openpgp
Version:
OpenPGP.js is a Javascript implementation of the OpenPGP protocol. This is defined in RFC 4880.
2,018 lines (1,724 loc) • 123 kB
JavaScript
/*! OpenPGP.js v5.11.2 - 2024-06-19 - this is LGPL licensed code, see LICENSE/our website https://openpgpjs.org/ for more information. */
const globalThis = typeof window !== 'undefined' ? window : typeof global !== 'undefined' ? global : typeof self !== 'undefined' ? self : {};
import { c as createCommonjsModule, m as minimalisticAssert, i as inherits_browser, u as utils, b as common, d as common$1, _ as _224, e as _256, f as _384, g as _512, r as ripemd } from './openpgp.mjs';
import bn from './bn.mjs';
var utils_1 = createCommonjsModule(function (module, exports) {
var utils = exports;
function toArray(msg, enc) {
if (Array.isArray(msg))
return msg.slice();
if (!msg)
return [];
var res = [];
if (typeof msg !== 'string') {
for (var i = 0; i < msg.length; i++)
res[i] = msg[i] | 0;
return res;
}
if (enc === 'hex') {
msg = msg.replace(/[^a-z0-9]+/ig, '');
if (msg.length % 2 !== 0)
msg = '0' + msg;
for (var i = 0; i < msg.length; i += 2)
res.push(parseInt(msg[i] + msg[i + 1], 16));
} else {
for (var i = 0; i < msg.length; i++) {
var c = msg.charCodeAt(i);
var hi = c >> 8;
var lo = c & 0xff;
if (hi)
res.push(hi, lo);
else
res.push(lo);
}
}
return res;
}
utils.toArray = toArray;
function zero2(word) {
if (word.length === 1)
return '0' + word;
else
return word;
}
utils.zero2 = zero2;
function toHex(msg) {
var res = '';
for (var i = 0; i < msg.length; i++)
res += zero2(msg[i].toString(16));
return res;
}
utils.toHex = toHex;
utils.encode = function encode(arr, enc) {
if (enc === 'hex')
return toHex(arr);
else
return arr;
};
});
var utils_1$1 = createCommonjsModule(function (module, exports) {
var utils = exports;
utils.assert = minimalisticAssert;
utils.toArray = utils_1.toArray;
utils.zero2 = utils_1.zero2;
utils.toHex = utils_1.toHex;
utils.encode = utils_1.encode;
// Represent num in a w-NAF form
function getNAF(num, w) {
var naf = [];
var ws = 1 << (w + 1);
var k = num.clone();
while (k.cmpn(1) >= 0) {
var z;
if (k.isOdd()) {
var mod = k.andln(ws - 1);
if (mod > (ws >> 1) - 1)
z = (ws >> 1) - mod;
else
z = mod;
k.isubn(z);
} else {
z = 0;
}
naf.push(z);
// Optimization, shift by word if possible
var shift = (k.cmpn(0) !== 0 && k.andln(ws - 1) === 0) ? (w + 1) : 1;
for (var i = 1; i < shift; i++)
naf.push(0);
k.iushrn(shift);
}
return naf;
}
utils.getNAF = getNAF;
// Represent k1, k2 in a Joint Sparse Form
function getJSF(k1, k2) {
var jsf = [
[],
[]
];
k1 = k1.clone();
k2 = k2.clone();
var d1 = 0;
var d2 = 0;
while (k1.cmpn(-d1) > 0 || k2.cmpn(-d2) > 0) {
// First phase
var m14 = (k1.andln(3) + d1) & 3;
var m24 = (k2.andln(3) + d2) & 3;
if (m14 === 3)
m14 = -1;
if (m24 === 3)
m24 = -1;
var u1;
if ((m14 & 1) === 0) {
u1 = 0;
} else {
var m8 = (k1.andln(7) + d1) & 7;
if ((m8 === 3 || m8 === 5) && m24 === 2)
u1 = -m14;
else
u1 = m14;
}
jsf[0].push(u1);
var u2;
if ((m24 & 1) === 0) {
u2 = 0;
} else {
var m8 = (k2.andln(7) + d2) & 7;
if ((m8 === 3 || m8 === 5) && m14 === 2)
u2 = -m24;
else
u2 = m24;
}
jsf[1].push(u2);
// Second phase
if (2 * d1 === u1 + 1)
d1 = 1 - d1;
if (2 * d2 === u2 + 1)
d2 = 1 - d2;
k1.iushrn(1);
k2.iushrn(1);
}
return jsf;
}
utils.getJSF = getJSF;
function cachedProperty(obj, name, computer) {
var key = '_' + name;
obj.prototype[name] = function cachedProperty() {
return this[key] !== undefined ? this[key] :
this[key] = computer.call(this);
};
}
utils.cachedProperty = cachedProperty;
function parseBytes(bytes) {
return typeof bytes === 'string' ? utils.toArray(bytes, 'hex') :
bytes;
}
utils.parseBytes = parseBytes;
function intFromLE(bytes) {
return new bn(bytes, 'hex', 'le');
}
utils.intFromLE = intFromLE;
});
var r;
var brorand = function rand(len) {
if (!r)
r = new Rand(null);
return r.generate(len);
};
function Rand(rand) {
this.rand = rand;
}
var Rand_1 = Rand;
Rand.prototype.generate = function generate(len) {
return this._rand(len);
};
// Emulate crypto API using randy
Rand.prototype._rand = function _rand(n) {
if (this.rand.getBytes)
return this.rand.getBytes(n);
var res = new Uint8Array(n);
for (var i = 0; i < res.length; i++)
res[i] = this.rand.getByte();
return res;
};
if (typeof self === 'object') {
if (self.crypto && self.crypto.getRandomValues) {
// Modern browsers
Rand.prototype._rand = function _rand(n) {
var arr = new Uint8Array(n);
self.crypto.getRandomValues(arr);
return arr;
};
} else if (self.msCrypto && self.msCrypto.getRandomValues) {
// IE
Rand.prototype._rand = function _rand(n) {
var arr = new Uint8Array(n);
self.msCrypto.getRandomValues(arr);
return arr;
};
// Safari's WebWorkers do not have `crypto`
} else if (typeof window === 'object') {
// Old junk
Rand.prototype._rand = function() {
throw new Error('Not implemented yet');
};
}
} else {
// Node.js or Web worker with no crypto support
try {
var crypto = void('crypto');
if (typeof crypto.randomBytes !== 'function')
throw new Error('Not supported');
Rand.prototype._rand = function _rand(n) {
return crypto.randomBytes(n);
};
} catch (e) {
}
}
brorand.Rand = Rand_1;
var getNAF = utils_1$1.getNAF;
var getJSF = utils_1$1.getJSF;
var assert = utils_1$1.assert;
function BaseCurve(type, conf) {
this.type = type;
this.p = new bn(conf.p, 16);
// Use Montgomery, when there is no fast reduction for the prime
this.red = conf.prime ? bn.red(conf.prime) : bn.mont(this.p);
// Useful for many curves
this.zero = new bn(0).toRed(this.red);
this.one = new bn(1).toRed(this.red);
this.two = new bn(2).toRed(this.red);
// Curve configuration, optional
this.n = conf.n && new bn(conf.n, 16);
this.g = conf.g && this.pointFromJSON(conf.g, conf.gRed);
