UNPKG

openpgp

Version:

OpenPGP.js is a Javascript implementation of the OpenPGP protocol. This is defined in RFC 4880.

2,018 lines (1,724 loc) 123 kB
/*! OpenPGP.js v5.11.2 - 2024-06-19 - this is LGPL licensed code, see LICENSE/our website https://openpgpjs.org/ for more information. */ const globalThis = typeof window !== 'undefined' ? window : typeof global !== 'undefined' ? global : typeof self !== 'undefined' ? self : {}; import { c as createCommonjsModule, m as minimalisticAssert, i as inherits_browser, u as utils, b as common, d as common$1, _ as _224, e as _256, f as _384, g as _512, r as ripemd } from './openpgp.mjs'; import bn from './bn.mjs'; var utils_1 = createCommonjsModule(function (module, exports) { var utils = exports; function toArray(msg, enc) { if (Array.isArray(msg)) return msg.slice(); if (!msg) return []; var res = []; if (typeof msg !== 'string') { for (var i = 0; i < msg.length; i++) res[i] = msg[i] | 0; return res; } if (enc === 'hex') { msg = msg.replace(/[^a-z0-9]+/ig, ''); if (msg.length % 2 !== 0) msg = '0' + msg; for (var i = 0; i < msg.length; i += 2) res.push(parseInt(msg[i] + msg[i + 1], 16)); } else { for (var i = 0; i < msg.length; i++) { var c = msg.charCodeAt(i); var hi = c >> 8; var lo = c & 0xff; if (hi) res.push(hi, lo); else res.push(lo); } } return res; } utils.toArray = toArray; function zero2(word) { if (word.length === 1) return '0' + word; else return word; } utils.zero2 = zero2; function toHex(msg) { var res = ''; for (var i = 0; i < msg.length; i++) res += zero2(msg[i].toString(16)); return res; } utils.toHex = toHex; utils.encode = function encode(arr, enc) { if (enc === 'hex') return toHex(arr); else return arr; }; }); var utils_1$1 = createCommonjsModule(function (module, exports) { var utils = exports; utils.assert = minimalisticAssert; utils.toArray = utils_1.toArray; utils.zero2 = utils_1.zero2; utils.toHex = utils_1.toHex; utils.encode = utils_1.encode; // Represent num in a w-NAF form function getNAF(num, w) { var naf = []; var ws = 1 << (w + 1); var k = num.clone(); while (k.cmpn(1) >= 0) { var z; if (k.isOdd()) { var mod = k.andln(ws - 1); if (mod > (ws >> 1) - 1) z = (ws >> 1) - mod; else z = mod; k.isubn(z); } else { z = 0; } naf.push(z); // Optimization, shift by word if possible var shift = (k.cmpn(0) !== 0 && k.andln(ws - 1) === 0) ? (w + 1) : 1; for (var i = 1; i < shift; i++) naf.push(0); k.iushrn(shift); } return naf; } utils.getNAF = getNAF; // Represent k1, k2 in a Joint Sparse Form function getJSF(k1, k2) { var jsf = [ [], [] ]; k1 = k1.clone(); k2 = k2.clone(); var d1 = 0; var d2 = 0; while (k1.cmpn(-d1) > 0 || k2.cmpn(-d2) > 0) { // First phase var m14 = (k1.andln(3) + d1) & 3; var m24 = (k2.andln(3) + d2) & 3; if (m14 === 3) m14 = -1; if (m24 === 3) m24 = -1; var u1; if ((m14 & 1) === 0) { u1 = 0; } else { var m8 = (k1.andln(7) + d1) & 7; if ((m8 === 3 || m8 === 5) && m24 === 2) u1 = -m14; else u1 = m14; } jsf[0].push(u1); var u2; if ((m24 & 1) === 0) { u2 = 0; } else { var m8 = (k2.andln(7) + d2) & 7; if ((m8 === 3 || m8 === 5) && m14 === 2) u2 = -m24; else u2 = m24; } jsf[1].push(u2); // Second phase if (2 * d1 === u1 + 1) d1 = 1 - d1; if (2 * d2 === u2 + 1) d2 = 1 - d2; k1.iushrn(1); k2.iushrn(1); } return jsf; } utils.getJSF = getJSF; function cachedProperty(obj, name, computer) { var key = '_' + name; obj.prototype[name] = function cachedProperty() { return this[key] !== undefined ? this[key] : this[key] = computer.call(this); }; } utils.cachedProperty = cachedProperty; function parseBytes(bytes) { return typeof bytes === 'string' ? utils.toArray(bytes, 'hex') : bytes; } utils.parseBytes = parseBytes; function intFromLE(bytes) { return new bn(bytes, 'hex', 'le'); } utils.intFromLE = intFromLE; }); var r; var brorand = function rand(len) { if (!r) r = new Rand(null); return r.generate(len); }; function Rand(rand) { this.rand = rand; } var Rand_1 = Rand; Rand.prototype.generate = function generate(len) { return this._rand(len); }; // Emulate crypto API using randy Rand.prototype._rand = function _rand(n) { if (this.rand.getBytes) return this.rand.getBytes(n); var res = new Uint8Array(n); for (var i = 0; i < res.length; i++) res[i] = this.rand.getByte(); return res; }; if (typeof self === 'object') { if (self.crypto && self.crypto.getRandomValues) { // Modern browsers Rand.prototype._rand = function _rand(n) { var arr = new Uint8Array(n); self.crypto.getRandomValues(arr); return arr; }; } else if (self.msCrypto && self.msCrypto.getRandomValues) { // IE Rand.prototype._rand = function _rand(n) { var arr = new Uint8Array(n); self.msCrypto.getRandomValues(arr); return arr; }; // Safari's WebWorkers do not have `crypto` } else if (typeof window === 'object') { // Old junk Rand.prototype._rand = function() { throw new Error('Not implemented yet'); }; } } else { // Node.js or Web worker with no crypto support try { var crypto = void('crypto'); if (typeof crypto.randomBytes !