UNPKG

openjscad-csg

Version:
1,104 lines (1,005 loc) 296 kB
/* ## IMPORTANT NOTE --- IMPORTANT The master for this file is located at: https://github.com/joostn/openjscad/tree/gh-pages That is the gh-pages branch of the joostn/openjscad project If contributing from openjscad.org, please do NOT edit this local file but make pull requests against above joostn/gh-pages branch. ## IMPORTANT NOTE --- IMPORTANT NOTE ## License Copyright (c) 2014 bebbi (elghatta@gmail.com) Copyright (c) 2013 Eduard Bespalov (edwbes@gmail.com) Copyright (c) 2012 Joost Nieuwenhuijse (joost@newhouse.nl) Copyright (c) 2011 Evan Wallace (http://evanw.github.com/csg.js/) Copyright (c) 2012 Alexandre Girard (https://github.com/alx) All code released under MIT license ## Overview For an overview of the CSG process see the original csg.js code: http://evanw.github.com/csg.js/ CSG operations through BSP trees suffer from one problem: heavy fragmentation of polygons. If two CSG solids of n polygons are unified, the resulting solid may have in the order of n*n polygons, because each polygon is split by the planes of all other polygons. After a few operations the number of polygons explodes. This version of CSG.js solves the problem in 3 ways: 1. Every polygon split is recorded in a tree (CSG.PolygonTreeNode). This is a separate tree, not to be confused with the CSG tree. If a polygon is split into two parts but in the end both fragments have not been discarded by the CSG operation, we can retrieve the original unsplit polygon from the tree, instead of the two fragments. This does not completely solve the issue though: if a polygon is split multiple times the number of fragments depends on the order of subsequent splits, and we might still end up with unncessary splits: Suppose a polygon is first split into A and B, and then into A1, B1, A2, B2. Suppose B2 is discarded. We will end up with 2 polygons: A and B1. Depending on the actual split boundaries we could still have joined A and B1 into one polygon. Therefore a second approach is used as well: 2. After CSG operations all coplanar polygon fragments are joined by a retesselating operation. See CSG.reTesselated(). Retesselation is done through a linear sweep over the polygon surface. The sweep line passes over the y coordinates of all vertices in the polygon. Polygons are split at each sweep line, and the fragments are joined horizontally and vertically into larger polygons (making sure that we will end up with convex polygons). This still doesn't solve the problem completely: due to floating point imprecisions we may end up with small gaps between polygons, and polygons may not be exactly coplanar anymore, and as a result the retesselation algorithm may fail to join those polygons. Therefore: 3. A canonicalization algorithm is implemented: it looks for vertices that have approximately the same coordinates (with a certain tolerance, say 1e-5) and replaces them with the same vertex. If polygons share a vertex they will actually point to the same CSG.Vertex instance. The same is done for polygon planes. See CSG.canonicalized(). Performance improvements to the original CSG.js: Replaced the flip() and invert() methods by flipped() and inverted() which don't modify the source object. This allows to get rid of all clone() calls, so that multiple polygons can refer to the same CSG.Plane instance etc. The original union() used an extra invert(), clipTo(), invert() sequence just to remove the coplanar front faces from b; this is now combined in a single b.clipTo(a, true) call. Detection whether a polygon is in front or in back of a plane: for each polygon we are caching the coordinates of the bounding sphere. If the bounding sphere is in front or in back of the plane we don't have to check the individual vertices anymore. Other additions to the original CSG.js: CSG.Vector class has been renamed into CSG.Vector3D Classes for 3D lines, 2D vectors, 2D lines, and