openpgp
Version:
OpenPGP.js is a Javascript implementation of the OpenPGP protocol. This is defined in RFC 4880.
290 lines (281 loc) • 9.98 kB
JavaScript
/*! OpenPGP.js v6.1.0 - 2025-01-30 - this is LGPL licensed code, see LICENSE/our website https://openpgpjs.org/ for more information. */
const globalThis = typeof window !== 'undefined' ? window : typeof global !== 'undefined' ? global : typeof self !== 'undefined' ? self : {};
import { w as wrapConstructor, g as HashMD, i as rotl, C as Chi$1, M as Maj, j as sha224, s as sha256, a as sha384, d as sha512, k as sha3_256, l as sha3_512 } from './sha3.mjs';
// SHA1 (RFC 3174). It was cryptographically broken: prefer newer algorithms.
// Initial state
const SHA1_IV = /* @__PURE__ */ new Uint32Array([
0x67452301, 0xefcdab89, 0x98badcfe, 0x10325476, 0xc3d2e1f0,
]);
// Temporary buffer, not used to store anything between runs
// Named this way because it matches specification.
const SHA1_W = /* @__PURE__ */ new Uint32Array(80);
class SHA1 extends HashMD {
constructor() {
super(64, 20, 8, false);
this.A = SHA1_IV[0] | 0;
this.B = SHA1_IV[1] | 0;
this.C = SHA1_IV[2] | 0;
this.D = SHA1_IV[3] | 0;
this.E = SHA1_IV[4] | 0;
}
get() {
const { A, B, C, D, E } = this;
return [A, B, C, D, E];
}
set(A, B, C, D, E) {
this.A = A | 0;
this.B = B | 0;
this.C = C | 0;
this.D = D | 0;
this.E = E | 0;
}
process(view, offset) {
for (let i = 0; i < 16; i++, offset += 4)
SHA1_W[i] = view.getUint32(offset, false);
for (let i = 16; i < 80; i++)
SHA1_W[i] = rotl(SHA1_W[i - 3] ^ SHA1_W[i - 8] ^ SHA1_W[i - 14] ^ SHA1_W[i - 16], 1);
// Compression function main loop, 80 rounds
let { A, B, C, D, E } = this;
for (let i = 0; i < 80; i++) {
let F, K;
if (i < 20) {
F = Chi$1(B, C, D);
K = 0x5a827999;
}
else if (i < 40) {
F = B ^ C ^ D;
K = 0x6ed9eba1;
}
else if (i < 60) {
F = Maj(B, C, D);
K = 0x8f1bbcdc;
}
else {
F = B ^ C ^ D;
K = 0xca62c1d6;
}
const T = (rotl(A, 5) + F + E + K + SHA1_W[i]) | 0;
E = D;
D = C;
C = rotl(B, 30);
B = A;
A = T;
}
// Add the compressed chunk to the current hash value
A = (A + this.A) | 0;
B = (B + this.B) | 0;
C = (C + this.C) | 0;
D = (D + this.D) | 0;
E = (E + this.E) | 0;
this.set(A, B, C, D, E);
}
roundClean() {
SHA1_W.fill(0);
}
destroy() {
this.set(0, 0, 0, 0, 0);
this.buffer.fill(0);
}
}
/**
* SHA1 (RFC 3174) hash function.
* It was cryptographically broken: prefer newer algorithms.