== 'function') throw new Error('Not supported'); Rand.prototype._rand = function _rand(n) { return crypto.randomBytes(n); }; } catch (e) { } } brorand.Rand = Rand_1; var getNAF = utils_1$1.getNAF; var getJSF = utils_1$1.getJSF; var assert = utils_1$1.assert; function BaseCurve(type, conf) { this.type = type; this.p = new bn(conf.p, 16); // Use Montgomery, when there is no fast reduction for the prime this.red = conf.prime ? bn.red(conf.prime) : bn.mont(this.p); // Useful for many curves this.zero = new bn(0).toRed(this.red); this.one = new bn(1).toRed(this.red); this.two = new bn(2).toRed(this.red); // Curve configuration, optional this.n = conf.n && new bn(conf.n, 16); this.g = conf.g && this.pointFromJSON(conf.g, conf.gRed); // Temporary arrays this._wnafT1 = new Array(4); this._wnafT2 = new Array(4); this._wnafT3 = new Array(4); this._wnafT4 = new Array(4); // Generalized Greg Maxwell's trick var adjustCount = this.n && this.p.div(this.n); if (!adjustCount || adjustCount.cmpn(100) > 0) { this.redN = null; } else { this._maxwellTrick = true; this.redN = this.n.toRed(this.red); } } var base = BaseCurve; BaseCurve.prototype.point = function point() { throw new Error('Not implemented'); }; BaseCurve.prototype.validate = function validate() { throw new Error('Not implemented'); }; BaseCurve.prototype._fixedNafMul = function _fixedNafMul(p, k) { assert(p.precomputed); var doubles = p._getDoubles(); var naf = getNAF(k, 1); var I = (1 << (doubles.step + 1)) - (doubles.step % 2 === 0 ? 2 : 1); I /= 3; // Translate into more windowed form var repr = []; for (var j = 0; j < naf.length; j += doubles.step) { var nafW = 0; for (var k = j + doubles.step - 1; k >= j; k--) nafW = (nafW << 1) + naf[k]; repr.push(nafW); } var a = this.jpoint(null, null, null); var b = this.jpoint(null, null, null); for (var i = I; i > 0; i--) { for (var j = 0; j < repr.length; j++) { var nafW = repr[j]; if (nafW === i) b = b.mixedAdd(doubles.points[j]); else if (nafW === -i) b = b.mixedAdd(doubles.points[j].neg()); } a = a.add(b); } return a.toP(); }; BaseCurve.prototype._wnafMul = function _wnafMul(p, k) { var w = 4; // Precompute window var nafPoints = p._getNAFPoints(w); w = nafPoints.wnd; var wnd = nafPoints.points; // Get NAF form var naf = getNAF(k, w); // Add `this`*(N+1) for every w-NAF index var acc = this.jpoint(null, null, null); for (var i = naf.length - 1; i >= 0; i--) { // Count zeroes for (var k = 0; i >= 0 && naf[i] === 0; i--) k++; if (i >= 0) k++; acc = acc.dblp(k); if (i < 0) break; var z = naf[i]; assert(z !== 0); if (p.type === 'affine') { // J +- P if (z > 0) acc = acc.mixedAdd(wnd[(z - 1) >> 1]); else acc = acc.mixedAdd(wnd[(-z - 1) >> 1].neg()); } else { // J +- J if (z > 0) acc = acc.add(wnd[(z - 1) >> 1]); else acc = acc.add(wnd[(-z - 1) >> 1].neg()); } } return p.type === 'affine' ? acc.toP() : acc; }; BaseCurve.prototype._wnafMulAdd = function _wnafMulAdd(defW, points, coeffs, len, jacobianResult) { var wndWidth = this._wnafT1; var wnd = this._wnafT2; var naf = this._wnafT3; // Fill all arrays var max = 0; for (var i = 0; i < len; i++) { var p = points[i]; var nafPoints = p._getNAFPoints(defW); wndWidth[i] = nafPoints.wnd; wnd[i] = nafPoints.points; } // Comb small window NAFs for (var i = len - 1; i >= 1; i -= 2) { var a = i - 1; var b = i; if (wndWidth[a] !== 1 || wndWidth[b] !== 1) { naf[a] = getNAF(coeffs[a], wndWidth[a]); naf[b] = getNAF(coeffs[b], wndWidth[b]); max = Math.max(naf[a].length, max); max = Math.max(naf[b].length, max); continue; } var comb = [ points[a], /* 1 */ null, /* 3 */ null, /* 5 */ points[b] /* 7 */ ]; // Try to avoid Projective points, if possible if (points[a].y.cmp(points[b].y) === 0) { comb[1] = points[a].add(points[b]); comb[2] = points[a].toJ().mixedAdd(points[b].neg()); } else if (points[a].y.cmp(points[b].y.redNeg()) === 0) { comb[1] = points[a].toJ().mixedAdd(points[b]); comb[2] = points[a].add(points[b].neg()); } else { comb[1] = points[a].toJ().mixedAdd(points[b]); comb[2] = points[a].toJ().mixedAdd(points[b].neg()); } var index = [ -3, /* -1 -1 */ -1, /* -1 0 */ -5, /* -1 1 */ -7, /* 0 -1 */ 0, /* 0 0 */ 7, /* 0 1 */ 5, /* 1 -1 */ 1, /* 1 0 */ 3 /* 1 1 */ ]; var jsf = getJSF(coeffs[a], coeffs[b]); max = Math.max(jsf[0].length, max); naf[a] = new Array(max); naf[b] = new Array(max); for (var j = 0; j < max; j++) { var ja = jsf[0][j] | 0; var jb = jsf[1][j] | 0; naf[a][j] = index[(ja + 1) * 3 + (jb + 1)]; naf[b][j] = 0; wnd[a] = comb; } } var acc = this.jpoint(null, null, null); var tmp = this._wnafT4; for (var i = max; i >= 0; i--) { var k = 0; while (i >= 0) { var zero = true; for (var j = 0; j < len; j++) { tmp[j] = naf[j][i] | 0; if (tmp[j] !== 0) zero = false; } if (!zero) break; k++; i--; } if (i >= 0) k++; acc = acc.dblp(k); if (i < 0) break; for (var j = 0; j < len; j++) { var z = tmp[j]; var p; if (z === 0) continue; else if (z > 0) p = wnd[j][(z - 1) >> 1]; else if (z < 0) p = wnd[j][(-z - 1) >> 1].neg(); if (p.type === 'affine') acc = acc.mixedAdd(p); else acc = acc.add(p); } } // Zeroify references for (var i = 0; i < len; i++) wnd[i] = null; if (jacobianResult) return acc; else return acc.toP(); }; function BasePoint(curve, type) { this.curve = curve; this.type = type; this.precomputed = null; } BaseCurve.BasePoint = BasePoint; BasePoint.prototype.eq = function eq(/*other*/) { throw new Error('Not implemented'); }; BasePoint.prototype.validate = function validate() { return this.curve.validate(this); }; BaseCurve.prototype.decodePoint = function decodePoint(bytes, enc) { bytes = utils_1$1.toArray(bytes, enc); var len = this.p.byteLength(); // uncompressed, hybrid-odd, hybrid-even if ((bytes[0] === 0x04 || bytes[0] === 0x06 || bytes[0] === 0x07) && bytes.length - 1 === 2 * len) { if (bytes[0] === 0x06) assert(bytes[bytes.length - 1] % 2 === 0); else if (bytes[0] === 0x07) assert(bytes[bytes.length - 1] % 2 === 1); var res = this.point(bytes.slice(1, 1 + len), bytes.slice(1 + len, 1 + 2 * len)); return res; } else if ((bytes[0] === 0x02 || bytes[0] === 0x03) && bytes.length - 1 === len) { return this.pointFromX(bytes.slice(1, 1 + len), bytes[0] === 0x03); } throw new Error('Unknown point format'); }; BasePoint.prototype.encodeCompressed = function encodeCompressed(enc) { return this.encode(enc, true); }; BasePoint.prototype._encode = function _encode(compact) { var len = this.curve.p.byteLength(); var x = this.getX().toArray('be', len); if (compact) return [ this.getY().isEven() ? 