// Temporary arrays
this._wnafT1 = new Array(4);
this._wnafT2 = new Array(4);
this._wnafT3 = new Array(4);
this._wnafT4 = new Array(4);
// Generalized Greg Maxwell's trick
var adjustCount = this.n && this.p.div(this.n);
if (!adjustCount || adjustCount.cmpn(100) > 0) {
this.redN = null;
} else {
this._maxwellTrick = true;
this.redN = this.n.toRed(this.red);
}
}
var base = BaseCurve;
BaseCurve.prototype.point = function point() {
throw new Error('Not implemented');
};
BaseCurve.prototype.validate = function validate() {
throw new Error('Not implemented');
};
BaseCurve.prototype._fixedNafMul = function _fixedNafMul(p, k) {
assert(p.precomputed);
var doubles = p._getDoubles();
var naf = getNAF(k, 1);
var I = (1 << (doubles.step + 1)) - (doubles.step % 2 === 0 ? 2 : 1);
I /= 3;
// Translate into more windowed form
var repr = [];
for (var j = 0; j < naf.length; j += doubles.step) {
var nafW = 0;
for (var k = j + doubles.step - 1; k >= j; k--)
nafW = (nafW << 1) + naf[k];
repr.push(nafW);
}
var a = this.jpoint(null, null, null);
var b = this.jpoint(null, null, null);
for (var i = I; i > 0; i--) {
for (var j = 0; j < repr.length; j++) {
var nafW = repr[j];
if (nafW === i)
b = b.mixedAdd(doubles.points[j]);
else if (nafW === -i)
b = b.mixedAdd(doubles.points[j].neg());
}
a = a.add(b);
}
return a.toP();
};
BaseCurve.prototype._wnafMul = function _wnafMul(p, k) {
var w = 4;
// Precompute window
var nafPoints = p._getNAFPoints(w);
w = nafPoints.wnd;
var wnd = nafPoints.points;
// Get NAF form
var naf = getNAF(k, w);
// Add `this`*(N+1) for every w-NAF index
var acc = this.jpoint(null, null, null);
for (var i = naf.length - 1; i >= 0; i--) {
// Count zeroes
for (var k = 0; i >= 0 && naf[i] === 0; i--)
k++;
if (i >= 0)
k++;
acc = acc.dblp(k);
if (i < 0)
break;
var z = naf[i];
assert(z !== 0);
if (p.type === 'affine') {
// J +- P
if (z > 0)
acc = acc.mixedAdd(wnd[(z - 1) >> 1]);
else
acc = acc.mixedAdd(wnd[(-z - 1) >> 1].neg());
} else {
// J +- J
if (z > 0)
acc = acc.add(wnd[(z - 1) >> 1]);
else
acc = acc.add(wnd[(-z - 1) >> 1].neg());
}
}
return p.type === 'affine' ? acc.toP() : acc;
};
BaseCurve.prototype._wnafMulAdd = function _wnafMulAdd(defW,
points,
coeffs,
len,
jacobianResult) {
var wndWidth = this._wnafT1;
var wnd = this._wnafT2;
var naf = this._wnafT3;
// Fill all arrays
var max = 0;
for (var i = 0; i < len; i++) {
var p = points[i];
var nafPoints = p._getNAFPoints(defW);
wndWidth[i] = nafPoints.wnd;
wnd[i] = nafPoints.points;
}
// Comb small window NAFs
for (var i = len - 1; i >= 1; i -= 2) {
var a = i - 1;
var b = i;
if (wndWidth[a] !== 1 || wndWidth[b] !== 1) {
naf[a] = getNAF(coeffs[a], wndWidth[a]);
naf[b] = getNAF(coeffs[b], wndWidth[b]);
max = Math.max(naf[a].length, max);
max = Math.max(naf[b].length, max);
continue;
}
var comb = [
points[a], /* 1 */
null, /* 3 */
null, /* 5 */
points[b] /* 7 */
];
// Try to avoid Projective points, if possible
if (points[a].y.cmp(points[b].y) === 0) {
comb[1] = points[a].add(points[b]);
comb[2] = points[a].toJ().mixedAdd(points[b].neg());
} else if (points[a].y.cmp(points[b].y.redNeg()) === 0) {
comb[1] = points[a].toJ().mixedAdd(points[b]);
comb[2] = points[a].add(points[b].neg());
} else {
comb[1] = points[a].toJ().mixedAdd(points[b]);
comb[2] = points[a].toJ().mixedAdd(points[b].neg());
}
var index = [
-3, /* -1 -1 */
-1, /* -1 0 */
-5, /* -1 1 */
-7, /* 0 -1 */
0, /* 0 0 */
7, /* 0 1 */
5, /* 1 -1 */
1, /* 1 0 */
3 /* 1 1 */
];
var jsf = getJSF(coeffs[a], coeffs[b]);
max = Math.max(jsf[0].length, max);
naf[a] = new Array(max);
naf[b] = new Array(max);
for (var j = 0; j < max; j++) {
var ja = jsf[0][j] | 0;
var jb = jsf[1][j] | 0;
naf[a][j] = index[(ja + 1) * 3 + (jb + 1)];
naf[b][j] = 0;
wnd[a] = comb;
}
}
var acc = this.jpoint(null, null, null);
var tmp = this._wnafT4;
for (var i = max; i >= 0; i--) {
var k = 0;
while (i >= 0) {
var zero = true;
for (var j = 0; j < len; j++) {
tmp[j] = naf[j][i] | 0;
if (tmp[j] !== 0)
zero = false;
}
if (!zero)
break;
k++;
i--;
}
if (i >= 0)
k++;
acc = acc.dblp(k);
if (i < 0)
break;
for (var j = 0; j < len; j++) {
var z = tmp[j];
var p;
if (z === 0)
continue;
else if (z > 0)
p = wnd[j][(z - 1) >> 1];
else if (z < 0)
p = wnd[j][(-z - 1) >> 1].neg();
if (p.type === 'affine')
acc = acc.mixedAdd(p);
else
acc = acc.add(p);
}
}
// Zeroify references
for (var i = 0; i < len; i++)
wnd[i] = null;
if (jacobianResult)
return acc;
else
return acc.toP();
};
function BasePoint(curve, type) {
this.curve = curve;
this.type = type;
this.precomputed = null;
}
BaseCurve.BasePoint = BasePoint;
BasePoint.prototype.eq = function eq(/*other*/) {
throw new Error('Not implemented');
};
BasePoint.prototype.validate = function validate() {
return this.curve.validate(this);
};
BaseCurve.prototype.decodePoint = function decodePoint(bytes, enc) {
bytes = utils_1$1.toArray(bytes, enc);
var len = this.p.byteLength();
// uncompressed, hybrid-odd, hybrid-even
if ((bytes[0] === 0x04 || bytes[0] === 0x06 || bytes[0] === 0x07) &&
bytes.length - 1 === 2 * len) {
if (bytes[0] === 0x06)
assert(bytes[bytes.length - 1] % 2 === 0);
else if (bytes[0] === 0x07)
assert(bytes[bytes.length - 1] % 2 === 1);
var res = this.point(bytes.slice(1, 1 + len),
bytes.slice(1 + len, 1 + 2 * len));
return res;
} else if ((bytes[0] === 0x02 || bytes[0] === 0x03) &&
bytes.length - 1 === len) {
return this.pointFromX(bytes.slice(1, 1 + len), bytes[0] === 0x03);
}
throw new Error('Unknown point format');
};
BasePoint.prototype.encodeCompressed = function encodeCompressed(enc) {
return this.encode(enc, true);
};
BasePoint.prototype._encode = function _encode(compact) {
var len = this.curve.p.byteLength();
var x = this.getX().toArray('be', len);
if (compact)