* @param message - data that would be hashed
*/
const sha1 = /* @__PURE__ */ wrapConstructor(() => new SHA1());
// https://homes.esat.kuleuven.be/~bosselae/ripemd160.html
// https://homes.esat.kuleuven.be/~bosselae/ripemd160/pdf/AB-9601/AB-9601.pdf
const Rho = /* @__PURE__ */ new Uint8Array([7, 4, 13, 1, 10, 6, 15, 3, 12, 0, 9, 5, 2, 14, 11, 8]);
const Id = /* @__PURE__ */ new Uint8Array(new Array(16).fill(0).map((_, i) => i));
const Pi = /* @__PURE__ */ Id.map((i) => (9 * i + 5) % 16);
let idxL = [Id];
let idxR = [Pi];
for (let i = 0; i < 4; i++)
for (let j of [idxL, idxR])
j.push(j[i].map((k) => Rho[k]));
const shifts = /* @__PURE__ */ [
[11, 14, 15, 12, 5, 8, 7, 9, 11, 13, 14, 15, 6, 7, 9, 8],
[12, 13, 11, 15, 6, 9, 9, 7, 12, 15, 11, 13, 7, 8, 7, 7],
[13, 15, 14, 11, 7, 7, 6, 8, 13, 14, 13, 12, 5, 5, 6, 9],
[14, 11, 12, 14, 8, 6, 5, 5, 15, 12, 15, 14, 9, 9, 8, 6],
[15, 12, 13, 13, 9, 5, 8, 6, 14, 11, 12, 11, 8, 6, 5, 5],
].map((i) => new Uint8Array(i));
const shiftsL = /* @__PURE__ */ idxL.map((idx, i) => idx.map((j) => shifts[i][j]));
const shiftsR = /* @__PURE__ */ idxR.map((idx, i) => idx.map((j) => shifts[i][j]));
const Kl = /* @__PURE__ */ new Uint32Array([
0x00000000, 0x5a827999, 0x6ed9eba1, 0x8f1bbcdc, 0xa953fd4e,
]);
const Kr = /* @__PURE__ */ new Uint32Array([
0x50a28be6, 0x5c4dd124, 0x6d703ef3, 0x7a6d76e9, 0x00000000,
]);
// It's called f() in spec.
function f(group, x, y, z) {
if (group === 0)
return x ^ y ^ z;
else if (group === 1)
return (x & y) | (~x & z);
else if (group === 2)
return (x | ~y) ^ z;
else if (group === 3)
return (x & z) | (y & ~z);
else
return x ^ (y | ~z);
}
// Temporary buffer, not used to store anything between runs
const R_BUF = /* @__PURE__ */ new Uint32Array(16);
class RIPEMD160 extends HashMD {
constructor() {
super(64, 20, 8, true);
this.h0 = 0x67452301 | 0;
this.h1 = 0xefcdab89 | 0;
this.h2 = 0x98badcfe | 0;
this.h3 = 0x10325476 | 0;
this.h4 = 0xc3d2e1f0 | 0;
}
get() {
const { h0, h1, h2, h3, h4 } = this;
return [h0, h1, h2, h3, h4];
}
set(h0, h1, h2, h3, h4) {
this.h0 = h0 | 0;
this.h1 = h1 | 0;
this.h2 = h2 | 0;
this.h3 = h3 | 0;
this.h4 = h4 | 0;
}
process(view, offset) {
for (let i = 0; i < 16; i++, offset += 4)
R_BUF[i] = view.getUint32(offset, true);
// prettier-ignore
let al = this.h0 | 0, ar = al, bl = this.h1 | 0, br = bl, cl = this.h2 | 0, cr = cl, dl = this.h3 | 0, dr = dl, el = this.h4 | 0, er = el;
// Instead of iterating 0 to 80, we split it into 5 groups
// And use the groups in constants, functions, etc. Much simpler
for (let group = 0; group < 5; group++) {
const rGroup = 4 - group;
const hbl = Kl[group], hbr = Kr[group]; // prettier-ignore
const rl = idxL[group], rr = idxR[group]; // prettier-ignore
const sl = shiftsL[group], sr = shiftsR[group]; // prettier-ignore
for (let i = 0; i < 16; i++) {
const tl = (rotl(al + f(group, bl, cl, dl) + R_BUF[rl[i]] + hbl, sl[i]) + el) | 0;
al = el, el = dl, dl = rotl(cl, 10) | 0, cl = bl, bl = tl; // prettier-ignore
}
// 2 loops are 10% faster
for (let i = 0; i < 16; i++) {
const tr = (rotl(ar + f(rGroup, br, cr, dr) + R_BUF[rr[i]] + hbr, sr[i]) + er) | 0;
ar = er, er = dr, dr = rotl(cr, 10) | 0, cr = br, br = tr; // prettier-ignore
}
}
// Add the compressed chunk to the current hash value
this.set((this.h1 + cl + dr) | 0, (this.h2 + dl + er) | 0, (this.h3 + el + ar) | 0, (this.h4 + al + br) | 0, (this.h0 + bl + cr) | 0);
}
roundClean() {
R_BUF.fill(0);
}
destroy() {
this.destroyed = true;
this.buffer.fill(0);
this.set(0, 0, 0, 0, 0);
}
}
/**
* RIPEMD-160 - a hash function from 1990s.