0x02 : 0x03 ].concat(x); return [ 0x04 ].concat(x, this.getY().toArray('be', len)) ; }; BasePoint.prototype.encode = function encode(enc, compact) { return utils_1$1.encode(this._encode(compact), enc); }; BasePoint.prototype.precompute = function precompute(power) { if (this.precomputed) return this; var precomputed = { doubles: null, naf: null, beta: null }; precomputed.naf = this._getNAFPoints(8); precomputed.doubles = this._getDoubles(4, power); precomputed.beta = this._getBeta(); this.precomputed = precomputed; return this; }; BasePoint.prototype._hasDoubles = function _hasDoubles(k) { if (!this.precomputed) return false; var doubles = this.precomputed.doubles; if (!doubles) return false; return doubles.points.length >= Math.ceil((k.bitLength() + 1) / doubles.step); }; BasePoint.prototype._getDoubles = function _getDoubles(step, power) { if (this.precomputed && this.precomputed.doubles) return this.precomputed.doubles; var doubles = [ this ]; var acc = this; for (var i = 0; i < power; i += step) { for (var j = 0; j < step; j++) acc = acc.dbl(); doubles.push(acc); } return { step: step, points: doubles }; }; BasePoint.prototype._getNAFPoints = function _getNAFPoints(wnd) { if (this.precomputed && this.precomputed.naf) return this.precomputed.naf; var res = [ this ]; var max = (1 << wnd) - 1; var dbl = max === 1 ? null : this.dbl(); for (var i = 1; i < max; i++) res[i] = res[i - 1].add(dbl); return { wnd: wnd, points: res }; }; BasePoint.prototype._getBeta = function _getBeta() { return null; }; BasePoint.prototype.dblp = function dblp(k) { var r = this; for (var i = 0; i < k; i++) r = r.dbl(); return r; }; var assert$1 = utils_1$1.assert; function ShortCurve(conf) { base.call(this, 'short', conf); this.a = new bn(conf.a, 16).toRed(this.red); this.b = new bn(conf.b, 16).toRed(this.red); this.tinv = this.two.redInvm(); this.zeroA = this.a.fromRed().cmpn(0) === 0; this.threeA = this.a.fromRed().sub(this.p).cmpn(-3) === 0; // If the curve is endomorphic, precalculate beta and lambda this.endo = this._getEndomorphism(conf); this._endoWnafT1 = new Array(4); this._endoWnafT2 = new Array(4); } inherits_browser(ShortCurve, base); var short_1 = ShortCurve; ShortCurve.prototype._getEndomorphism = function _getEndomorphism(conf) { // No efficient endomorphism if (!this.zeroA || !this.g || !this.n || this.p.modn(3) !== 1) return; // Compute beta and lambda, that lambda * P = (beta * Px; Py) var beta; var lambda; if (conf.beta) { beta = new bn(conf.beta, 16).toRed(this.red); } else { var betas = this._getEndoRoots(this.p); // Choose the smallest beta beta = betas[0].cmp(betas[1]) < 0 ? betas[0] : betas[1]; beta = beta.toRed(this.red); } if (conf.lambda) { lambda = new bn(conf.lambda, 16); } else { // Choose the lambda that is matching selected beta var lambdas = this._getEndoRoots(this.n); if (this.g.mul(lambdas[0]).x.cmp(this.g.x.redMul(beta)) === 0) { lambda = lambdas[0]; } else { lambda = lambdas[1]; assert$1(this.g.mul(lambda).x.cmp(this.g.x.redMul(beta)) === 0); } } // Get basis vectors, used for balanced length-two representation var basis; if (conf.basis) { basis = conf.basis.map(function(vec) { return { a: new bn(vec.a, 16), b: new bn(vec.b, 16) }; }); } else { basis = this._getEndoBasis(lambda); } return { beta: beta, lambda: lambda, basis: basis }; }; ShortCurve.prototype._getEndoRoots = function _getEndoRoots(num) { // Find roots of for x^2 + x + 1 in F // Root = (-1 +- Sqrt(-3)) / 2 // var red = num === this.p ? this.red : bn.mont(num); var tinv = new bn(2).toRed(red).redInvm(); var ntinv = tinv.redNeg(); var s = new bn(3).toRed(red).redNeg().redSqrt().redMul(tinv); var l1 = ntinv.redAdd(s).fromRed(); var l2 = ntinv.redSub(s).fromRed(); return [ l1, l2 ]; }; ShortCurve.prototype._getEndoBasis = function _getEndoBasis(lambda) { // aprxSqrt >= sqrt(this.n) var aprxSqrt = this.n.ushrn(Math.floor(this.n.bitLength() / 2)); // 3.74 // Run EGCD, until r(L + 1) < aprxSqrt var u = lambda; var v = this.n.clone(); var x1 = new bn(1); var y1 = new bn(0); var x2 = new bn(0); var y2 = new bn(1); // NOTE: all vectors are roots of: a + b * lambda = 0 (mod n) var a0; var b0; // First vector var a1; var b1; // Second vector var a2; var b2; var prevR; var i = 0; var r; var x; while (u.cmpn(0) !== 0) { var q = v.div(u); r = v.sub(q.mul(u)); x = x2.sub(q.mul(x1)); var y = y2.sub(q.mul(y1)); if (!a1 && r.cmp(aprxSqrt) < 0) { a0 = prevR.neg(); b0 = x1; a1 = r.neg(); b1 = x; } else if (a1 && ++i === 2) { break; } prevR = r; v = u; u = r; x2 = x1; x1 = x; y2 = y1; y1 = y; } a2 = r.neg(); b2 = x; var len1 = a1.sqr().add(b1.sqr()); var len2 = a2.sqr().add(b2.sqr()); if (len2.cmp(len1) >= 0) { a2 = a0; b2 = b0; } // Normalize signs if (a1.negative) { a1 = a1.neg(); b1 = b1.neg(); } if (a2.negative) { a2 = a2.neg(); b2 = b2.neg(); } return [ { a: a1, b: b1 }, { a: a2, b: b2 } ]; }; ShortCurve.prototype._endoSplit = function _endoSplit(k) { var basis = this.endo.basis; var v1 = basis[0]; var v2 = basis[1]; var c1 = v2.b.mul(k).divRound(this.n); var c2 = v1.b.neg().mul(k).divRound(this.n); var p1 = c1.mul(v1.a); var p2 = c2.mul(v2.a); var q1 = c1.mul(v1.b); var q2 = c2.mul(v2.b); // Calculate answer var k1 = k.sub(p1).sub(p2); var k2 = q1.add(q2).neg(); return { k1: k1, k2: k2 }; }; ShortCurve.prototype.pointFromX = function pointFromX(x, odd) { x = new bn(x, 16); if (!x.red) x = x.toRed(this.red); var y2 = x.redSqr().redMul(x).redIAdd(x.redMul(this.a)).redIAdd(this.b); var y = y2.redSqrt(); if (y.redSqr().redSub(y2).cmp(this.zero) !