methods to find the intersection of a line and a plane etc. Transformations: CSG.transform(), CSG.translate(), CSG.rotate(), CSG.scale() Expanding or contracting a solid: CSG.expand() and CSG.contract(). Creates nice smooth corners. The vertex normal has been removed since it complicates retesselation. It's not needed for solid CAD anyway. */ (function(module) { var _CSGDEBUG = false; function fnNumberSort(a, b) { return a - b; } // # class CSG // Holds a binary space partition tree representing a 3D solid. Two solids can // be combined using the `union()`, `subtract()`, and `intersect()` methods. var CSG = function() { this.polygons = []; this.properties = new CSG.Properties(); this.isCanonicalized = true; this.isRetesselated = true; }; CSG.defaultResolution2D = 32; CSG.defaultResolution3D = 12; // Construct a CSG solid from a list of `CSG.Polygon` instances. CSG.fromPolygons = function(polygons) { var csg = new CSG(); csg.polygons = polygons; csg.isCanonicalized = false; csg.isRetesselated = false; return csg; }; // Construct a CSG solid from generated slices. // Look at CSG.Polygon.prototype.solidFromSlices for details CSG.fromSlices = function(options) { return (new CSG.Polygon.createFromPoints([ [0, 0, 0], [1, 0, 0], [1, 1, 0], [0, 1, 0] ])).solidFromSlices(options); }; // create from an untyped object with identical property names: CSG.fromObject = function(obj) { var polygons = obj.polygons.map(function(p) { return CSG.Polygon.fromObject(p); }); var csg = CSG.fromPolygons(polygons); csg = csg.canonicalized(); return csg; }; // Reconstruct a CSG from the output of toCompactBinary() CSG.fromCompactBinary = function(bin) { if (bin['class'] != "CSG") throw new Error("Not a CSG"); var planes = [], planeData = bin.planeData, numplanes = planeData.length / 4, arrayindex = 0, x, y, z, w, normal, plane; for (var planeindex = 0; planeindex < numplanes; planeindex++) { x = planeData[arrayindex++]; y = planeData[arrayindex++]; z = planeData[arrayindex++]; w = planeData[arrayindex++]; normal = CSG.Vector3D.Create(x, y, z); plane = new CSG.Plane(normal, w); planes.push(plane); } var vertices = [], vertexData = bin.vertexData, numvertices = vertexData.length / 3, pos, vertex; arrayindex = 0; for (var vertexindex = 0; vertexindex < numvertices; vertexindex++) { x = vertexData[arrayindex++]; y = vertexData[arrayindex++]; z = vertexData[arrayindex++]; pos = CSG.Vector3D.Create(x, y, z); vertex = new CSG.Vertex(pos); vertices.push(vertex); } var shareds = bin.shared.map(function(shared) { return CSG.Polygon.Shared.fromObject(shared); }); var polygons = [], numpolygons = bin.numPolygons, numVerticesPerPolygon = bin.numVerticesPerPolygon, polygonVertices = bin.polygonVertices, polygonPlaneIndexes = bin.polygonPlaneIndexes, polygonSharedIndexes = bin.polygonSharedIndexes, numpolygonvertices, polygonvertices, shared, polygon; //already defined plane, arrayindex = 0; for (var polygonindex = 0; polygonindex < numpolygons; polygonindex++) { numpolygonvertices = numVerticesPerPolygon[polygonindex]; polygonvertices = []; for (var i = 0; i < numpolygonvertices; i++) { polygonvertices.push(vertices[polygonVertices[arrayindex++]]); } plane = planes[polygonPlaneIndexes[polygonindex]]; shared = shareds[polygonSharedIndexes[polygonindex]]; polygon = new CSG.Polygon(polygonvertices, shared, plane); polygons.push(polygon); } var csg = CSG.fromPolygons(polygons); csg.isCanonicalized = true; csg.isRetesselated = true; return csg; }; CSG.prototype = { toPolygons: function() { return this.polygons; }, // Return a new CSG solid representing space in either this solid or in the // solid `csg`. Neither this solid nor the solid `csg` are modified. // // A.union(B) // // +-------+ +-------+ // | | | | // | A | | | // | +--+----+ = | +----+ // +----+--+ | +----+ | // | B | | | // | | | | // +-------+ +-------+ // union: function(csg) { var csgs; if (csg instanceof Array) { csgs = csg.slice(0); csgs.push(this); } else { csgs = [this, csg]; } // combine csg pairs in a way that forms a balanced binary tree pattern for (var i = 1; i < csgs.length; i += 2) { csgs.push(csgs[i-1].unionSub(csgs[i])); } return csgs[i - 1].reTesselated().canonicalized(); }, unionSub: function(csg, retesselate, canonicalize) { if (!this.mayOverlap(csg)) { return this.unionForNonIntersecting(csg); } else { var a = new CSG.Tree(this.polygons); var b = new CSG.Tree(csg.polygons); a.clipTo(b, false); // b.clipTo(a, true); // ERROR: this doesn't work b.clipTo(a); b.invert(); b.clipTo(a); b.invert(); var newpolygons = a.allPolygons().concat(b.allPolygons()); var result = CSG.fromPolygons(newpolygons); result.properties = this.properties._merge(csg.properties); if (retesselate) result = result.reTesselated(); if (canonicalize) result = result.canonicalized(); return result; } }, // Like union, but when we know that the two solids are not intersecting // Do not use if you are not completely sure that the solids do not intersect! unionForNonIntersecting: function(csg) { var newpolygons = this.polygons.concat(csg.polygons); var result = CSG.fromPolygons(newpolygons); result.properties = this.properties._merge(csg.properties); result.isCanonicalized = this.isCanonicalized && csg.isCanonicalized; result.isRetesselated = this.isRetesselated && csg.isRetesselated; return result; }, // Return a new CSG solid representing space in this solid but not in the // solid `csg`. Neither this solid nor the solid `csg` are modified. // // A.subtract(B) // // +-------+ +-------+ // | | | | // | A | | | // | +--+----+ = | +--+ // +----+--+ | +----+ // | B | // | | // +-------+ // subtract: function(csg) { var csgs; if (csg instanceof Array) { csgs = csg; } else { csgs = [csg]; } var result = this; for (var i = 0; i < csgs.length; i++) { var islast = (i == (csgs.length - 1)); result = result.subtractSub(csgs[i], islast, islast); } return result; }, subtractSub: function(csg, retesselate, canonicalize) { var a = new CSG.Tree(this.polygons); var b = new CSG.Tree(csg.polygons); a.invert(); a.clipTo(b); b.clipTo(a, true); a.addPolygons(b.allPolygons()); a.invert(); var result = CSG.fromPolygons(a.allPolygons()); result.properties = this.properties._merge(csg.properties); if (retesselate) result = result.reTesselated(); if (canonicalize) result = result.canonicalized(); return result; }, // Return a new CSG solid representing space both this solid and in the // solid `csg`. Neither this solid nor the solid `csg` are modified. // // A.intersect(B) // // +-------+ // | | // | A | // | +--+----+ = +--+ // +----+--+ | +--+ // | B | // | | // +-------+ // intersect: function(csg) { var csgs; if (csg instanceof Array) { csgs = csg; } else { csgs = [csg]; } var result = this; for (var i = 0; i < csgs.length; i++) { var islast = (i == (csgs.length - 1)); result = result.intersectSub(csgs[i], islast, islast); } return result; }, intersectSub: function(csg, retesselate, canonicalize) { var a = new CSG.Tree(this.polygons); var b = new CSG.Tree(csg.polygons); a.invert(); b.clipTo(a); b.invert(); a.clipTo(b); b.clipTo(a); a.addPolygons(b.allPolygons()); a.invert(); var result = CSG.fromPolygons(a.allPolygons()); result.properties = this.properties._merge(csg.properties); if (retesselate) result = result.reTesselated(); if (canonicalize) result = result.canonicalized(); return result; }, // Return a new CSG solid with solid and empty space switched. This solid is // not modified. invert: function() { var flippedpolygons = this.polygons.map(function(p) { return p.flipped(); }); return CSG.fromPolygons(flippedpolygons); // TODO: flip properties? }, // Affine transformation of CSG object. Returns a new CSG object transform1: function(matrix4x4) { var newpolygons = this.polygons.map(function(p) { return p.transform(matrix4x4); }); var result = CSG.fromPolygons(newpolygons); result.properties = this.properties._transform(matrix4x4); result.isRetesselated = this.isRetesselated; return result; }, transform: function(matrix4x4) { var ismirror = matrix4x4.isMirroring(); var transformedvertices = {}; var transformedplanes = {}; var newpolygons = this.polygons.map(function(p) { var newplane; var plane = p.plane; var planetag = plane.getTag(); if (planetag in transformedplanes) { newplane = transformedplanes[planetag]; } else { newplane = plane.transform(matrix4x4); transformedplanes[planetag] = newplane; } var newvertices = p.vertices.map(function(v) { var newvertex; var vertextag = v.getTag(); if (vertextag in transformedvertices) { newvertex = transformedvertices[vertextag]; } else { newvertex = v.transform(matrix4x4); transformedvertices[vertextag] = newvertex; } return newvertex; }); if (ismirror) newvertices.reverse(); return new CSG.Polygon(newvertices, p.shared, newplane); }); var result = CSG.fromPolygons(newpolygons); result.properties = this.properties._transform(matrix4x4); result.isRetesselated = this.isRetesselated; result.isCanonicalized = this.isCanonicalized; return result; }, toString: function() { var result = "CSG solid:\n"; this.polygons.map(function(p) { result += p.toString(); }); return result; }, // Expand the solid // resolution: number of points per 360 degree for the rounded corners expand: function(radius, resolution) { var result = this.expandedShell(radius, resolution, true); result = result.reTesselated(); result.properties = this.properties; // keep original properties return result; }, // Contract the solid // resolution: number of points per 360 degree for the rounded corners contract: function(radius, resolution) { var expandedshell = this.expandedShell(radius, resolution, false); var result = this.subtract(expandedshell); result = result.reTesselated(); result.properties = this.properties; // keep original properties return result; }, // cut the solid at a plane, and stretch the cross-section found along plane normal stretchAtPlane: function(normal, point, length) { var plane = CSG.Plane.fromNormalAndPoint(normal, point); var onb = new CSG.OrthoNormalBasis(plane); var crosssect = this.sectionCut(onb); var midpiece = crosssect.extrudeInOrthonormalBasis(onb, length); var piece1 = this.cutByPlane(plane); var piece2 = this.cutByPlane(plane.flipped()); var result = piece1.union([midpiece, piece2.translate(plane.normal.times(length))]); return result; }, // Create the expanded shell of the solid: // All faces are extruded to get a thickness of 2*radius // Cylinders are constructed around every side // Spheres are placed on every vertex // unionWithThis: if true, the resulting solid will be united with 'this' solid; // the result is a true expansion of the solid // If false, returns only the shell expandedShell: function(radius, resolution, unionWithThis) { var csg = this.reTesselated(); var result; if (unionWithThis) { result = csg; } else { result = new CSG(); } // first extrude all polygons: csg.polygons.map(function(polygon) { var extrudevector = polygon.plane.normal.unit().times(2 * radius); var translatedpolygon = polygon.translate(extrudevector.times(-0.5)); var extrudedface = translatedpolygon.extrude(extrudevector); result = result.unionSub(extrudedface, false, false); }); // Make a list of all unique vertex pairs (i.e. all sides of the solid) // For each vertex pair we collect the following: // v1: first coordinate // v2: second coordinate // planenormals: array of normal vectors of all planes touching this side var vertexpairs = {}; // map of 'vertex pair tag' to {v1, v2, planenormals} csg.polygons.map(function(polygon) { var numvertices = polygon.vertices.length; var prevvertex = polygon.vertices[numvertices - 1]; var prevvertextag = prevvertex.getTag(); for (var i = 0; i < numvertices; i++) { var vertex = polygon.vertices[i]; var vertextag = vertex.getTag(); var vertextagpair; if (vertextag < prevvertextag) { vertextagpair = vertextag + "-" + prevvertextag; } else { vertextagpair = prevvertextag + "-" + vertextag; } var obj; if (vertextagpair in vertexpairs) { obj = vertexpairs[vertextagpair]; } else { obj = { v1: prevvertex, v2: vertex, planenormals: [] }; vertexpairs[vertextagpair] = obj; } obj.planenormals.push(polygon.plane.normal); prevvertextag = vertextag; prevvertex = vertex; } }); // now construct a cylinder on every side // The cylinder is always an approximation of a true cylinder: it will have <resolution> polygons // around the sides. We will make sure though that the cylinder will have an edge at every // face that touches this side. This ensures that we will get a smooth fill even // if two edges are at, say, 10 degrees and the resolution is low. // Note: the result is not retesselated yet but it really should be! for (var vertextagpair in vertexpairs) { var vertexpair = vertexpairs[vertextagpair], startpoint = vertexpair.v1.pos, endpoint = vertexpair.v2.pos, // our x,y and z vectors: zbase = endpoint.minus(startpoint).unit(), xbase = vertexpair.planenormals[0].unit(), ybase = xbase.cross(zbase), // make a list of angles that the cylinder should traverse: angles = []; // first of all equally spaced around the cylinder: for (var i = 0; i < resolution; i++) { angles.push(i * Math.PI * 2 / resolution); } // and also at every normal of all touching planes: for (var i = 0, iMax = vertexpair.planenormals.length; i < iMax; i++) { var planenormal = vertexpair.planenormals[i], si = ybase.dot(planenormal), co = xbase.dot(planenormal), angle = Math.atan2(si, co); if (angle < 0) angle += Math.PI * 2; angles.push(angle); angle = Math.atan2(-si, -co); if (angle < 0) angle += Math.PI * 2; angles.push(angle); } // this will result in some duplicate angles but we will get rid of those later. // Sort: angles = angles.sort(fnNumberSort); // Now construct the cylinder by traversing all angles: var numangles = angles.length, prevp1, prevp2, startfacevertices = [], endfacevertices = [], polygons = []; for (var i = -1; i < numangles; i++) { var angle = angles[(i < 0) ? (i + numangles) : i], si = Math.sin(angle), co = Math.cos(angle), p = xbase.times(co * radius).plus(ybase.times(si * radius)), p1 = startpoint.plus(p), p2 = endpoint.plus(p), skip = false; if (i >= 0) { if (p1.distanceTo(prevp1) < 1e-5) { skip = true; } } if (!skip) { if (i >= 0) { startfacevertices.push(new CSG.Vertex(p1)); endfacevertices.push(new CSG.Vertex(p2)); var polygonvertices = [ new CSG.Vertex(prevp2), new CSG.Vertex(p2), new CSG.Vertex(p1), new CSG.Vertex(prevp1) ]; var polygon = new CSG.Polygon(polygonvertices); polygons.push(polygon); } prevp1 = p1; prevp2 = p2; } } endfacevertices.reverse(); polygons.push(new CSG.Polygon(startfacevertices)); polygons.push(new CSG.Polygon(endfacevertices)); var cylinder = CSG.fromPolygons(polygons); result = result.unionSub(cylinder, false, false); } // make a list of all unique vertices // For each vertex we also collect the list of normals of the planes touching the vertices var vertexmap = {}; csg.polygons.map(function(polygon) { polygon.vertices.map(function(vertex) { var vertextag = vertex.getTag(); var obj; if (vertextag in vertexmap) { obj = vertexmap[vertextag]; } else { obj = { pos: vertex.pos, normals: [] }; vertexmap[vertextag] = obj; } obj.normals.push(polygon.plane.normal); }); }); // and build spheres at each vertex // We will try to set the x and z axis to the normals of 2 planes // This will ensure that our sphere tesselation somewhat matches 2 planes for (var vertextag in vertexmap) { var vertexobj = vertexmap[vertextag]; // use the first normal to be the x axis of our sphere: var xaxis = vertexobj.normals[0].unit(); // and find a suitable z axis. We will use the normal which is most perpendicular to the x axis: var bestzaxis = null; var bestzaxisorthogonality = 0; for (var i = 1; i < vertexobj.normals.length; i++) { var normal = vertexobj.normals[i].unit(); var cross = xaxis.cross(normal); var crosslength = cross.length(); if (crosslength > 0.05) { if (crosslength > bestzaxisorthogonality) { bestzaxisorthogonality = crosslength; bestzaxis = normal; } } } if (!bestzaxis) { bestzaxis = xaxis.randomNonParallelVector(); } var yaxis = xaxis.cross(bestzaxis).unit(); var zaxis = yaxis.cross(xaxis); var sphere = CSG.sphere({ center: vertexobj.pos, radius: radius, resolution: resolution, axes: [xaxis, yaxis, zaxis] }); result = result.unionSub(sphere, false, false); } return result; }, canonicalized: function() { if (this.isCanonicalized) { return this; } else { var factory = new CSG.fuzzyCSGFactory(); var result = factory.getCSG(this); result.isCanonicalized = true; result.isRetesselated = this.isRetesselated; result.properties = this.properties; // keep original properties return result; } }, reTesselated: function() { if (this.isRetesselated) { return this; } else { var csg = this; var polygonsPerPlane = {}; var isCanonicalized = csg.isCanonicalized; var fuzzyfactory = new CSG.fuzzyCSGFactory(); csg.polygons.map(function(polygon) { var plane = polygon.plane; var shared = polygon.shared; if (!isCanonicalized) { // in order to identify to polygons having the same plane, we need to canonicalize the planes // We don't have to do a full canonizalization (including vertices), to save time only do the planes and the shared data: plane = fuzzyfactory.getPlane(plane); shared = fuzzyfactory.getPolygonShared(shared); } var tag = plane.getTag() + "/" + shared.getTag(); if (!(tag in polygonsPerPlane)) { polygonsPerPlane[tag] = [polygon]; } else { polygonsPerPlane[tag].push(polygon); } }); var destpolygons = []; for (var planetag in polygonsPerPlane) { var sourcepolygons = polygonsPerPlane[planetag]; if (sourcepolygons.length < 2) { destpolygons = destpolygons.concat(sourcepolygons); } else { var retesselayedpolygons = []; CSG.reTesselateCoplanarPolygons(sourcepolygons, retesselayedpolygons); destpolygons = destpolygons.concat(retesselayedpolygons); } } var result = CSG.fromPolygons(destpolygons); result.isRetesselated = true; // result = result.canonicalized(); result.properties = this.properties; // keep original properties return result; } }, // returns an array of two CSG.Vector3Ds (minimum coordinates and maximum coordinates) getBounds: function() { if (!this.cachedBoundingBox) { var minpoint = new CSG.Vector3D(0, 0, 0); var maxpoint = new CSG.Vector3D(0, 0, 0); var polygons = this.polygons; var numpolygons = polygons.length; for (var i = 0; i < numpolygons; i++) { var polygon = polygons[i]; var bounds = polygon.boundingBox(); if (i === 0) { minpoint = bounds[0]; maxpoint = bounds[1]; } else { minpoint = minpoint.min(bounds[0]); maxpoint = maxpoint.max(bounds[1]); } } this.cachedBoundingBox = [minpoint, maxpoint]; } return this.cachedBoundingBox; }, // returns true if there is a possibility that the two solids overlap // returns false if we can be sure that they do not overlap mayOverlap: function(csg) { if ((this.polygons.length === 0) || (csg.polygons.length === 0)) { return false; } else { var mybounds = this.getBounds(); var otherbounds = csg.getBounds(); if (mybounds[1].x < otherbounds[0].x) return false; if (mybounds[0].x > otherbounds[1].x) return false; if (mybounds[1].y < otherbounds[0].y) return false; if (mybounds[0].y > otherbounds[1].y) return false; if (mybounds[1].z < otherbounds[0].z) return false; if (mybounds[0].z > otherbounds[1].z) return false; return true; } }, // Cut the solid by a plane. Returns the solid on the back side of the plane cutByPlane: function(plane) { if (this.polygons.length === 0) { return new CSG(); } // Ideally we would like to do an intersection with a polygon of inifinite size // but this is not supported by our implementation. As a workaround, we will create // a cube, with one face on the plane, and a size larger enough so that the entire // solid fits in the cube. // find the max distance of any vertex to the center of the plane: var planecenter = plane.normal.times(plane.w); var