return [ this.getY().isEven() ? 0x02 : 0x03 ].concat(x);
return [ 0x04 ].concat(x, this.getY().toArray('be', len)) ;
};
BasePoint.prototype.encode = function encode(enc, compact) {
return utils_1$1.encode(this._encode(compact), enc);
};
BasePoint.prototype.precompute = function precompute(power) {
if (this.precomputed)
return this;
var precomputed = {
doubles: null,
naf: null,
beta: null
};
precomputed.naf = this._getNAFPoints(8);
precomputed.doubles = this._getDoubles(4, power);
precomputed.beta = this._getBeta();
this.precomputed = precomputed;
return this;
};
BasePoint.prototype._hasDoubles = function _hasDoubles(k) {
if (!this.precomputed)
return false;
var doubles = this.precomputed.doubles;
if (!doubles)
return false;
return doubles.points.length >= Math.ceil((k.bitLength() + 1) / doubles.step);
};
BasePoint.prototype._getDoubles = function _getDoubles(step, power) {
if (this.precomputed && this.precomputed.doubles)
return this.precomputed.doubles;
var doubles = [ this ];
var acc = this;
for (var i = 0; i < power; i += step) {
for (var j = 0; j < step; j++)
acc = acc.dbl();
doubles.push(acc);
}
return {
step: step,
points: doubles
};
};
BasePoint.prototype._getNAFPoints = function _getNAFPoints(wnd) {
if (this.precomputed && this.precomputed.naf)
return this.precomputed.naf;
var res = [ this ];
var max = (1 << wnd) - 1;
var dbl = max === 1 ? null : this.dbl();
for (var i = 1; i < max; i++)
res[i] = res[i - 1].add(dbl);
return {
wnd: wnd,
points: res
};
};
BasePoint.prototype._getBeta = function _getBeta() {
return null;
};
BasePoint.prototype.dblp = function dblp(k) {
var r = this;
for (var i = 0; i < k; i++)
r = r.dbl();
return r;
};
var assert$1 = utils_1$1.assert;
function ShortCurve(conf) {
base.call(this, 'short', conf);
this.a = new bn(conf.a, 16).toRed(this.red);
this.b = new bn(conf.b, 16).toRed(this.red);
this.tinv = this.two.redInvm();
this.zeroA = this.a.fromRed().cmpn(0) === 0;
this.threeA = this.a.fromRed().sub(this.p).cmpn(-3) === 0;
// If the curve is endomorphic, precalculate beta and lambda
this.endo = this._getEndomorphism(conf);
this._endoWnafT1 = new Array(4);
this._endoWnafT2 = new Array(4);
}
inherits_browser(ShortCurve, base);
var short_1 = ShortCurve;
ShortCurve.prototype._getEndomorphism = function _getEndomorphism(conf) {
// No efficient endomorphism
if (!this.zeroA || !this.g || !this.n || this.p.modn(3) !== 1)
return;
// Compute beta and lambda, that lambda * P = (beta * Px; Py)
var beta;
var lambda;
if (conf.beta) {
beta = new bn(conf.beta, 16).toRed(this.red);
} else {
var betas = this._getEndoRoots(this.p);
// Choose the smallest beta
beta = betas[0].cmp(betas[1]) < 0 ? betas[0] : betas[1];
beta = beta.toRed(this.red);
}
if (conf.lambda) {
lambda = new bn(conf.lambda, 16);
} else {
// Choose the lambda that is matching selected beta
var lambdas = this._getEndoRoots(this.n);
if (this.g.mul(lambdas[0]).x.cmp(this.g.x.redMul(beta)) === 0) {
lambda = lambdas[0];
} else {
lambda = lambdas[1];
assert$1(this.g.mul(lambda).x.cmp(this.g.x.redMul(beta)) === 0);
}
}
// Get basis vectors, used for balanced length-two representation
var basis;
if (conf.basis) {
basis = conf.basis.map(function(vec) {
return {
a: new bn(vec.a, 16),
b: new bn(vec.b, 16)
};
});
} else {
basis = this._getEndoBasis(lambda);
}
return {
beta: beta,
lambda: lambda,
basis: basis
};
};
ShortCurve.prototype._getEndoRoots = function _getEndoRoots(num) {
// Find roots of for x^2 + x + 1 in F
// Root = (-1 +- Sqrt(-3)) / 2
//
var red = num === this.p ? this.red : bn.mont(num);
var tinv = new bn(2).toRed(red).redInvm();
var ntinv = tinv.redNeg();
var s = new bn(3).toRed(red).redNeg().redSqrt().redMul(tinv);
var l1 = ntinv.redAdd(s).fromRed();
var l2 = ntinv.redSub(s).fromRed();
return [ l1, l2 ];
};
ShortCurve.prototype._getEndoBasis = function _getEndoBasis(lambda) {
// aprxSqrt >= sqrt(this.n)
var aprxSqrt = this.n.ushrn(Math.floor(this.n.bitLength() / 2));
// 3.74
// Run EGCD, until r(L + 1) < aprxSqrt
var u = lambda;
var v = this.n.clone();
var x1 = new bn(1);
var y1 = new bn(0);
var x2 = new bn(0);
var y2 = new bn(1);
// NOTE: all vectors are roots of: a + b * lambda = 0 (mod n)
var a0;
var b0;
// First vector
var a1;
var b1;
// Second vector
var a2;
var b2;
var prevR;
var i = 0;
var r;
var x;
while (u.cmpn(0) !== 0) {
var q = v.div(u);
r = v.sub(q.mul(u));
x = x2.sub(q.mul(x1));
var y = y2.sub(q.mul(y1));
if (!a1 && r.cmp(aprxSqrt) < 0) {
a0 = prevR.neg();
b0 = x1;
a1 = r.neg();
b1 = x;
} else if (a1 && ++i === 2) {
break;
}
prevR = r;
v = u;
u = r;
x2 = x1;
x1 = x;
y2 = y1;
y1 = y;
}
a2 = r.neg();
b2 = x;
var len1 = a1.sqr().add(b1.sqr());
var len2 = a2.sqr().add(b2.sqr());
if (len2.cmp(len1) >= 0) {
a2 = a0;
b2 = b0;
}
// Normalize signs
if (a1.negative) {
a1 = a1.neg();
b1 = b1.neg();
}
if (a2.negative) {
a2 = a2.neg();
b2 = b2.neg();
}
return [
{ a: a1, b: b1 },
{ a: a2, b: b2 }
];
};
ShortCurve.prototype._endoSplit = function _endoSplit(k) {
var basis = this.endo.basis;
var v1 = basis[0];
var v2 = basis[1];
var c1 = v2.b.mul(k).divRound(this.n);
var c2 = v1.b.neg().mul(k).divRound(this.n);
var p1 = c1.mul(v1.a);
var p2 = c2.mul(v2.a);
var q1 = c1.mul(v1.b);
var q2 = c2.mul(v2.b);
// Calculate answer
var k1 = k.sub(p1).sub(p2);
var k2 = q1.add(q2).neg();
return { k1: k1, k2: k2 };
};
ShortCurve.prototype.pointFromX = function pointFromX(x, odd) {
x = new bn(x, 16);
if (!x.red)
x = x.toRed(this.red);
var y2 = x.redSqr().redMul(x).redIAdd(x.redMul(this.a)).redIAdd(this.b);
var y = y2.redSqrt();
if (y.redSqr().redSub(y2).cmp(this.zero) !== 0)
throw new Error('invalid point');
// XXX Is there any way to tell if the number is odd without converting it
// to non-red form?