== 0) throw new Error('invalid point'); // XXX Is there any way to tell if the number is odd without converting it // to non-red form? var isOdd = y.fromRed().isOdd(); if (odd && !isOdd || !odd && isOdd) y = y.redNeg(); return this.point(x, y); }; ShortCurve.prototype.validate = function validate(point) { if (point.inf) return true; var x = point.x; var y = point.y; var ax = this.a.redMul(x); var rhs = x.redSqr().redMul(x).redIAdd(ax).redIAdd(this.b); return y.redSqr().redISub(rhs).cmpn(0) === 0; }; ShortCurve.prototype._endoWnafMulAdd = function _endoWnafMulAdd(points, coeffs, jacobianResult) { var npoints = this._endoWnafT1; var ncoeffs = this._endoWnafT2; for (var i = 0; i < points.length; i++) { var split = this._endoSplit(coeffs[i]); var p = points[i]; var beta = p._getBeta(); if (split.k1.negative) { split.k1.ineg(); p = p.neg(true); } if (split.k2.negative) { split.k2.ineg(); beta = beta.neg(true); } npoints[i * 2] = p; npoints[i * 2 + 1] = beta; ncoeffs[i * 2] = split.k1; ncoeffs[i * 2 + 1] = split.k2; } var res = this._wnafMulAdd(1, npoints, ncoeffs, i * 2, jacobianResult); // Clean-up references to points and coefficients for (var j = 0; j < i * 2; j++) { npoints[j] = null; ncoeffs[j] = null; } return res; }; function Point(curve, x, y, isRed) { base.BasePoint.call(this, curve, 'affine'); if (x === null && y === null) { this.x = null; this.y = null; this.inf = true; } else { this.x = new bn(x, 16); this.y = new bn(y, 16); // Force redgomery representation when loading from JSON if (isRed) { this.x.forceRed(this.curve.red); this.y.forceRed(this.curve.red); } if (!this.x.red) this.x = this.x.toRed(this.curve.red); if (!this.y.red) this.y = this.y.toRed(this.curve.red); this.inf = false; } } inherits_browser(Point, base.BasePoint); ShortCurve.prototype.point = function point(x, y, isRed) { return new Point(this, x, y, isRed); }; ShortCurve.prototype.pointFromJSON = function pointFromJSON(obj, red) { return Point.fromJSON(this, obj, red); }; Point.prototype._getBeta = function _getBeta() { if (!this.curve.endo) return; var pre = this.precomputed; if (pre && pre.beta) return pre.beta; var beta = this.curve.point(this.x.redMul(this.curve.endo.beta), this.y); if (pre) { var curve = this.curve; var endoMul = function(p) { return curve.point(p.x.redMul(curve.endo.beta), p.y); }; pre.beta = beta; beta.precomputed = { beta: null, naf: pre.naf && { wnd: pre.naf.wnd, points: pre.naf.points.map(endoMul) }, doubles: pre.doubles && { step: pre.doubles.step, points: pre.doubles.points.map(endoMul) } }; } return beta; }; Point.prototype.toJSON = function toJSON() { if (!this.precomputed) return [ this.x, this.y ]; return [ this.x, this.y, this.precomputed && { doubles: this.precomputed.doubles && { step: this.precomputed.doubles.step, points: this.precomputed.doubles.points.slice(1) }, naf: this.precomputed.naf && { wnd: this.precomputed.naf.wnd, points: this.precomputed.naf.points.slice(1) } } ]; }; Point.fromJSON = function fromJSON(curve, obj, red) { if (typeof obj === 'string') obj = JSON.parse(obj); var res = curve.point(obj[0], obj[1], red); if (!obj[2]) return res; function obj2point(obj) { return curve.point(obj[0], obj[1], red); } var pre = obj[2]; res.precomputed = { beta: null, doubles: pre.doubles && { step: pre.doubles.step, points: [ res ].concat(pre.doubles.points.map(obj2point)) }, naf: pre.naf && { wnd: pre.naf.wnd, points: [ res ].concat(pre.naf.points.map(obj2point)) } }; return res; }; Point.prototype.inspect = function inspect() { if (this.isInfinity()) return '<EC Point Infinity>'; return '<EC Point x: ' + this.x.fromRed().toString(16, 2) + ' y: ' + this.y.fromRed().toString(16, 2) + '>'; }; Point.prototype.isInfinity = function isInfinity() { return this.inf; }; Point.prototype.add = function add(p) { // O + P = P if (this.inf) return p; // P + O = P if (p.inf) return this; // P + P = 2P if (this.eq(p)) return this.dbl(); // P + (-P) = O if (this.neg().eq(p)) return this.curve.point(null, null); // P + Q = O if (this.x.cmp(p.x) === 0) return this.curve.point(null, null); var c = this.y.redSub(p.y); if (c.cmpn(0) !== 0) c = c.redMul(this.x.redSub(p.x).redInvm()); var nx = c.redSqr().redISub(this.x).redISub(p.x); var ny = c.redMul(this.x.redSub(nx)).redISub(this.y); return this.curve.point(nx, ny); }; Point.prototype.dbl = function dbl() { if (this.inf) return this; // 2P = O var ys1 = this.y.redAdd(this.y); if (ys1.cmpn(0) === 0) return this.curve.point(null, null); var a = this.curve.a; var x2 = this.x.redSqr(); var dyinv = ys1.redInvm(); var c = x2.redAdd(x2).redIAdd(x2).redIAdd(a).redMul(dyinv); var nx = c.redSqr().redISub(this.x.redAdd(this.x)); var ny = c.redMul(this.x.redSub(nx)).redISub(this.y); return this.curve.point(nx, ny); }; Point.prototype.getX = function getX() { return this.x.fromRed(); }; Point.prototype.getY = function getY() { return this.y.fromRed(); }; Point.prototype.mul = function mul(k) { k = new bn(k, 16); if (this.isInfinity()) return this; else if (this._hasDoubles(k)) return this.curve._fixedNafMul(this, k); else if (this.curve.endo) return this.curve._endoWnafMulAdd([ this ], [ k ]); else return this.curve._wnafMul(this, k); }; Point.prototype.mulAdd = function mulAdd(k1, p2, k2) { var points = [ this, p2 ]; var coeffs = [ k1, k2 ]; if (this.curve.endo) return this.curve._endoWnafMulAdd(points, coeffs); else return this.curve._wnafMulAdd(1, points, coeffs, 2); }; Point.prototype.jmulAdd = function jmulAdd(k1, p2, k2) { var points = [ this, p2 ]; var coeffs = [ k1, k2 ]; if (this.curve.endo) return this.curve._endoWnafMulAdd(points, coeffs, true); else return this.curve._wnafMulAdd(1, points, coeffs, 2, true); }; Point.prototype.eq = function eq(p) { return this === p || this.inf === p.inf && (this.inf || this.x.cmp(p.x) === 0 && this.y.cmp(p.y) === 0); }; Point.prototype.neg = function neg(_precompute) { if (this.inf) return this; var res = this.curve.point(this.x, this.y.redNeg()); if (_precompute && this.precomputed) { var pre = this.precomputed; var negate = function(p) { return p.neg(); }; res.precomputed = { naf: pre.naf && { wnd: pre.naf.wnd, points: pre.naf.points.map(negate) }, doubles: pre.doubles && { step: pre.doubles.step, points: pre.doubles.points.map(negate) } }; } return res; }; Point.prototype.toJ = function toJ() { if (this.inf) return this.curve.jpoint(null, null, null); var res = this.curve.jpoint(this.x, this.y, this.curve.one); return res; }; function JPoint(curve, x, y, z) { base.BasePoint.call(this, curve, 'jacobian'); if (x === null && y === null && z === null) { this.x = this.curve.one; this.y = this.curve.one; this.z = new bn(0); } else { this.x = new bn(x, 16); this.y = new bn(y, 16); this.z = new bn(z, 16); } if (!this.x.red) this.x = this.x.toRed(this.curve.red); if (!this.y.red) this.y = this.y.toRed(this.curve.red); if (!this.z.red) this.z = this.z.toRed(this.curve.red); this.zOne = this.z === this.curve.one; } inherits_browser(JPoint, base.BasePoint); ShortCurve.prototype.jpoint = function jpoint(x, y, z) { return new JPoint(this, x, y, z); }; JPoint.prototype.toP = function toP() { if (this.isInfinity()) return this.curve.point(null, null); var zinv = this.z.redInvm(); var zinv2 = zinv.redSqr(); var ax = this.x.redMul(zinv2); var ay = this.y.redMul(zinv2).redMul(zinv); return this.curve.point(ax, ay); }; JPoint.prototype.neg = function neg() { return this.curve.jpoint(this.x, this.y.redNeg(), this.z); }; JPoint.prototype.add = function add(p) { // O + P = P if (this.isInfinity()) return p; // P + O = P if (p.isInfinity()) return this; // 12M + 4S + 7A var pz2 = p.z.redSqr(); var z2 = this.z.redSqr(); var u1 = this.x.redMul(pz2); var u2 = p.x.redMul(z2); var s1 = this.y.redMul(pz2.redMul(p.z)); var s2 = p.y.redMul(z2.redMul(this.z)); var h = u1.redSub(u2); var r = s1.redSub(s2); if (h.cmpn(0) === 0) { if (r.cmpn(0) !== 0) return this.curve.jpoint(null, null, null); else return this.dbl(); } var h2 = h.redSqr(); var h3 = h2.redMul(h); var v = u1.redMul(h2); var nx = r.redSqr().redIAdd(h3).redISub(v).redISub(v); var ny = r.redMul(v.redISub(nx)).redISub(s1.redMul(h3)); var nz = this.z.redMul(p.z).redMul(h); return this.curve.jpoint(nx, ny, nz); }; JPoint.prototype.mixedAdd = function mixedAdd(p) { // O + P = P if (this.isInfinity()) return p.toJ(); // P + O = P if (p.isInfinity()) return this; // 8M + 3S + 7A var z2 = this.z.redSqr(); var u1 = this.x; var u2 = p.x.redMul(z2); var s1 = this.y; var s2 = p.y.redMul(z2).redMul(this.z); var h = u1.redSub(u2); var r = s1.redSub(s2); if (h.cmpn(0) === 0) { if (r.cmpn(0) !== 0) return this.curve.jpoint(null, null, null); else return this.dbl(); } var h2 = h.redSqr(); var h3 = h2.redMul(h); var v = u1.redMul(h2); var nx = r.redSqr().redIAdd(h3).redISub(v).redISub(v); var ny = r.redMul(v.redISub(nx)).redISub(s1.redMul(h3)); var nz = this.z.redMul(h); return this.curve.jpoint(nx, ny, nz); }; JPoint.prototype.dblp = function dblp(pow) { if (pow === 0) return this; if (this.isInfinity()) return this; if (!pow) return this.dbl(); if (this.curve.zeroA || this.curve.threeA) { var r = this; for (var i = 0; i < pow; i++) r = r.dbl(); return r; } // 1M + 2S + 1A + N * (4S + 5M + 8A) // N = 1 => 6M + 6S + 9A var a = this.curve.a; var tinv = this.curve.tinv; var jx = this.x; var jy = this.y; var jz = this.z; var jz4 = jz.redSqr().redSqr(); // Reuse results var jyd = jy.redAdd(jy); for (var i = 0; i < pow; i++) { var jx2 = jx.redSqr(); var jyd2 = jyd.redSqr(); var jyd4 = jyd2.redSqr(); var c = jx2.redAdd(jx2).redIAdd(jx2).redIAdd(a.redMul(jz4)); var t1 = jx.redMul(jyd2); var nx = c.redSqr().redISub(t1.redAdd(t1)); var t2 = t1.redISub(nx); var dny = c.redMul(t2); dny = dny.redIAdd(dny).redISub(jyd4); var nz = jyd.redMul(jz); if (i + 1 < pow) jz4 = jz4.redMul(jyd4); jx = nx; jz = nz; jyd = dny; } return this.curve.jpoint(jx, jyd.redMul(tinv), jz); }; JPoint.prototype.dbl = function dbl() { if (this.isInfinity()) return this; if (this.curve.zeroA) return this._zeroDbl(); else if (this.curve.threeA) return this._threeDbl(); else return this._dbl(); }; JPoint.prototype._zeroDbl = function _zeroDbl() { var nx; var ny; var nz; // Z = 1 if (this.zOne) { // hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html // #doubling-mdbl-2007-bl // 1M + 5S + 14A // XX = X1^2 var xx = this.x.redSqr(); // YY = Y1^2 var yy = this.y.redSqr(); // YYYY = YY^2 var yyyy = yy.redSqr(); // S = 2 * ((X1 + YY)^2 - XX - YYYY) var s = this.x.redAdd(yy).redSqr().redISub(xx).redISub(yyyy); s = s.redIAdd(s); // M = 3 * XX + a; a = 0 var m = xx.redAdd(xx).redIAdd(xx); // T = M ^ 2 - 2*S var t = m.redSqr().redISub(s).redISub(s); // 8 * YYYY var yyyy8 = yyyy.redIAdd(yyyy); yyyy8 = yyyy8.redIAdd(yyyy8); yyyy8 = yyyy8.redIAdd(yyyy8); // X3 = T nx = t; // Y3 = M * (S - T) - 8 * YYYY ny = m.redMul(s.redISub(t)).redISub(yyyy8); // Z3 = 2*Y1 nz = this.y.redAdd(this.y); } else { // hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html // #doubling-dbl-2009-l // 2M + 5S + 13A // A = X1^2 var a = this.x.redSqr(); // B = Y1^2 var b = this.y.redSqr(); // C = B^2 var c = b.redSqr(); // D = 2 * ((X1 + B)^2 - A - C) var d = this.x.redAdd(b).redSqr().redISub(a).redISub(c); d = d.redIAdd(d); // E = 3 * A var e = a.redAdd(a).redIAdd(a); // F = E^2 var f = e.redSqr(); // 8 * C var c8 = c.redIAdd(c); c8 = c8.redIAdd(c8); c8 = c8.redIAdd(c8); // X3 = F - 2 * D nx = f.redISub(d).redISub(d); // Y3 = E * (D - X3) - 8 * C ny = e.redMul(d.redISub(nx)).redISub(c8); // Z3 = 2 * Y1 * Z1 nz = this.y.redMul(this.z); nz = nz.redIAdd(nz); } return this.curve.jpoint(nx, ny, nz); }; JPoint.prototype._threeDbl = function _threeDbl() { var nx; var ny; var nz; // Z = 1 if (this.zOne) { // hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html // #doubling-mdbl-2007-bl // 1M + 5S + 15A // XX = X1^2 var xx = this.x.redSqr(); // YY = Y1^2 var yy = this.y.redSqr(); // YYYY = YY^2 var yyyy = yy.redSqr(); // S = 2 * ((X1 + YY)^2 - XX - YYYY) var s = this.x.redAdd(yy).redSqr().redISub(xx).redISub(yyyy); s = s.redIAdd(s); // M = 3 * XX + a var m = xx.redAdd(xx).redIAdd(xx).redIAdd(this.curve.a); // T = M^2 - 2 * S var t = m.redSqr().redISub(s).redISub(s); // X3 = T nx = t; // Y3 = M * (S - T) - 8 * YYYY var yyyy8 = yyyy.redIAdd(yyyy); yyyy8 = yyyy8.redIAdd(yyyy8); yyyy8 = yyyy8.redIAdd(yyyy8); ny = m.redMul(s.redISub(t)).redISub(yyyy8); // Z3 = 2 * Y1 nz = this.y.redAdd(this.y); } else { // hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#doubling-dbl-2001-b // 3M + 5S // delta = Z1^2 var delta = this.z.redSqr(); // gamma = Y1^2 var gamma = this.y.redSqr(); // beta = X1 * gamma var beta = this.x.redMul(gamma); // alpha = 3 * (X1 - delta) * (X1 + delta) var alpha = this.x.redSub(delta).redMul(this.x.redAdd(delta)); alpha = alpha.redAdd(alpha).redIAdd(alpha); // X3 = alpha^2 - 8 * beta var beta4 = beta.redIAdd(beta); beta4 = beta4.redIAdd(beta4); var beta8 = beta4.redAdd(beta4); nx = alpha.redSqr().redISub(beta8); // Z3 = (Y1 + Z1)^2 - gamma - delta nz = this.y.redAdd(this.z).redSqr().redISub(gamma).redISub(delta); // Y3 = alpha * (4 * beta - X3) - 8 * gamma^2 var ggamma8 = gamma.redSqr(); ggamma8 = ggamma8.redIAdd(ggamma8); ggamma8 = ggamma8.redIAdd(ggamma8); ggamma8 = ggamma8.redIAdd(ggamma8); ny = alpha.redMul(beta4.redISub(nx)).redISub(ggamma8); } return this.curve.jpoint(nx, ny, nz); }; JPoint.prototype._dbl = function _dbl() { var a = this.curve.a; // 4M + 6S + 10A var jx = this.x; var jy = this.y; var jz = this.z; var jz4 = jz.redSqr().redSqr(); var jx2 = jx.redSqr(); var jy2 = jy.redSqr(); var c = jx2.redAdd(jx2).redIAdd(jx2).redIAdd(a.redMul(jz4)); var jxd4 = jx.redAdd(jx); jxd4 = jxd4.redIAdd(jxd4); var t1 = jxd4.redMul(jy2); var nx = c.redSqr().redISub(t1.redAdd(t1)); var t2 = t1.redISub(nx); var jyd8 = jy2.redSqr(); jyd8 = jyd8.redIAdd(jyd8); jyd8 = jyd8.redIAdd(jyd8); jyd8 = jyd8.redIAdd(jyd8); var ny = c.redMul(t2).redISub(jyd8); var nz = jy.redAdd(jy).redMul(jz); return this.curve.jpoint(nx, ny, nz); }; JPoint.prototype.trpl = function trpl() { if (!this.curve.zeroA) return this.dbl().add(this); // hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#tripling-tpl-2007-bl // 5M + 10S + ... // XX = X1^2 var xx = this.x.redSqr(); // YY = Y1^2 var yy = this.y.redSqr(); // ZZ = Z1^2 var zz = this.z.redSqr(); // YYYY = YY^2 var yyyy = yy.redSqr(); // M = 3 * XX + a * ZZ2; a = 0 var m = xx.redAdd(xx).redIAdd(xx); // MM = M^2 var mm = m.redSqr(); // E = 6 * ((X1 + YY)^2 - XX - YYYY) - MM var e = this.x.redAdd(yy).redSqr().redISub(xx).redISub(yyyy); e = e.redIAdd(e); e = e.redAdd(e).redIAdd(e); e = e.redISub(mm); // EE = E^2 var ee = e.redSqr(); // T = 16*YYYY var t = yyyy.redIAdd(yyyy); t = t.redIAdd(t); t = t.redIAdd(t); t = t.redIAdd(t); // U = (M + E)^2 - MM - EE - T var u = m.redIAdd(e).redSqr().redISub(mm).redISub(ee).redISub(t); // X3 = 4 * (X1 * EE - 4 * YY * U) var yyu4 = yy.redMul(u); yyu4 = yyu4.redIAdd(yyu4); yyu4 = yyu4.redIAdd(yyu4); var nx = this.x.redMul(ee).redISub(yyu4); nx = nx.redIAdd(nx); nx = nx.redIAdd(nx); // Y3 = 8 * Y1 * (U * (T - U) - E * EE) var ny = this.y.redMul(u.redMul(t.redISub(u)).redISub(e.redMul(ee))); ny = ny.redIAdd(ny); ny = ny.redIAdd(ny); ny = ny.redIAdd(ny); // Z3 = (Z1 + E)^2 - ZZ - EE var nz = this.z.redAdd(e).redSqr().redISub(zz).redISub(ee); return this.curve.jpoint(nx, ny, nz); }; JPoint.prototype.mul = function mul(k, kbase) { k = new bn(k, kbase); return this.curve._wnafMul(this, k); }; JPoint.prototype.eq = function eq(p) { if (p.type === 'affine') return this.eq(p.toJ()); if (this === p) return true; // x1 * z2^2 == x2 * z1^2 var z2 = this.z.redSqr(); var pz2 = p.z.redSqr(); if (this.x.redMul(pz2).redISub(p.x.redMul(z2)).cmpn(0) !== 0) return false; // y1 * z2^3 == y2 * z1^3 var z3 = z2.redMul(this.z); var pz3 = pz2.redMul(p.z); return this.y.redMul(pz3).redISub(p.y.redMul(z3)).cmpn(0) === 0; }; JPoint.prototype.eqXToP = function eqXToP(x) { var zs = this.z.redSqr(); var rx = x.toRed(this.curve.red).redMul(zs); if (this.x.cmp(rx) === 0) return true; var xc = x.clone(); var t = this.curve.redN.redMul(zs); for (;;) { xc.iadd(this.curve.n); if (xc.cmp(this.curve.p) >= 0) return false; rx.redIAdd(t); if (this.x.cmp(rx) === 0) return true; } }; JPoint.prototype.inspect = function inspect() { if (this.isInfinity()) return '<EC JPoint Infinity>'; return '<EC JPoint x: ' + this.x.toString(16, 2) + ' y: ' + this.y.toString(16, 2) + ' z: ' + this.z.toString(16, 2) + '>'; }; JPoint.prototype.isInfinity = function isInfinity() { // XXX This code assumes that zero is always zero in red return this.z.cmpn(0) === 0; }; function MontCurve(conf) { base.call(this, 'mont', conf); this.a = new bn(conf.a, 16).toRed(this.red); this.b = new bn(conf.b, 16).toRed(this.red); this.i4 = new