maxdistance = 0; this.polygons.map(function(polygon) { polygon.vertices.map(function(vertex) { var distance = vertex.pos.distanceToSquared(planecenter); if (distance > maxdistance) maxdistance = distance; }); }); maxdistance = Math.sqrt(maxdistance); maxdistance *= 1.01; // make sure it's really larger // Now build a polygon on the plane, at any point farther than maxdistance from the plane center: var vertices = []; var orthobasis = new CSG.OrthoNormalBasis(plane); vertices.push(new CSG.Vertex(orthobasis.to3D(new CSG.Vector2D(maxdistance, -maxdistance)))); vertices.push(new CSG.Vertex(orthobasis.to3D(new CSG.Vector2D(-maxdistance, -maxdistance)))); vertices.push(new CSG.Vertex(orthobasis.to3D(new CSG.Vector2D(-maxdistance, maxdistance)))); vertices.push(new CSG.Vertex(orthobasis.to3D(new CSG.Vector2D(maxdistance, maxdistance)))); var polygon = new CSG.Polygon(vertices, null, plane.flipped()); // and extrude the polygon into a cube, backwards of the plane: var cube = polygon.extrude(plane.normal.times(-maxdistance)); // Now we can do the intersection: var result = this.intersect(cube); result.properties = this.properties; // keep original properties return result; }, // Connect a solid to another solid, such that two CSG.Connectors become connected // myConnector: a CSG.Connector of this solid // otherConnector: a CSG.Connector to which myConnector should be connected // mirror: false: the 'axis' vectors of the connectors should point in the same direction // true: the 'axis' vectors of the connectors should point in opposite direction // normalrotation: degrees of rotation between the 'normal' vectors of the two // connectors connectTo: function(myConnector, otherConnector, mirror, normalrotation) { var matrix = myConnector.getTransformationTo(otherConnector, mirror, normalrotation); return this.transform(matrix); }, // set the .shared property of all polygons // Returns a new CSG solid, the original is unmodified! setShared: function(shared) { var polygons = this.polygons.map(function(p) { return new CSG.Polygon(p.vertices, shared, p.plane); }); var result = CSG.fromPolygons(polygons); result.properties = this.properties; // keep original properties result.isRetesselated = this.isRetesselated; result.isCanonicalized = this.isCanonicalized; return result; }, setColor: function(args) { var newshared = CSG.Polygon.Shared.fromColor.apply(this, arguments); return this.setShared(newshared); }, toCompactBinary: function() { var csg = this.canonicalized(), numpolygons = csg.polygons.length, numpolygonvertices = 0, numvertices = 0, vertexmap = {}, vertices = [], numplanes = 0, planemap = {}, polygonindex = 0, planes = [], shareds = [], sharedmap = {}, numshared = 0; // for (var i = 0, iMax = csg.polygons.length; i < iMax; i++) { // var p = csg.polygons[i]; // for (var j = 0, jMax = p.length; j < jMax; j++) { // ++numpolygonvertices; // var vertextag = p[j].getTag(); // if(!(vertextag in vertexmap)) { // vertexmap[vertextag] = numvertices++; // vertices.push(p[j]); // } // } csg.polygons.map(function(p) { p.vertices.map(function(v) { ++numpolygonvertices; var vertextag = v.getTag(); if (!(vertextag in vertexmap)) { vertexmap[vertextag] = numvertices++; vertices.push(v); } }); var planetag = p.plane.getTag(); if (!(planetag in planemap)) { planemap[planetag] = numplanes++; planes.push(p.plane); } var sharedtag = p.shared.getTag(); if (!