var isOdd = y.fromRed().isOdd();
if (odd && !isOdd || !odd && isOdd)
y = y.redNeg();
return this.point(x, y);
};
ShortCurve.prototype.validate = function validate(point) {
if (point.inf)
return true;
var x = point.x;
var y = point.y;
var ax = this.a.redMul(x);
var rhs = x.redSqr().redMul(x).redIAdd(ax).redIAdd(this.b);
return y.redSqr().redISub(rhs).cmpn(0) === 0;
};
ShortCurve.prototype._endoWnafMulAdd =
function _endoWnafMulAdd(points, coeffs, jacobianResult) {
var npoints = this._endoWnafT1;
var ncoeffs = this._endoWnafT2;
for (var i = 0; i < points.length; i++) {
var split = this._endoSplit(coeffs[i]);
var p = points[i];
var beta = p._getBeta();
if (split.k1.negative) {
split.k1.ineg();
p = p.neg(true);
}
if (split.k2.negative) {
split.k2.ineg();
beta = beta.neg(true);
}
npoints[i * 2] = p;
npoints[i * 2 + 1] = beta;
ncoeffs[i * 2] = split.k1;
ncoeffs[i * 2 + 1] = split.k2;
}
var res = this._wnafMulAdd(1, npoints, ncoeffs, i * 2, jacobianResult);
// Clean-up references to points and coefficients
for (var j = 0; j < i * 2; j++) {
npoints[j] = null;
ncoeffs[j] = null;
}
return res;
};
function Point(curve, x, y, isRed) {
base.BasePoint.call(this, curve, 'affine');
if (x === null && y === null) {
this.x = null;
this.y = null;
this.inf = true;
} else {
this.x = new bn(x, 16);
this.y = new bn(y, 16);
// Force redgomery representation when loading from JSON
if (isRed) {
this.x.forceRed(this.curve.red);
this.y.forceRed(this.curve.red);
}
if (!this.x.red)
this.x = this.x.toRed(this.curve.red);
if (!this.y.red)
this.y = this.y.toRed(this.curve.red);
this.inf = false;
}
}
inherits_browser(Point, base.BasePoint);
ShortCurve.prototype.point = function point(x, y, isRed) {
return new Point(this, x, y, isRed);
};
ShortCurve.prototype.pointFromJSON = function pointFromJSON(obj, red) {
return Point.fromJSON(this, obj, red);
};
Point.prototype._getBeta = function _getBeta() {
if (!this.curve.endo)
return;
var pre = this.precomputed;
if (pre && pre.beta)
return pre.beta;
var beta = this.curve.point(this.x.redMul(this.curve.endo.beta), this.y);
if (pre) {
var curve = this.curve;
var endoMul = function(p) {
return curve.point(p.x.redMul(curve.endo.beta), p.y);
};
pre.beta = beta;
beta.precomputed = {
beta: null,
naf: pre.naf && {
wnd: pre.naf.wnd,
points: pre.naf.points.map(endoMul)
},
doubles: pre.doubles && {
step: pre.doubles.step,
points: pre.doubles.points.map(endoMul)
}
};
}
return beta;
};
Point.prototype.toJSON = function toJSON() {
if (!this.precomputed)
return [ this.x, this.y ];
return [ this.x, this.y, this.precomputed && {
doubles: this.precomputed.doubles && {
step: this.precomputed.doubles.step,
points: this.precomputed.doubles.points.slice(1)
},
naf: this.precomputed.naf && {
wnd: this.precomputed.naf.wnd,
points: this.precomputed.naf.points.slice(1)
}
} ];
};
Point.fromJSON = function fromJSON(curve, obj, red) {
if (typeof obj === 'string')
obj = JSON.parse(obj);
var res = curve.point(obj[0], obj[1], red);
if (!obj[2])
return res;
function obj2point(obj) {
return curve.point(obj[0], obj[1], red);
}
var pre = obj[2];
res.precomputed = {
beta: null,
doubles: pre.doubles && {
step: pre.doubles.step,
points: [ res ].concat(pre.doubles.points.map(obj2point))
},
naf: pre.naf && {
wnd: pre.naf.wnd,
points: [ res ].concat(pre.naf.points.map(obj2point))
}
};
return res;
};
Point.prototype.inspect = function inspect() {
if (this.isInfinity())
return '<EC Point Infinity>';
return '<EC Point x: ' + this.x.fromRed().toString(16, 2) +
' y: ' + this.y.fromRed().toString(16, 2) + '>';
};
Point.prototype.isInfinity = function isInfinity() {
return this.inf;
};
Point.prototype.add = function add(p) {
// O + P = P
if (this.inf)
return p;
// P + O = P
if (p.inf)
return this;
// P + P = 2P
if (this.eq(p))
return this.dbl();
// P + (-P) = O
if (this.neg().eq(p))
return this.curve.point(null, null);
// P + Q = O
if (this.x.cmp(p.x) === 0)
return this.curve.point(null, null);
var c = this.y.redSub(p.y);
if (c.cmpn(0) !== 0)
c = c.redMul(this.x.redSub(p.x).redInvm());
var nx = c.redSqr().redISub(this.x).redISub(p.x);
var ny = c.redMul(this.x.redSub(nx)).redISub(this.y);
return this.curve.point(nx, ny);
};
Point.prototype.dbl = function dbl() {
if (this.inf)
return this;
// 2P = O
var ys1 = this.y.redAdd(this.y);
if (ys1.cmpn(0) === 0)
return this.curve.point(null, null);
var a = this.curve.a;
var x2 = this.x.redSqr();
var dyinv = ys1.redInvm();
var c = x2.redAdd(x2).redIAdd(x2).redIAdd(a).redMul(dyinv);
var nx = c.redSqr().redISub(this.x.redAdd(this.x));
var ny = c.redMul(this.x.redSub(nx)).redISub(this.y);
return this.curve.point(nx, ny);
};
Point.prototype.getX = function getX() {
return this.x.fromRed();
};
Point.prototype.getY = function getY() {
return this.y.fromRed();
};
Point.prototype.mul = function mul(k) {
k = new bn(k, 16);
if (this.isInfinity())
return this;
else if (this._hasDoubles(k))
return this.curve._fixedNafMul(this, k);
else if (this.curve.endo)
return this.curve._endoWnafMulAdd([ this ], [ k ]);
else
return this.curve._wnafMul(this, k);
};
Point.prototype.mulAdd = function mulAdd(k1, p2, k2) {
var points = [ this, p2 ];
var coeffs = [ k1, k2 ];
if (this.curve.endo)
return this.curve._endoWnafMulAdd(points, coeffs);
else
return this.curve._wnafMulAdd(1, points, coeffs, 2);
};
Point.prototype.jmulAdd = function jmulAdd(k1, p2, k2) {
var points = [ this, p2 ];
var coeffs = [ k1, k2 ];
if (this.curve.endo)
return this.curve._endoWnafMulAdd(points, coeffs, true);
else
return this.curve._wnafMulAdd(1, points, coeffs, 2, true);
};
Point.prototype.eq = function eq(p) {
return this === p ||