bn(4).toRed(this.red).redInvm(); this.two = new bn(2).toRed(this.red); // Note: this implementation is according to the original paper // by P. Montgomery, NOT the one by D. J. Bernstein. this.a24 = this.i4.redMul(this.a.redAdd(this.two)); } inherits_browser(MontCurve, base); var mont = MontCurve; MontCurve.prototype.validate = function validate(point) { var x = point.normalize().x; var x2 = x.redSqr(); var rhs = x2.redMul(x).redAdd(x2.redMul(this.a)).redAdd(x); var y = rhs.redSqrt(); return y.redSqr().cmp(rhs) === 0; }; function Point$1(curve, x, z) { base.BasePoint.call(this, curve, 'projective'); if (x === null && z === null) { this.x = this.curve.one; this.z = this.curve.zero; } else { this.x = new bn(x, 16); this.z = new bn(z, 16); if (!this.x.red) this.x = this.x.toRed(this.curve.red); if (!this.z.red) this.z = this.z.toRed(this.curve.red); } } inherits_browser(Point$1, base.BasePoint); MontCurve.prototype.decodePoint = function decodePoint(bytes, enc) { var bytes = utils_1$1.toArray(bytes, enc); // TODO Curve448 // Montgomery curve points must be represented in the compressed format // https://tools.ietf.org/html/draft-ietf-openpgp-rfc4880bis-02#appendix-B if (bytes.length === 33 && bytes[0] === 0x40) bytes = bytes.slice(1, 33).reverse(); // point must be little-endian if (bytes.length !== 32) throw new Error('Unknown point compression format'); return this.point(bytes, 1); }; MontCurve.prototype.point = function point(x, z) { return new Point$1(this, x, z); }; MontCurve.prototype.pointFromJSON = function pointFromJSON(obj) { return Point$1.fromJSON(this, obj); }; Point$1.prototype.precompute = function precompute() { // No-op }; Point$1.prototype._encode = function _encode(compact) { var len = this.curve.p.byteLength(); // Note: the output should always be little-endian // https://tools.ietf.org/html/draft-ietf-openpgp-rfc4880bis-02#appendix-B if (compact) { return [ 0x40 ].concat(this.getX().toArray('le', len)); } else { return this.getX().toArray('be', len); } }; Point$1.fromJSON = function fromJSON(curve, obj) { return new Point$1(curve, obj[0], obj[1] || curve.one); }; Point$1.prototype.inspect = function inspect() { if (this.isInfinity()) return '<EC Point Infinity>'; return '<EC Point x: ' + this.x.fromRed().toString(16, 2) + ' z: ' + this.z.fromRed().toString(16, 2) + '>'; }; Point$1.prototype.isInfinity = function isInfinity() { // XXX This code assumes that zero is always zero in red return this.z.cmpn(0) === 0; }; Point$1.prototype.dbl = function dbl() { // http://hyperelliptic.org/EFD/g1p/auto-montgom-xz.html#doubling-dbl-1987-m-3 // 2M + 2S + 4A // A = X1 + Z1 var a = this.x.redAdd(this.z); // AA = A^2 var aa = a.redSqr(); // B = X1 - Z1 var b = this.x.redSub(this.z); // BB = B^2 var bb = b.redSqr(); // C = AA - BB var c = aa.redSub(bb); // X3 = AA * BB var nx = aa.redMul(bb); // Z3 = C * (BB + A24 * C) var nz = c.redMul(bb.redAdd(this.curve.a24.redMul(c))); return this.curve.point(nx, nz); }; Point$1.prototype.add = function add() { throw new Error('Not supported on Montgomery curve'); }; Point$1.prototype.diffAdd = function diffAdd(p, diff) { // http://hyperelliptic.org/EFD/g1p/auto-montgom-xz.html#diffadd-dadd-1987-m-3 // 4M + 2S + 6A // A = X2 + Z2 var a = this.x.redAdd(this.z); // B = X2 - Z2 var b = this.x.redSub(this.z); // C = X3 + Z3 var c = p.x.redAdd(p.z); // D = X3 - Z3 var d = p.x.redSub(p.z); // DA = D * A var da = d.redMul(a); // CB = C * B var cb = c.redMul(b); // X5 = Z1 * (DA + CB)^2 var nx = diff.z.redMul(da.redAdd(cb).redSqr()); // Z5 = X1 * (DA - CB)^2 var nz = diff.x.redMul(da.redISub(cb).redSqr()); return this.curve.point(nx, nz); }; Point$1.prototype.mul = function mul(k) { k = new bn(k, 16); var t = k.clone(); var a = this; // (N / 2) * Q + Q var b = this.curve.point(null, null); // (N / 2) * Q var c = this; // Q for (var bits = []; t.cmpn(0) !== 0; t.iushrn(1)) bits.push(t.andln(1)); for (var i = bits.length - 1; i >= 0; i--) { if (bits[i] === 0) { // N * Q + Q = ((N / 2) * Q + Q)) + (N / 2) * Q a = a.diffAdd(b, c); // N * Q = 2 * ((N / 2) * Q + Q)) b = b.dbl(); } else { // N * Q = ((N / 2) * Q + Q) + ((N / 2) * Q) b = a.diffAdd(b, c); // N * Q + Q = 2 * ((N / 2) * Q + Q) a = a.dbl(); } } return b; }; Point$1.prototype.mulAdd = function mulAdd() { throw new Error('Not supported on Montgomery curve'); }; Point$1.prototype.jumlAdd = function jumlAdd() { throw new Error('Not supported on Montgomery curve'); }; Point$1.prototype.eq = function eq(other) { return this.getX().cmp(other.getX()) === 0; }; Point$1.prototype.normalize = function normalize() { this.x = this.x.redMul(this.z.redInvm()); this.z = this.curve.one; return this; }; Point$1.prototype.getX = function getX() { // Normalize coordinates this.normalize(); return this.x.fromRed(); }; var assert$2 = utils_1$1.assert; function EdwardsCurve(conf) { // NOTE: Important as we are creating point in Base.call() this.twisted = (conf.a | 0) !== 1; this.mOneA = this.twisted && (conf.a | 0) === -1; this.extended = this.mOneA; base.call(this, 'edwards', conf); this.a = new bn(conf.a, 16).umod(this.red.m); this.a = this.a.toRed(this.red); this.c = new bn(conf.c, 16).toRed(this.red); this.c2 = this.c.redSqr(); this.d = new bn(conf.d, 16).toRed(this.red); this.dd = this.d.redAdd(this.d); assert$2(!this.twisted || this.c.fromRed().cmpn(1) === 0); this.oneC = (conf.c | 0) === 1; } inherits_browser(EdwardsCurve, base); var edwards = EdwardsCurve; EdwardsCurve.prototype._mulA = function _mulA(num) { if (this.mOneA) return num.redNeg(); else return this.a.redMul(num); }; EdwardsCurve.prototype._mulC = function _mulC(num) { if (this.oneC) return num; else return this.c.redMul(num); }; // Just for compatibility with Short curve EdwardsCurve.prototype.jpoint = function jpoint(x, y, z, t) { return this.point(x, y, z, t); }; EdwardsCurve.prototype.pointFromX = function pointFromX(x, odd) { x = new bn(x, 16); if (!x.red) x = x.toRed(this.red); var x2 = x.redSqr(); var rhs = this.c2.redSub(this.a.redMul(x2)); var lhs = this.one.redSub(this.c2.redMul(this.d).redMul(x2)); var y2 = rhs.redMul(lhs.redInvm()); var y = y2.redSqrt(); if (y.redSqr().redSub(y2).cmp(this.zero) !