UNPKG

openpgp

Version:

OpenPGP.js is a Javascript implementation of the OpenPGP protocol. This is defined in RFC 4880.

320 lines (308 loc) 10.9 kB
/*! OpenPGP.js v6.2.1 - 2025-08-26 - this is LGPL licensed code, see LICENSE/our website https://openpgpjs.org/ for more information. */ const globalThis = typeof window !== 'undefined' ? window : typeof global !== 'undefined' ? global : typeof self !== 'undefined' ? self : {}; import { l as createHasher, q as HashMD, u as rotl, f as clean, C as Chi$1, M as Maj, w as wrapConstructor, v as sha3_512, x as sha3_256, p as sha512, o as sha384, n as sha256, y as sha224 } from './sha512.mjs'; /** SHA1 (RFC 3174), MD5 (RFC 1321) and RIPEMD160 (RFC 2286) legacy, weak hash functions. Don't use them in a new protocol. What "weak" means: - Collisions can be made with 2^18 effort in MD5, 2^60 in SHA1, 2^80 in RIPEMD160. - No practical pre-image attacks (only theoretical, 2^123.4) - HMAC seems kinda ok: https://datatracker.ietf.org/doc/html/rfc6151 * @module */ /** Initial SHA1 state */ const SHA1_IV = /* @__PURE__ */ Uint32Array.from([ 0x67452301, 0xefcdab89, 0x98badcfe, 0x10325476, 0xc3d2e1f0, ]); // Reusable temporary buffer const SHA1_W = /* @__PURE__ */ new Uint32Array(80); /** SHA1 legacy hash class. */ class SHA1 extends HashMD { constructor() { super(64, 20, 8, false); this.A = SHA1_IV[0] | 0; this.B = SHA1_IV[1] | 0; this.C = SHA1_IV[2] | 0; this.D = SHA1_IV[3] | 0; this.E = SHA1_IV[4] | 0; } get() { const { A, B, C, D, E } = this; return [A, B, C, D, E]; } set(A, B, C, D, E) { this.A = A | 0; this.B = B | 0; this.C = C | 0; this.D = D | 0; this.E = E | 0; } process(view, offset) { for (let i = 0; i < 16; i++, offset += 4) SHA1_W[i] = view.getUint32(offset, false); for (let i = 16; i < 80; i++) SHA1_W[i] = rotl(SHA1_W[i - 3] ^ SHA1_W[i - 8] ^ SHA1_W[i - 14] ^ SHA1_W[i - 16], 1); // Compression function main loop, 80 rounds let { A, B, C, D, E } = this; for (let i = 0; i < 80; i++) { let F, K; if (i < 20) { F = Chi$1(B, C, D); K = 0x5a827999; } else if (i < 40) { F = B ^ C ^ D; K = 0x6ed9eba1; } else if (i < 60) { F = Maj(B, C, D); K = 0x8f1bbcdc; } else { F = B ^ C ^ D; K = 0xca62c1d6; } const T = (rotl(A, 5) + F + E + K + SHA1_W[i]) | 0; E = D; D = C; C = rotl(B, 30); B = A; A = T; } // Add the compressed chunk to the current hash value A = (A + this.A) | 0; B = (B + this.B) | 0; C = (C + this.C) | 0; D = (D + this.D) | 0; E = (E + this.E) | 0; this.set(A, B, C, D, E); } roundClean() { clean(SHA1_W); } destroy() { this.set(0, 0, 0, 0, 0); clean(this.buffer); } } /** SHA1 (RFC 3174) legacy hash function. It was cryptographically broken. */ const sha1$1 = /* @__PURE__ */ createHasher(() => new SHA1()); // RIPEMD-160 const Rho160 = /* @__PURE__ */ Uint8Array.from([ 7, 4, 13, 1, 10, 6, 15, 3, 12, 0, 9, 5, 2, 14, 11, 8, ]); const Id160 = /* @__PURE__ */ (() => Uint8Array.from(new Array(16).fill(0).map((_, i) => i)))(); const Pi160 = /* @__PURE__ */ (() => Id160.map((i) => (9 * i + 5) % 16))(); const idxLR = /* @__PURE__ */ (() => { const L = [Id160]; const R = [Pi160]; const res = [L, R]; for (let i = 0; i < 4; i++) for (let j of res) j.push(j[i].map((k) => Rho160[k])); return res; })(); const idxL = /* @__PURE__ */ (() => idxLR[0])(); const idxR = /* @__PURE__ */ (() => idxLR[1])(); // const [idxL, idxR] = idxLR; const shifts160 = /* @__PURE__ */ [ [11, 14, 15, 12, 5, 8, 7, 9, 11, 13, 14, 15, 6, 7, 9, 8], [12, 13, 11, 15, 6, 9, 9, 7, 12, 15, 11, 13, 7, 8, 7, 7], [13, 15, 14, 11, 7, 7, 6, 8, 13, 14, 13, 12, 5, 5, 6, 9], [14, 11, 12, 14, 8, 6, 5, 5, 15, 12, 15, 14, 9, 9, 8, 6], [15, 12, 13, 13, 9, 5, 8, 6, 14, 11, 12, 11, 8, 6, 5, 5], ].map((i) => Uint8Array.from(i)); const shiftsL160 = /* @__PURE__ */ idxL.map((idx, i) => idx.map((j) => shifts160[i][j])); const shiftsR160 = /* @__PURE__ */ idxR.map((idx, i) => idx.map((j) => shifts160[i][j])); const Kl160 = /* @__PURE__ */ Uint32Array.from([ 0x00000000, 0x5a827999, 0x6ed9eba1, 0x8f1bbcdc, 0xa953fd4e, ]); const Kr160 = /* @__PURE__ */ Uint32Array.from([ 0x50a28be6, 0x5c4dd124, 0x6d703ef3, 0x7a6d76e9, 0x00000000, ]); // It's called f() in spec. function ripemd_f(group, x, y, z) { if (group === 0) return x ^ y ^ z; if (group === 1) return (x & y) | (~x & z); if (group === 2) return (x | ~y) ^ z; if (group === 3) return (x & z) | (y & ~z); return x ^ (y | ~z); } // Reusable temporary buffer const BUF_160 = /* @__PURE__ */ new Uint32Array(16); class RIPEMD160 extends HashMD { constructor() { super(64, 20, 8, true); this.h0 = 0x67452301 | 0; this.h1 = 0xefcdab89 | 0; this.h2 = 0x98badcfe | 0; this.h3 = 0x10325476 | 0; this.h4 = 0xc3d2e1f0 | 0; } get() { const { h0, h1, h2, h3, h4 } = this; return [h0, h1, h2, h3, h4]; } set(h0, h1, h2, h3, h4) { this.h0 = h0 | 0; this.h1 = h1 | 0; this.h2 = h2 | 0; this.h3 = h3 | 0; this.h4 = h4 | 0; } process(view, offset) { for (let i = 0; i < 16; i++, offset += 4) BUF_160[i] = view.getUint32(offset, true); // prettier-ignore let al = this.h0 | 0, ar = al, bl = this.h1 | 0, br = bl, cl = this.h2 | 0, cr = cl, dl = this.h3 | 0, dr = dl, el = this.h4 | 0, er = el; // Instead of iterating 0 to 80, we split it into 5 groups // And use the groups in constants, functions, etc. Much simpler for (let group = 0; group < 5; group++) { const rGroup = 4 - group; const hbl = Kl160[group], hbr = Kr160[group]; // prettier-ignore const rl = idxL[group], rr = idxR[group]; // prettier-ignore const sl = shiftsL160[group], sr = shiftsR160[group]; // prettier-ignore for (let i = 0; i < 16; i++) { const tl = (rotl(al + ripemd_f(group, bl, cl, dl) + BUF_160[rl[i]] + hbl, sl[i]) + el) | 0; al = el, el = dl, dl = rotl(cl, 10) | 0, cl = bl, bl = tl; // prettier-ignore } // 2 loops are 10% faster for (let i = 0; i < 16; i++) { const tr = (rotl(ar + ripemd_f(rGroup, br, cr, dr) + BUF_160[rr[i]] + hbr, sr[i]) + er) | 0; ar = er, er = dr, dr = rotl(cr, 10) | 0, cr = br, br = tr; // prettier-ignore } } // Add the compressed chunk to the current hash value this.set((this.h1 + cl + dr) | 0, (this.h2 + dl + er) | 0, (this.h3 + el + ar) | 0, (this.h4 + al + br) | 0, (this.h0 + bl + cr) | 