this.inf === p.inf &&
(this.inf || this.x.cmp(p.x) === 0 && this.y.cmp(p.y) === 0);
};
Point.prototype.neg = function neg(_precompute) {
if (this.inf)
return this;
var res = this.curve.point(this.x, this.y.redNeg());
if (_precompute && this.precomputed) {
var pre = this.precomputed;
var negate = function(p) {
return p.neg();
};
res.precomputed = {
naf: pre.naf && {
wnd: pre.naf.wnd,
points: pre.naf.points.map(negate)
},
doubles: pre.doubles && {
step: pre.doubles.step,
points: pre.doubles.points.map(negate)
}
};
}
return res;
};
Point.prototype.toJ = function toJ() {
if (this.inf)
return this.curve.jpoint(null, null, null);
var res = this.curve.jpoint(this.x, this.y, this.curve.one);
return res;
};
function JPoint(curve, x, y, z) {
base.BasePoint.call(this, curve, 'jacobian');
if (x === null && y === null && z === null) {
this.x = this.curve.one;
this.y = this.curve.one;
this.z = new bn(0);
} else {
this.x = new bn(x, 16);
this.y = new bn(y, 16);
this.z = new bn(z, 16);
}
if (!this.x.red)
this.x = this.x.toRed(this.curve.red);
if (!this.y.red)
this.y = this.y.toRed(this.curve.red);
if (!this.z.red)
this.z = this.z.toRed(this.curve.red);
this.zOne = this.z === this.curve.one;
}
inherits_browser(JPoint, base.BasePoint);
ShortCurve.prototype.jpoint = function jpoint(x, y, z) {
return new JPoint(this, x, y, z);
};
JPoint.prototype.toP = function toP() {
if (this.isInfinity())
return this.curve.point(null, null);
var zinv = this.z.redInvm();
var zinv2 = zinv.redSqr();
var ax = this.x.redMul(zinv2);
var ay = this.y.redMul(zinv2).redMul(zinv);
return this.curve.point(ax, ay);
};
JPoint.prototype.neg = function neg() {
return this.curve.jpoint(this.x, this.y.redNeg(), this.z);
};
JPoint.prototype.add = function add(p) {
// O + P = P
if (this.isInfinity())
return p;
// P + O = P
if (p.isInfinity())
return this;
// 12M + 4S + 7A
var pz2 = p.z.redSqr();
var z2 = this.z.redSqr();
var u1 = this.x.redMul(pz2);
var u2 = p.x.redMul(z2);
var s1 = this.y.redMul(pz2.redMul(p.z));
var s2 = p.y.redMul(z2.redMul(this.z));
var h = u1.redSub(u2);
var r = s1.redSub(s2);
if (h.cmpn(0) === 0) {
if (r.cmpn(0) !== 0)
return this.curve.jpoint(null, null, null);
else
return this.dbl();
}
var h2 = h.redSqr();
var h3 = h2.redMul(h);
var v = u1.redMul(h2);
var nx = r.redSqr().redIAdd(h3).redISub(v).redISub(v);
var ny = r.redMul(v.redISub(nx)).redISub(s1.redMul(h3));
var nz = this.z.redMul(p.z).redMul(h);
return this.curve.jpoint(nx, ny, nz);
};
JPoint.prototype.mixedAdd = function mixedAdd(p) {
// O + P = P
if (this.isInfinity())
return p.toJ();
// P + O = P
if (p.isInfinity())
return this;
// 8M + 3S + 7A
var z2 = this.z.redSqr();
var u1 = this.x;
var u2 = p.x.redMul(z2);
var s1 = this.y;
var s2 = p.y.redMul(z2).redMul(this.z);
var h = u1.redSub(u2);
var r = s1.redSub(s2);
if (h.cmpn(0) === 0) {
if (r.cmpn(0) !== 0)
return this.curve.jpoint(null, null, null);
else
return this.dbl();
}
var h2 = h.redSqr();
var h3 = h2.redMul(h);
var v = u1.redMul(h2);
var nx = r.redSqr().redIAdd(h3).redISub(v).redISub(v);
var ny = r.redMul(v.redISub(nx)).redISub(s1.redMul(h3));
var nz = this.z.redMul(h);
return this.curve.jpoint(nx, ny, nz);
};
JPoint.prototype.dblp = function dblp(pow) {
if (pow === 0)
return this;
if (this.isInfinity())
return this;
if (!pow)
return this.dbl();
if (this.curve.zeroA || this.curve.threeA) {
var r = this;
for (var i = 0; i < pow; i++)
r = r.dbl();
return r;
}
// 1M + 2S + 1A + N * (4S + 5M + 8A)
// N = 1 => 6M + 6S + 9A
var a = this.curve.a;
var tinv = this.curve.tinv;
var jx = this.x;
var jy = this.y;
var jz = this.z;
var jz4 = jz.redSqr().redSqr();
// Reuse results
var jyd = jy.redAdd(jy);
for (var i = 0; i < pow; i++) {
var jx2 = jx.redSqr();
var jyd2 = jyd.redSqr();
var jyd4 = jyd2.redSqr();
var c = jx2.redAdd(jx2).redIAdd(jx2).redIAdd(a.redMul(jz4));
var t1 = jx.redMul(jyd2);
var nx = c.redSqr().redISub(t1.redAdd(t1));
var t2 = t1.redISub(nx);
var dny = c.redMul(t2);
dny = dny.redIAdd(dny).redISub(jyd4);
var nz = jyd.redMul(jz);
if (i + 1 < pow)
jz4 = jz4.redMul(jyd4);
jx = nx;
jz = nz;
jyd = dny;
}
return this.curve.jpoint(jx, jyd.redMul(tinv), jz);
};
JPoint.prototype.dbl = function dbl() {
if (this.isInfinity())
return this;
if (this.curve.zeroA)
return this._zeroDbl();
else if (this.curve.threeA)
return this._threeDbl();
else
return this._dbl();
};
JPoint.prototype._zeroDbl = function _zeroDbl() {
var nx;
var ny;
var nz;
// Z = 1
if (this.zOne) {
// hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html
// #doubling-mdbl-2007-bl
// 1M + 5S + 14A
// XX = X1^2
var xx = this.x.redSqr();
// YY = Y1^2
var yy = this.y.redSqr();
// YYYY = YY^2
var yyyy = yy.redSqr();
// S = 2 * ((X1 + YY)^2 - XX - YYYY)
var s = this.x.redAdd(yy).redSqr().redISub(xx).redISub(yyyy);
s = s.redIAdd(s);
// M = 3 * XX + a; a = 0
var m = xx.redAdd(xx).redIAdd(xx);
// T = M ^ 2 - 2*S
var t = m.redSqr().redISub(s).redISub(s);
// 8 * YYYY
var yyyy8 = yyyy.redIAdd(yyyy);
yyyy8 = yyyy8.redIAdd(yyyy8);
yyyy8 = yyyy8.redIAdd(yyyy8);
// X3 = T
nx = t;
// Y3 = M * (S - T) - 8 * YYYY
ny = m.redMul(s.redISub(t)).redISub(yyyy8);
// Z3 = 2*Y1
nz = this.y.redAdd(this.y);
} else {
// hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html
// #doubling-dbl-2009-l
// 2M + 5S + 13A
// A = X1^2
var a = this.x.redSqr();
// B = Y1^2
var b = this.y.redSqr();
// C = B^2
var c = b.redSqr();
// D = 2 * ((X1 + B)^2 - A - C)
var d = this.x.redAdd(b).redSqr().redISub(a).redISub(c);
d = d.redIAdd(d);
// E = 3 * A
var e = a.redAdd(a).redIAdd(a);
// F = E^2
var f = e.redSqr();
// 8 * C
var c8 = c.redIAdd(c);
c8 = c8.redIAdd(c8);
