKey = macEncodingCacheKeys[encoding]; if (cacheKey === undefined) { return undefined; } // We can't do "if (cache.has(key)) {return cache.get(key)}" here: // since garbage collection may run at any time, it could also kick in // between the calls to cache.has() and cache.get(). In that case, // we would return 'undefined' even though we do support the encoding. if (macEncodingTableCache) { var cachedTable = macEncodingTableCache.get(cacheKey); if (cachedTable !== undefined) { return cachedTable; } } var decodingTable = eightBitMacEncodings[encoding]; if (decodingTable === undefined) { return undefined; } var encodingTable = {}; for (var i = 0; i < decodingTable.length; i++) { encodingTable[decodingTable.charCodeAt(i)] = i + 0x80; } if (macEncodingTableCache) { macEncodingTableCache.set(cacheKey, encodingTable); } return encodingTable; }; /** * Encodes an old-style Macintosh string. Returns a byte array upon success. * If the requested encoding is unsupported, or if the input string contains * a character that cannot be expressed in the encoding, the function returns * 'undefined'. * @param {string} str * @param {string} encoding * @returns {Array} */ encode.MACSTRING = function(str, encoding) { var table = getMacEncodingTable(encoding); if (table === undefined) { return undefined; } var result = []; for (var i = 0; i < str.length; i++) { var c = str.charCodeAt(i); // In all eight-bit Mac encodings, the characters 0x00..0x7F are // mapped to U+0000..U+007F; we only need to look up the others. if (c >= 0x80) { c = table[c]; if (c === undefined) { // str contains a Unicode character that cannot be encoded // in the requested encoding. return undefined; } } result[i] = c; // result.push(c); } return result; }; /** * @param {string} str * @param {string} encoding * @returns {number} */ sizeOf.MACSTRING = function(str, encoding) { var b = encode.MACSTRING(str, encoding); if (b !== undefined) { return b.length; } else { return 0; } }; // Helper for encode.VARDELTAS function isByteEncodable(value) { return value >= -128 && value <= 127; } // Helper for encode.VARDELTAS function encodeVarDeltaRunAsZeroes(deltas, pos, result) { var runLength = 0; var numDeltas = deltas.length; while (pos < numDeltas && runLength < 64 && deltas[pos] === 0) { ++pos; ++runLength; } result.push(0x80 | (runLength - 1)); return pos; } // Helper for encode.VARDELTAS function encodeVarDeltaRunAsBytes(deltas, offset, result) { var runLength = 0; var numDeltas = deltas.length; var pos = offset; while (pos < numDeltas && runLength < 64) { var value = deltas[pos]; if (!isByteEncodable(value)) { break; } // Within a byte-encoded run of deltas, a single zero is best // stored literally as 0x00 value. However, if we have two or // more zeroes in a sequence, it is better to start a new run. // Fore example, the sequence of deltas [15, 15, 0, 15, 15] // becomes 6 bytes (04 0F 0F 00 0F 0F) when storing the zero // within the current run, but 7 bytes (01 0F 0F 80 01 0F 0F) // when starting a new run. if (value === 0 && pos + 1 < numDeltas && deltas[pos + 1] === 0) { break; } ++pos; ++runLength; } result.push(runLength - 1); for (var i = offset; i < pos; ++i) { result.push((deltas[i] + 256) & 0xff); } return pos; } // Helper for encode.VARDELTAS function encodeVarDeltaRunAsWords(deltas, offset, result) { var runLength = 0; var numDeltas = deltas.length; var pos = offset; while (pos < numDeltas && runLength < 64) { var value = deltas[pos]; // Within a word-encoded run of deltas, it is easiest to start // a new run (with a different encoding) whenever we encounter // a zero value. For example, the sequence [0x6666, 0, 0x7777] // needs 7 bytes when storing the zero inside the current run // (42 66 66 00 00 77 77), and equally 7 bytes when starting a // new run (40 66 66 80 40 77 77). if (value === 0) { break; } // Within a word-encoded run of deltas, a single value in the // range (-128..127) should be encoded within the current run // because it is more compact. For example, the sequence // [0x6666, 2, 0x7777] becomes 7 bytes when storing the value // literally (42 66 66 00 02 77 77), but 8 bytes when starting // a new run (40 66 66 00 02 40 77 77). if (isByteEncodable(value) && pos + 1 < numDeltas && isByteEncodable(deltas[pos + 1])) { break; } ++pos; ++runLength; } result.push(0x40 | (runLength - 1)); for (var i = offset; i < pos; ++i) { var val = deltas[i]; result.push(((val + 0x10000) >> 8) & 0xff, (val + 0x100) & 0xff); } return pos; } /** * Encode a list of variation adjustment deltas. * * Variation adjustment deltas are used in ‘gvar’ and ‘cvar’ tables. * They indicate how points (in ‘gvar’) or values (in ‘cvar’) get adjusted * when generating instances of variation fonts. * * @see https://www.microsoft.com/typography/otspec/gvar.htm * @see https://developer.apple.com/fonts/TrueType-Reference-Manual/RM06/Chap6gvar.html * @param {Array} * @return {Array} */ encode.VARDELTAS = function(deltas) { var pos = 0; var result = []; while (pos < deltas.length) { var value = deltas[pos]; if (value === 0) { pos = encodeVarDeltaRunAsZeroes(deltas, pos, result); } else if (value >= -128 && value <= 127) { pos = encodeVarDeltaRunAsBytes(deltas, pos, result); } else { pos = encodeVarDeltaRunAsWords(deltas, pos, result); } } return result; }; // Convert a list of values to a CFF INDEX structure. // The values should be objects containing name / type / value. /** * @param {Array} l * @returns {Array} */ encode.INDEX = function(l) { //var offset, offsets, offsetEncoder, encodedOffsets, encodedOffset, data, // i, v; // Because we have to know which data type to use to encode the offsets, // we have to go through the values twice: once to encode the data and // calculate the offsets, then again to encode the offsets using the fitting data type. var offset = 1; // First offset is always 1. var offsets = [offset]; var data = []; for (var i = 0; i < l.length; i += 1) { var v = encode.OBJECT(l[i]); Array.prototype.push.apply(data, v); offset += v.length; offsets.push(offset); } if (data.length === 0) { return [0, 0]; } var encodedOffsets = []; var offSize = (1 + Math.floor(Math.log(offset) / Math.log(2)) / 8) | 0; var offsetEncoder = [undefined, encode.BYTE, encode.USHORT, encode.UINT24, encode.ULONG][offSize]; for (var i$1 = 0; i$1 < offsets.length; i$1 += 1) { var encodedOffset = offsetEncoder(offsets[i$1]); Array.prototype.push.apply(encodedOffsets, encodedOffset); } return Array.prototype.concat(encode.Card16(l.length), encode.OffSize(offSize), encodedOffsets, data); }; /** * @param {Array} * @returns {number} */ sizeOf.INDEX = function(v) { return encode.INDEX(v).length; }; /** * Convert an object to a CFF DICT structure. * The keys should be numeric. * The values should be objects containing name / type / value. * @param {Object} m * @returns {Array} */ encode.DICT = function(m) { var d = []; var keys = Object.keys(m); var length = keys.length; for (var i = 0; i < length; i += 1) { // Object.keys() return string keys, but our keys are always numeric. var k = parseInt(keys[i], 0); var v = m[k]; // Value comes before the key. d = d.concat(encode.OPERAND(v.value, v.type)); d = d.concat(encode.OPERATOR(k)); } return d; }; /** * @param {Object} * @returns {number} */ sizeOf.DICT = function(m) { return encode.DICT(m).length; }; /** * @param {number} * @returns {Array} */ encode.OPERATOR = function(v) { if (v < 1200) { return [v]; } else { return [12, v - 1200]; } }; /** * @param {Array} v * @param {string} * @returns {Array} */ encode.OPERAND = function(v, type) { var d = []; if (Array.isArray(type)) { for (var i = 0; i < type.length; i += 1) { check.argument(v.length === type.length, 'Not enough arguments given for type' + type); d = d.concat(encode.OPERAND(v[i], type[i])); } } else { if (type === 'SID') { d = d.concat(encode.NUMBER(v)); } else if (type === 'offset') { // We make it easy for ourselves and always encode offsets as // 4 bytes. This makes offset calculation for the top dict easier. d = d.concat(encode.NUMBER32(v)); } else if (type === 'number') { d = d.concat(encode.NUMBER(v)); } else if (type === 'real') { d = d.concat(encode.REAL(v)); } else { throw new Error('Unknown operand type ' + type); // FIXME Add support for booleans } } return d; }; encode.OP = encode.BYTE; sizeOf.OP = sizeOf.BYTE; // memoize charstring encoding using WeakMap if available var wmm = typeof WeakMap === 'function' && new WeakMap(); /** * Convert a list of CharString operations to bytes. * @param {Array} * @returns {Array} */ encode.CHARSTRING = function(ops) { // See encode.MACSTRING for why we don't do "if (wmm && wmm.has(ops))". if (wmm) { var cachedValue = wmm.get(ops); if (cachedValue !== undefined) { return cachedValue; } } var d = []; var length = ops.length; for (var i = 0; i < length; i += 1) { var op = ops[i]; d = d.concat(encode[op.type](op.value)); } if (wmm) { wmm.set(ops, d); } return d; }; /** * @param {Array} * @returns {number} */ sizeOf.CHARSTRING = function(ops) { return encode.CHARSTRING(ops).length; }; // Utility functions //////////////////////////////////////////////////////// /** * Convert an object containing name / type / value to bytes. * @param {Object} * @returns {Array} */ encode.OBJECT = function(v) { var encodingFunction = encode[v.type]; check.argument(encodingFunction !== undefined, 'No encoding function for type ' + v.type); return encodingFunction(v.value); }; /** * @param {Object} * @returns {number} */ sizeOf.OBJECT = function(v) { var sizeOfFunction = sizeOf[v.type]; check.argument(sizeOfFunction !== undefined, 'No sizeOf function for type ' + v.type); return sizeOfFunction(v.value); }; /** * Convert a table object to bytes. * A table contains a list of fields containing the metadata (name, type and default value). * The table itself has the field values set as attributes. * @param {opentype.Table} * @returns {Array} */ encode.TABLE = function(table) { var d = []; var length = table.fields.length; var subtables = []; var subtableOffsets = []; for (var i = 0; i < length; i += 1) { var field = table.fields[i]; var encodingFunction = encode[field.type]; check.argument(encodingFunction !== undefined, 'No encoding function for field type ' + field.type + ' (' + field.name + ')'); var value = table[field.name]; if (value === undefined) { value = field.value; } var bytes = encodingFunction(value); if (field.type === 'TABLE') { subtableOffsets.push(d.length); d =