== 0) throw new Error('invalid point'); var isOdd = y.fromRed().isOdd(); if (odd && !isOdd || !odd && isOdd) y = y.redNeg(); return this.point(x, y); }; EdwardsCurve.prototype.pointFromY = function pointFromY(y, odd) { y = new bn(y, 16); if (!y.red) y = y.toRed(this.red); // x^2 = (y^2 - c^2) / (c^2 d y^2 - a) var y2 = y.redSqr(); var lhs = y2.redSub(this.c2); var rhs = y2.redMul(this.d).redMul(this.c2).redSub(this.a); var x2 = lhs.redMul(rhs.redInvm()); if (x2.cmp(this.zero) === 0) { if (odd) throw new Error('invalid point'); else return this.point(this.zero, y); } var x = x2.redSqrt(); if (x.redSqr().redSub(x2).cmp(this.zero) !== 0) throw new Error('invalid point'); if (x.fromRed().isOdd() !== odd) x = x.redNeg(); return this.point(x, y); }; EdwardsCurve.prototype.validate = function validate(point) { if (point.isInfinity()) return true; // Curve: A * X^2 + Y^2 = C^2 * (1 + D * X^2 * Y^2) point.normalize(); var x2 = point.x.redSqr(); var y2 = point.y.redSqr(); var lhs = x2.redMul(this.a).redAdd(y2); var rhs = this.c2.redMul(this.one.redAdd(this.d.redMul(x2).redMul(y2))); return lhs.cmp(rhs) === 0; }; function Point$2(curve, x, y, z, t) { base.BasePoint.call(this, curve, 'projective'); if (x === null && y === null && z === null) { this.x = this.curve.zero; this.y = this.curve.one; this.z = this.curve.one; this.t = this.curve.zero; this.zOne = true; } else { this.x = new bn(x, 16); this.y = new bn(y, 16); this.z = z ? new bn(z, 16) : this.curve.one; this.t = t && new bn(t, 16); if (!this.x.red) this.x = this.x.toRed(this.curve.red); if (!this.y.red) this.y = this.y.toRed(this.curve.red); if (!this.z.red) this.z = this.z.toRed(this.curve.red); if (this.t && !this.t.red) this.t = this.t.toRed(this.curve.red); this.zOne = this.z === this.curve.one; // Use extended coordinates if (this.curve.extended && !this.t) { this.t = this.x.redMul(this.y); if (!this.zOne) this.t = this.t.redMul(this.z.redInvm()); } } } inherits_browser(Point$2, base.BasePoint); EdwardsCurve.prototype.pointFromJSON = function pointFromJSON(obj) { return Point$2.fromJSON(this, obj); }; EdwardsCurve.prototype.point = function point(x, y, z, t) { return new Point$2(this, x, y, z, t); }; Point$2.fromJSON = function fromJSON(curve, obj) { return new Point$2(curve, obj[0], obj[1], obj[2]); }; Point$2.prototype.inspect = function inspect() { if (this.isInfinity()) return '<EC Point Infinity>'; return '<EC Point x: ' + this.x.fromRed().toString(16, 2) + ' y: ' + this.y.fromRed().toString(16, 2) + ' z: ' + this.z.fromRed().toString(16, 2) + '>'; }; Point$2.prototype.isInfinity = function isInfinity() { // XXX This code assumes that zero is always zero in red return this.x.cmpn(0) === 0 && (this.y.cmp(this.z) === 0 || (this.zOne && this.y.cmp(this.curve.c) === 0)); }; Point$2.prototype._extDbl = function _extDbl() { // hyperelliptic.org/EFD/g1p/auto-twisted-extended-1.html // #doubling-dbl-2008-hwcd // 4M + 4S // A = X1^2 var a = this.x.redSqr(); // B = Y1^2 var b = this.y.redSqr(); // C = 2 * Z1^2 var c = this.z.redSqr(); c = c.redIAdd(c); // D = a * A var d = this.curve._mulA(a); // E = (X1 + Y1)^2 - A - B var e = this.x.redAdd(this.y).redSqr().redISub(a).redISub(b); // G = D + B var g = d.redAdd(b); // F = G - C var f = g.redSub(c); // H = D - B var h = d.redSub(b); // X3 = E * F var nx = e.redMul(f); // Y3 = G * H var ny = g.redMul(h); // T3 = E * H var nt = e.redMul(h); // Z3 = F * G var nz = f.redMul(g); return this.curve.point(nx, ny, nz, nt); }; Point$2.prototype._projDbl = function _projDbl() { // hyperelliptic.org/EFD/g1p/auto-twisted-projective.html // #doubling-dbl-2008-bbjlp // #doubling-dbl-2007-bl // and others // Generally 3M + 4S or 2M + 4S // B = (X1 + Y1)^2 var b = this.x.redAdd(this.y).redSqr(); // C = X1^2 var c = this.x.redSqr(); // D = Y1^2 var d = this.y.redSqr(); var nx; var ny; var nz; if (this.curve.twisted) { // E = a * C var e = this.curve._mulA(c); // F = E + D var f = e.redAdd(d); if (this.zOne) { // X3 = (B - C - D) * (F - 2) nx = b.redSub(c).redSub(d).redMul(f.redSub(this.curve.two)); // Y3 = F * (E - D) ny = f.redMul(e.redSub(d)); // Z3 = F^2 - 2 * F nz = f.redSqr().redSub(f).redSub(f); } else { // H = Z1^2 var h = this.z.redSqr(); // J = F - 2 * H var j = f.redSub(h).redISub(h); // X3 = (B-C-D)*J nx = b.redSub(c).redISub(d).redMul(j); // Y3 = F * (E - D) ny = f.redMul(e.redSub(d)); // Z3 = F * J nz = f.redMul(j); } } else { // E = C + D var e = c.redAdd(d); // H = (c * Z1)^2 var h = this.curve._mulC(this.z).redSqr(); // J = E - 2 * H var j = e.redSub(h).redSub(h); // X3 = c * (B - E) * J nx = this.curve._mulC(b.redISub(e)).redMul(j); // Y3 = c * E * (C - D) ny = this.curve._mulC(e).redMul(c.redISub(d)); // Z3 = E * J nz = e.redMul(j); } return this.curve.point(nx, ny, nz); }; Point$2.prototype.dbl = function dbl() { if (this.isInfinity()) return this; // Double in extended coordinates if (this.curve.extended) return this._extDbl(); else return this._projDbl(); }; Point$2.prototype._extAdd = function _extAdd(p) { // hyperelliptic.org/EFD/g1p/aut