c8 = c8.redIAdd(c8);
// X3 = F - 2 * D
nx = f.redISub(d).redISub(d);
// Y3 = E * (D - X3) - 8 * C
ny = e.redMul(d.redISub(nx)).redISub(c8);
// Z3 = 2 * Y1 * Z1
nz = this.y.redMul(this.z);
nz = nz.redIAdd(nz);
}
return this.curve.jpoint(nx, ny, nz);
};
JPoint.prototype._threeDbl = function _threeDbl() {
var nx;
var ny;
var nz;
// Z = 1
if (this.zOne) {
// hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html
// #doubling-mdbl-2007-bl
// 1M + 5S + 15A
// XX = X1^2
var xx = this.x.redSqr();
// YY = Y1^2
var yy = this.y.redSqr();
// YYYY = YY^2
var yyyy = yy.redSqr();
// S = 2 * ((X1 + YY)^2 - XX - YYYY)
var s = this.x.redAdd(yy).redSqr().redISub(xx).redISub(yyyy);
s = s.redIAdd(s);
// M = 3 * XX + a
var m = xx.redAdd(xx).redIAdd(xx).redIAdd(this.curve.a);
// T = M^2 - 2 * S
var t = m.redSqr().redISub(s).redISub(s);
// X3 = T
nx = t;
// Y3 = M * (S - T) - 8 * YYYY
var yyyy8 = yyyy.redIAdd(yyyy);
yyyy8 = yyyy8.redIAdd(yyyy8);
yyyy8 = yyyy8.redIAdd(yyyy8);
ny = m.redMul(s.redISub(t)).redISub(yyyy8);
// Z3 = 2 * Y1
nz = this.y.redAdd(this.y);
} else {
// hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#doubling-dbl-2001-b
// 3M + 5S
// delta = Z1^2
var delta = this.z.redSqr();
// gamma = Y1^2
var gamma = this.y.redSqr();
// beta = X1 * gamma
var beta = this.x.redMul(gamma);
// alpha = 3 * (X1 - delta) * (X1 + delta)
var alpha = this.x.redSub(delta).redMul(this.x.redAdd(delta));
alpha = alpha.redAdd(alpha).redIAdd(alpha);
// X3 = alpha^2 - 8 * beta
var beta4 = beta.redIAdd(beta);
beta4 = beta4.redIAdd(beta4);
var beta8 = beta4.redAdd(beta4);
nx = alpha.redSqr().redISub(beta8);
// Z3 = (Y1 + Z1)^2 - gamma - delta
nz = this.y.redAdd(this.z).redSqr().redISub(gamma).redISub(delta);
// Y3 = alpha * (4 * beta - X3) - 8 * gamma^2
var ggamma8 = gamma.redSqr();
ggamma8 = ggamma8.redIAdd(ggamma8);
ggamma8 = ggamma8.redIAdd(ggamma8);
ggamma8 = ggamma8.redIAdd(ggamma8);
ny = alpha.redMul(beta4.redISub(nx)).redISub(ggamma8);
}
return this.curve.jpoint(nx, ny, nz);
};
JPoint.prototype._dbl = function _dbl() {
var a = this.curve.a;
// 4M + 6S + 10A
var jx = this.x;
var jy = this.y;
var jz = this.z;
var jz4 = jz.redSqr().redSqr();
var jx2 = jx.redSqr();
var jy2 = jy.redSqr();
var c = jx2.redAdd(jx2).redIAdd(jx2).redIAdd(a.redMul(jz4));
var jxd4 = jx.redAdd(jx);
jxd4 = jxd4.redIAdd(jxd4);
var t1 = jxd4.redMul(jy2);
var nx = c.redSqr().redISub(t1.redAdd(t1));
var t2 = t1.redISub(nx);
var jyd8 = jy2.redSqr();
jyd8 = jyd8.redIAdd(jyd8);
jyd8 = jyd8.redIAdd(jyd8);
jyd8 = jyd8.redIAdd(jyd8);
var ny = c.redMul(t2).redISub(jyd8);
var nz = jy.redAdd(jy).redMul(jz);
return this.curve.jpoint(nx, ny, nz);
};
JPoint.prototype.trpl = function trpl() {
if (!this.curve.zeroA)
return this.dbl().add(this);
// hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#tripling-tpl-2007-bl
// 5M + 10S + ...
// XX = X1^2
var xx = this.x.redSqr();
// YY = Y1^2
var yy = this.y.redSqr();
// ZZ = Z1^2
var zz = this.z.redSqr();
// YYYY = YY^2
var yyyy = yy.redSqr();
// M = 3 * XX + a * ZZ2; a = 0
var m = xx.redAdd(xx).redIAdd(xx);
// MM = M^2
var mm = m.redSqr();
// E = 6 * ((X1 + YY)^2 - XX - YYYY) - MM
var e = this.x.redAdd(yy).redSqr().redISub(xx).redISub(yyyy);
e = e.redIAdd(e);
e = e.redAdd(e).redIAdd(e);
e = e.redISub(mm);
// EE = E^2
var ee = e.redSqr();
// T = 16*YYYY
var t = yyyy.redIAdd(yyyy);
t = t.redIAdd(t);
t = t.redIAdd(t);
t = t.redIAdd(t);
// U = (M + E)^2 - MM - EE - T
var u = m.redIAdd(e).redSqr().redISub(mm).redISub(ee).redISub(t);
// X3 = 4 * (X1 * EE - 4 * YY * U)
var yyu4 = yy.redMul(u);
yyu4 = yyu4.redIAdd(yyu4);
yyu4 = yyu4.redIAdd(yyu4);
var nx = this.x.redMul(ee).redISub(yyu4);
nx = nx.redIAdd(nx);
nx = nx.redIAdd(nx);
// Y3 = 8 * Y1 * (U * (T - U) - E * EE)
var ny = this.y.redMul(u.redMul(t.redISub(u)).redISub(e.redMul(ee)));
ny = ny.redIAdd(ny);
ny = ny.redIAdd(ny);
ny = ny.redIAdd(ny);
// Z3 = (Z1 + E)^2 - ZZ - EE
var nz = this.z.redAdd(e).redSqr().redISub(zz).redISub(ee);
return this.curve.jpoint(nx, ny, nz);
};
JPoint.prototype.mul = function mul(k, kbase) {
k = new bn(k, kbase);
return this.curve._wnafMul(this, k);
};
JPoint.prototype.eq = function eq(p) {
if (p.type === 'affine')
return this.eq(p.toJ());
if (this === p)
return true;
// x1 * z2^2 == x2 * z1^2
var z2 = this.z.redSqr();
var pz2 = p.z.redSqr();
if (this.x.redMul(pz2).redISub(p.x.redMul(z2)).cmpn(0) !== 0)
return false;
// y1 * z2^3 == y2 * z1^3
var z3 = z2.redMul(this.z);
var pz3 = pz2.redMul(p.z);
return this.y.redMul(pz3).redISub(p.y.redMul(z3)).cmpn(0) === 0;
};
JPoint.prototype.eqXToP = function eqXToP(x) {
var zs = this.z.redSqr();
var rx = x.toRed(this.curve.red).redMul(zs);
if (this.x.cmp(rx) === 0)
return true;
var xc = x.clone();
var t = this.curve.redN.redMul(zs);
for (;;) {
xc.iadd(this.curve.n);
if (xc.cmp(this.curve.p) >= 0)
return false;
rx.redIAdd(t);
if (this.x.cmp(rx) === 0)
return true;
}
};
JPoint.prototype.inspect = function inspect() {
if (this.isInfinity())
return '<EC JPoint Infinity>';
return '<EC JPoint x: ' + this.x.toString(16, 2) +
' y: ' + this.y.toString(16, 2) +
' z: ' + this.z.toString(16, 2) + '>';
};
JPoint.prototype.isInfinity = function isInfinity() {
// XXX This code assumes that zero is always zero in red
return this.z.cmpn(0) === 0;
};
function MontCurve(conf) {
base.call(this, 'mont', conf);
this.a = new bn(conf.a, 16).toRed(this.red);
this.b = new bn(conf.b, 16).toRed(this.red);
this.i4 = new bn(4).toRed(this.red).redInvm();
this.two = new bn(2).toRed(this.red);
// Note: this implementation is according to the original paper
// by P. Montgomery, NOT the one by D. J. Bernstein.