0); } roundClean() { clean(BUF_160); } destroy() { this.destroyed = true; clean(this.buffer); this.set(0, 0, 0, 0, 0); } } /** * RIPEMD-160 - a legacy hash function from 1990s. * * https://homes.esat.kuleuven.be/~bosselae/ripemd160.html * * https://homes.esat.kuleuven.be/~bosselae/ripemd160/pdf/AB-9601/AB-9601.pdf */ const ripemd160$1 = /* @__PURE__ */ createHasher(() => new RIPEMD160()); /** * SHA1 (RFC 3174) legacy hash function. * @module * @deprecated */ /** @deprecated Use import from `noble/hashes/legacy` module */ const sha1 = sha1$1; /** * RIPEMD-160 legacy hash function. * https://homes.esat.kuleuven.be/~bosselae/ripemd160.html * https://homes.esat.kuleuven.be/~bosselae/ripemd160/pdf/AB-9601/AB-9601.pdf * @module * @deprecated */ /** @deprecated Use import from `noble/hashes/legacy` module */ const ripemd160 = ripemd160$1; // Copied from https://github.com/paulmillr/noble-hashes/blob/main/test/misc/md5.ts // Per-round constants const K = Array.from({ length: 64 }, (_, i) => Math.floor(2 ** 32 * Math.abs(Math.sin(i + 1)))); // Choice: a ? b : c const Chi = (a, b, c) => (a & b) ^ (~a & c); // Initial state (same as sha1, but 4 u32 instead of 5) const IV = /* @__PURE__ */ new Uint32Array([0x67452301, 0xefcdab89, 0x98badcfe, 0x10325476]); // Temporary buffer, not used to store anything between runs // Named this way for SHA1 compat const MD5_W = /* @__PURE__ */ new Uint32Array(16); class MD5 extends HashMD { constructor() { super(64, 16, 8, true); this.A = IV[0] | 0; this.B = IV[1] | 0; this.C = IV[2] | 0; this.D = IV[3] | 0; } get() { const { A, B, C, D } = this; return [A, B, C, D]; } set(A, B, C, D) { this.A = A | 0; this.B = B | 0; this.C = C | 0; this.D = D | 0; } process(view, offset) { for (let i = 0; i < 16; i++, offset += 4) MD5_W[i] = view.getUint32(offset, true); // Compression function main loop, 64 rounds let { A, B, C, D } = this; for (let i = 0; i < 64; i++) { // eslint-disable-next-line one-var, one-var-declaration-per-line let F, g, s; if (i < 16) { // eslint-disable-next-line new-cap F = Chi(B, C, D); g = i; s = [7, 12, 17, 22]; } else if (i < 32) { // eslint-disable-next-line new-cap F = Chi(D, B, C); g = (5 * i + 1) % 16; s = [5, 9, 14, 20]; } else if (i < 48) { F = B ^ C ^ D; g = (3 * i + 5) % 16; s = [4, 11, 16, 23]; } else { F = C ^ (B | ~D); g = (7 * i) % 16; s = [6, 10, 15, 21]; } F = F + A + K[i] + MD5_W[g]; A = D; D = C; C = B; B = B + rotl(F, s[i % 4]); } // Add the compressed chunk to the current hash value A = (A + this.A) | 0; B = (B + this.B) | 0; C = (C + this.C) | 0; D = (D + this.D) | 0; this.set(A, B, C, D); } roundClean() { MD5_W.fill(0); } destroy() { this.set(0, 0, 0, 0); this.buffer.fill(0); } } const md5 = /* @__PURE__ */ wrapConstructor(() => new MD5()); /** * This file is needed to dynamic import the noble-hashes. * Separate dynamic imports are not convenient as they result in too many chunks, * which share a lot of code anyway. */ const nobleHashes = new Map(Object.entries({ md5, sha1, sha224, sha256, sha384, sha512, sha3_256, sha3_512, ripemd160 })); export { nobleHashes };