* @param message - msg that would be hashed
*/
const ripemd160 = /* @__PURE__ */ wrapConstructor(() => new RIPEMD160());
// Copied from https://github.com/paulmillr/noble-hashes/blob/main/test/misc/md5.ts
// Per-round constants
const K = Array.from({ length: 64 }, (_, i) => Math.floor(2 ** 32 * Math.abs(Math.sin(i + 1))));
// Choice: a ? b : c
const Chi = (a, b, c) => (a & b) ^ (~a & c);
// Initial state (same as sha1, but 4 u32 instead of 5)
const IV = /* @__PURE__ */ new Uint32Array([0x67452301, 0xefcdab89, 0x98badcfe, 0x10325476]);
// Temporary buffer, not used to store anything between runs
// Named this way for SHA1 compat
const MD5_W = /* @__PURE__ */ new Uint32Array(16);
class MD5 extends HashMD {
constructor() {
super(64, 16, 8, true);
this.A = IV[0] | 0;
this.B = IV[1] | 0;
this.C = IV[2] | 0;
this.D = IV[3] | 0;
}
get() {
const { A, B, C, D } = this;
return [A, B, C, D];
}
set(A, B, C, D) {
this.A = A | 0;
this.B = B | 0;
this.C = C | 0;
this.D = D | 0;
}
process(view, offset) {
for (let i = 0; i < 16; i++, offset += 4)
MD5_W[i] = view.getUint32(offset, true);
// Compression function main loop, 64 rounds
let { A, B, C, D } = this;
for (let i = 0; i < 64; i++) {
// eslint-disable-next-line one-var, one-var-declaration-per-line
let F, g, s;
if (i < 16) {
// eslint-disable-next-line new-cap
F = Chi(B, C, D);
g = i;
s = [7, 12, 17, 22];
}
else if (i < 32) {
// eslint-disable-next-line new-cap
F = Chi(D, B, C);
g = (5 * i + 1) % 16;
s = [5, 9, 14, 20];
}
else if (i < 48) {
F = B ^ C ^ D;
g = (3 * i + 5) % 16;
s = [4, 11, 16, 23];
}
else {
F = C ^ (B | ~D);
g = (7 * i) % 16;
s = [6, 10, 15, 21];
}
F = F + A + K[i] + MD5_W[g];
A = D;
D = C;
C = B;
B = B + rotl(F, s[i % 4]);
}
// Add the compressed chunk to the current hash value
A = (A + this.A) | 0;
B = (B + this.B) | 0;
C = (C + this.C) | 0;
D = (D + this.D) | 0;
this.set(A, B, C, D);
}
roundClean() {
MD5_W.fill(0);
}
destroy() {
this.set(0, 0, 0, 0);
this.buffer.fill(0);
}
}
const md5 = /* @__PURE__ */ wrapConstructor(() => new MD5());
/**
* This file is needed to dynamic import the noble-hashes.
* Separate dynamic imports are not convenient as they result in too many chunks,
* which share a lot of code anyway.
*/
const nobleHashes = new Map(Object.entries({
md5,
sha1,
sha224,
sha256,
sha384,
sha512,
sha3_256,
sha3_512,
ripemd160
}));
export { nobleHashes };