this.a24 = this.i4.redMul(this.a.redAdd(this.two));
}
inherits_browser(MontCurve, base);
var mont = MontCurve;
MontCurve.prototype.validate = function validate(point) {
var x = point.normalize().x;
var x2 = x.redSqr();
var rhs = x2.redMul(x).redAdd(x2.redMul(this.a)).redAdd(x);
var y = rhs.redSqrt();
return y.redSqr().cmp(rhs) === 0;
};
function Point$1(curve, x, z) {
base.BasePoint.call(this, curve, 'projective');
if (x === null && z === null) {
this.x = this.curve.one;
this.z = this.curve.zero;
} else {
this.x = new bn(x, 16);
this.z = new bn(z, 16);
if (!this.x.red)
this.x = this.x.toRed(this.curve.red);
if (!this.z.red)
this.z = this.z.toRed(this.curve.red);
}
}
inherits_browser(Point$1, base.BasePoint);
MontCurve.prototype.decodePoint = function decodePoint(bytes, enc) {
var bytes = utils_1$1.toArray(bytes, enc);
// TODO Curve448
// Montgomery curve points must be represented in the compressed format
// https://tools.ietf.org/html/draft-ietf-openpgp-rfc4880bis-02#appendix-B
if (bytes.length === 33 && bytes[0] === 0x40)
bytes = bytes.slice(1, 33).reverse(); // point must be little-endian
if (bytes.length !== 32)
throw new Error('Unknown point compression format');
return this.point(bytes, 1);
};
MontCurve.prototype.point = function point(x, z) {
return new Point$1(this, x, z);
};
MontCurve.prototype.pointFromJSON = function pointFromJSON(obj) {
return Point$1.fromJSON(this, obj);
};
Point$1.prototype.precompute = function precompute() {
// No-op
};
Point$1.prototype._encode = function _encode(compact) {
var len = this.curve.p.byteLength();
// Note: the output should always be little-endian
// https://tools.ietf.org/html/draft-ietf-openpgp-rfc4880bis-02#appendix-B
if (compact) {
return [ 0x40 ].concat(this.getX().toArray('le', len));
} else {
return this.getX().toArray('be', len);
}
};
Point$1.fromJSON = function fromJSON(curve, obj) {
return new Point$1(curve, obj[0], obj[1] || curve.one);
};
Point$1.prototype.inspect = function inspect() {
if (this.isInfinity())
return '<EC Point Infinity>';
return '<EC Point x: ' + this.x.fromRed().toString(16, 2) +
' z: ' + this.z.fromRed().toString(16, 2) + '>';
};
Point$1.prototype.isInfinity = function isInfinity() {
// XXX This code assumes that zero is always zero in red
return this.z.cmpn(0) === 0;
};
Point$1.prototype.dbl = function dbl() {
// http://hyperelliptic.org/EFD/g1p/auto-montgom-xz.html#doubling-dbl-1987-m-3
// 2M + 2S + 4A
// A = X1 + Z1
var a = this.x.redAdd(this.z);
// AA = A^2
var aa = a.redSqr();
// B = X1 - Z1
var b = this.x.redSub(this.z);
// BB = B^2
var bb = b.redSqr();
// C = AA - BB
var c = aa.redSub(bb);
// X3 = AA * BB
var nx = aa.redMul(bb);
// Z3 = C * (BB + A24 * C)
var nz = c.redMul(bb.redAdd(this.curve.a24.redMul(c)));
return this.curve.point(nx, nz);
};
Point$1.prototype.add = function add() {
throw new Error('Not supported on Montgomery curve');
};
Point$1.prototype.diffAdd = function diffAdd(p, diff) {
// http://hyperelliptic.org/EFD/g1p/auto-montgom-xz.html#diffadd-dadd-1987-m-3
// 4M + 2S + 6A
// A = X2 + Z2
var a = this.x.redAdd(this.z);
// B = X2 - Z2
var b = this.x.redSub(this.z);
// C = X3 + Z3
var c = p.x.redAdd(p.z);
// D = X3 - Z3
var d = p.x.redSub(p.z);
// DA = D * A
var da = d.redMul(a);
// CB = C * B
var cb = c.redMul(b);
// X5 = Z1 * (DA + CB)^2
var nx = diff.z.redMul(da.redAdd(cb).redSqr());
// Z5 = X1 * (DA - CB)^2
var nz = diff.x.redMul(da.redISub(cb).redSqr());
return this.curve.point(nx, nz);
};
Point$1.prototype.mul = function mul(k) {
k = new bn(k, 16);
var t = k.clone();
var a = this; // (N / 2) * Q + Q
var b = this.curve.point(null, null); // (N / 2) * Q
var c = this; // Q
for (var bits = []; t.cmpn(0) !== 0; t.iushrn(1))
bits.push(t.andln(1));
for (var i = bits.length - 1; i >= 0; i--) {
if (bits[i] === 0) {
// N * Q + Q = ((N / 2) * Q + Q)) + (N / 2) * Q
a = a.diffAdd(b, c);
// N * Q = 2 * ((N / 2) * Q + Q))
b = b.dbl();
} else {
// N * Q = ((N / 2) * Q + Q) + ((N / 2) * Q)
b = a.diffAdd(b, c);
// N * Q + Q = 2 * ((N / 2) * Q + Q)
a = a.dbl();
}
}
return b;
};
Point$1.prototype.mulAdd = function mulAdd() {
throw new Error('Not supported on Montgomery curve');
};
Point$1.prototype.jumlAdd = function jumlAdd() {
throw new Error('Not supported on Montgomery curve');
};
Point$1.prototype.eq = function eq(other) {
return this.getX().cmp(other.getX()) === 0;
};
Point$1.prototype.normalize = function normalize() {
this.x = this.x.redMul(this.z.redInvm());
this.z = this.curve.one;
return this;
};
Point$1.prototype.getX = function getX() {
// Normalize coordinates
this.normalize();
return this.x.fromRed();
};
var assert$2 = utils_1$1.assert;
function EdwardsCurve(conf) {
// NOTE: Important as we are creating point in Base.call()
this.twisted = (conf.a | 0) !== 1;
this.mOneA = this.twisted && (conf.a | 0) === -1;
this.extended = this.mOneA;
base.call(this, 'edwards', conf);
this.a = new bn(conf.a, 16).umod(this.red.m);
this.a = this.a.toRed(this.red);
this.c = new bn(conf.c, 16).toRed(this.red);
this.c2 = this.c.redSqr();
this.d = new bn(conf.d, 16).toRed(this.red);
this.dd = this.d.redAdd(this.d);
assert$2(!this.twisted || this.c.fromRed().cmpn(1) === 0);
this.oneC = (conf.c | 0) === 1;
}
inherits_browser(EdwardsCurve, base);
var edwards = EdwardsCurve;
EdwardsCurve.prototype._mulA = function _mulA(num) {
if (this.mOneA)
return num.redNeg();
else
return this.a.redMul(num);
};
EdwardsCurve.prototype._mulC = function _mulC(num) {
if (this.oneC)
return num;
else
return this.c.redMul(num);
};
// Just for compatibility with Short curve
EdwardsCurve.prototype.jpoint = function jpoint(x, y, z, t) {
return this.point(x, y, z, t);
};
EdwardsCurve.prototype.pointFromX = function pointFromX(x, odd) {
x = new bn(x, 16);
if (!x.red)
x = x.toRed(this.red);
var x2 = x.redSqr();
var rhs = this.c2.redSub(this.a.redMul(x2));
var lhs = this.one.redSub(this.c2.redMul(this.d).redMul(x2));
var y2 = rhs.redMul(lhs.redInvm());
var y = y2.redSqrt();
if (y.redSqr().redSub(y2).cmp(this.zero) !== 0)
throw new Error('invalid point');
var isOdd = y.fromRed().isOdd();
if (odd && !isOdd || !odd && isOdd)
y = y.redNeg();
return this.point(x, y);
};
EdwardsCurve.prototype.pointFromY = function pointFromY(y, odd) {
y = new bn(y, 16);
if (!y.red)
y = y.toRed(this.red);
// x^2 = (y^2 - c^2) / (c^2 d y^2 - a)
var y2 = y.redSqr();
var lhs = y2.redSub(this.c2);
var rhs = y2.redMul(this.d).redMul(this.c2).redSub(this.a);
var x2 = lhs.redMul(rhs.redInvm());
if (x2.cmp(this.zero) === 0) {
if (odd)
throw new Error('invalid point');
else
return this.point(this.zero, y);
}
var x = x2.redSqrt();
if (x.redSqr().redSub(x2).cmp(this.zero) !== 0)
throw new Error('invalid point');
if (x.fromRed().isOdd() !== odd)
x = x.redNeg();
return this.point(x, y);
};
EdwardsCurve.prototype.validate = function validate(point) {
if (point.isInfinity())
return true;
// Curve: A * X^2 + Y^2 = C^2 * (1 + D * X^2 * Y^2)
point.normalize();
var x2 = point.x.redSqr();
var y2 = point.y.redSqr();
var lhs = x2.redMul(this.a).redAdd(y2);
var rhs = this.c2.redMul(this.one.redAdd(this.d.redMul(x2).redMul(y2)));
return lhs.cmp(rhs) === 0;
};
function Point$2(curve, x, y, z, t) {
base.BasePoint.call(this, curve, 'projective');
if (x === null && y === null && z === null) {
this.x = this.curve.zero;
this.y = this.curve.one;
this.z = this.curve.one;
this.t = this.curve.zero;
this.zOne = true;
} else {
this.x = new bn(x, 16);
this.y = new bn(y, 16);
this.z = z ? new bn(z, 16) : this.curve.one;
this.t = t && new bn(t, 16);
if (!this.x.red)
this.x = this.x.toRed(this.curve.red);
if (!this.y.red)
this.y = this.y.toRed(this.curve.red);
if (!this.z.red)
this.z = this.z.toRed(this.curve.red);
if (this.t && !this.t.red)
this.t = this.t.toRed(this.curve.red);
this.zOne = this.z === this.curve.one;
// Use extended coordinates
if (this.curve.extended && !this.t) {
this.t = this.x.redMul(this.y);
if (!this.zOne)
this.t = this.t.redMul(this.z.redInvm());
}
}
}
inherits_browser(Point$2, base.BasePoint);
EdwardsCurve.prototype.pointFromJSON = function pointFromJSON(obj) {
return Point$2.fromJSON(this, obj);
};
EdwardsCurve.prototype.point = function point(x, y, z, t) {
return new Point$2(this, x, y, z, t);
};
Point$2.fromJSON = function fromJSON(curve, obj) {
return new Point$2(curve, obj[0], obj[1], obj[2]);
};
Point$2.prototype.inspect = function inspect() {
if (this.isInfinity())
return '<EC Point Infinity>';
return '<EC Point x: ' + this.x.fromRed().toString(16, 2) +
' y: ' + this.y.fromRed().toString(16, 2) +
' z: ' + this.z.fromRed().toString(16, 2) + '>';
};
Point$2.prototype.isInfinity = function isInfinity() {
// XXX This code assumes that zero is always zero in red
return this.x.cmpn(0) === 0 &&
(this.y.cmp(this.z) === 0 ||
(this.zOne && this.y.cmp(this.curve.c) === 0));
};
Point$2.prototype._extDbl = function _extDbl() {
// hyperelliptic.org/EFD/g1p/auto-twisted-extended-1.html
// #doubling-dbl-2008-hwcd
// 4M + 4S
// A = X1^2
var a = this.x.redSqr();
// B = Y1^2
var b = this.y.redSqr();
// C = 2 * Z1^2
var c = this.z.redSqr();
c = c.redIAdd(c);
// D = a * A
var d = this.curve._mulA(a);
// E = (X1 + Y1)^2 - A - B
var e = this.x.redAdd(this.y).redSqr().redISub(a).redISub(b);
// G = D + B
var g = d.redAdd(b);
// F = G - C
var f = g.redSub(c);
// H = D - B
var h = d.redSub(b);
// X3 = E * F
var nx = e.redMul(f);
// Y3 = G * H
var ny = g.redMul(h);
// T3 = E * H
var nt = e.redMul(h);
// Z3 = F * G
var nz = f.redMul(g);
return this.curve.point(nx, ny, nz, nt);
};
Point$2.prototype._projDbl = function _projDbl() {
// hyperelliptic.org/EFD/g1p/auto-twisted-projective.html
// #doubling-dbl-2008-bbjlp
// #doubling-dbl-2007-bl
// and others
// Generally 3M + 4S or 2M + 4S
// B = (X1 + Y1)^2
var b = this.x.redAdd(this.y).redSqr();
// C = X1^2
var c = this.x.redSqr();
// D = Y1^2
var d = this.y.redSqr();
var nx;
var ny;
var nz;
if (this.curve.twisted) {
// E = a * C
var e = this.curve._mulA(c);
// F = E + D
var f = e.redAdd(d);
if (this.zOne) {
// X3 = (B - C - D) * (F - 2)
nx = b.redSub(c).redSub(d).redMul(f.redSub(this.curve.two));
// Y3 = F * (E - D)
ny = f.redMul(e.redSub(d));
// Z3 = F^2 - 2 * F
nz = f.redSqr().redSub(f).redSub(f);
} else {
// H = Z1^2
var h = this.z.redSqr();
// J = F - 2 * H
var j = f.redSub(h).redISub(h);
// X3 = (B-C-D)*J
nx = b.redSub(c).redISub(d).redMul(j);
// Y3 = F * (E - D)
ny = f.redMul(e.redSub(d));
// Z3 = F * J
nz = f.redMul(j);
}
} else {
// E = C + D
var e = c.redAdd(d);
// H = (c * Z1)^2
var h = this.curve._mulC(this.z).redSqr();
// J = E - 2 * H
var j = e.redSub(h).redSub(h);
// X3 = c * (B - E) * J
nx = this.curve._mulC(b.redISub(e)).redMul(j);
// Y3 = c * E * (C - D)
ny = this.curve._mulC(e).redMul(c.redISub(d));
// Z3 = E * J
nz = e.redMul(j);
}
return this.curve.point(nx, ny, nz);
};
Point$2.prototype.dbl = function dbl() {
if (this.isInfinity())
return this;
// Double in extended coordinates
if (this.curve.extended)
return this._extDbl();
else
return this._projDbl();
};
Point$2.prototype._extAdd = function _extAdd(p) {
// hyperelliptic.org/EFD/g1p/aut