(sharedtag in sharedmap)) { sharedmap[sharedtag] = numshared++; shareds.push(p.shared); } }); var numVerticesPerPolygon = new Uint32Array(numpolygons), polygonSharedIndexes = new Uint32Array(numpolygons), polygonVertices = new Uint32Array(numpolygonvertices), polygonPlaneIndexes = new Uint32Array(numpolygons), vertexData = new Float64Array(numvertices * 3), planeData = new Float64Array(numplanes * 4), polygonVerticesIndex = 0; for (var polygonindex = 0; polygonindex < numpolygons; ++polygonindex) { var p = csg.polygons[polygonindex]; numVerticesPerPolygon[polygonindex] = p.vertices.length; p.vertices.map(function(v) { var vertextag = v.getTag(); var vertexindex = vertexmap[vertextag]; polygonVertices[polygonVerticesIndex++] = vertexindex; }); var planetag = p.plane.getTag(); var planeindex = planemap[planetag]; polygonPlaneIndexes[polygonindex] = planeindex; var sharedtag = p.shared.getTag(); var sharedindex = sharedmap[sharedtag]; polygonSharedIndexes[polygonindex] = sharedindex; } var verticesArrayIndex = 0; vertices.map(function(v) { var pos = v.pos; vertexData[verticesArrayIndex++] = pos._x; vertexData[verticesArrayIndex++] = pos._y; vertexData[verticesArrayIndex++] = pos._z; }); var planesArrayIndex = 0; planes.map(function(p) { var normal = p.normal; planeData[planesArrayIndex++] = normal._x; planeData[planesArrayIndex++] = normal._y; planeData[planesArrayIndex++] = normal._z; planeData[planesArrayIndex++] = p.w; }); var result = { "class": "CSG", numPolygons: numpolygons, numVerticesPerPolygon: numVerticesPerPolygon, polygonPlaneIndexes: polygonPlaneIndexes, polygonSharedIndexes: polygonSharedIndexes, polygonVertices: polygonVertices, vertexData: vertexData, planeData: planeData, shared: shareds }; return result; }, // For debugging // Creates a new solid with a tiny cube at every vertex of the source solid toPointCloud: function(cuberadius) { var csg = this.reTesselated(); var result = new CSG(); // make a list of all unique vertices // For each vertex we also collect the list of normals of the planes touching the vertices var vertexmap = {}; csg.polygons.map(function(polygon) { polygon.vertices.map(function(vertex) { vertexmap[vertex.getTag()] = vertex.pos; }); }); for (var vertextag in vertexmap) { var pos = vertexmap[vertextag]; var cube = CSG.cube({ center: pos, radius: cuberadius }); result = result.unionSub(cube, false, false); } result = result.reTesselated(); return result; }, // Get the transformation that transforms this CSG such that it is lying on the z=0 plane, // as flat as possible (i.e. the least z-height). // So that it is in an orientation suitable for CNC milling getTransformationAndInverseTransformationToFlatLying: function() { if (this.polygons.length === 0) { return new CSG.Matrix4x4(); // unity } else { // get a list of unique planes in the CSG: var csg = this.canonicalized(); var planemap = {}; csg.polygons.map(function(polygon) { planemap[polygon.plane.getTag()] = polygon.plane; }); // try each plane in the CSG and find the plane that, when we align it flat onto z=0, // gives the least height in z-direction. // If two planes give the same height, pick the plane that originally had a normal closest // to [0,0,-1]. var xvector = new CSG.Vector3D(1, 0, 0); var yvector = new CSG.Vector3D(0, 1, 0); var zvector = new CSG.Vector3D(0, 0, 1); var z0connectorx = new CSG.Connector([0, 0, 0], [0, 0, -1], xvector); var z0connectory = new CSG.Connector([0, 0, 0], [0, 0, -1], yvector); var isfirst = true; var minheight = 0; var maxdotz = 0; var besttransformation, bestinversetransformation; for (var planetag in planemap) { var plane = planemap[planetag]; var pointonplane = plane.normal.times(plane.w); var transformation, inversetransformation; // We need a normal vecrtor for the transformation // determine which is more perpendicular to the plane normal: x or y? // we will align this as much as possible to the x or y axis vector var xorthogonality = plane.normal.cross(xvector).length(); var yorthogonality = plane.normal.cross(yvector).length(); if (xorthogonality > yorthogonality) { // x is better: var planeconnector = new CSG.Connector(pointonplane, plane.normal, xvector); transformation = planeconnector.getTransformationTo(z0connectorx, false, 0); inversetransformation = z0connectorx.getTransformationTo(planeconnector, false, 0); } else { // y is better: var planeconnector = new CSG.Connector(pointonplane, plane.normal, yvector); transformation = planeconnector.getTransformationTo(z0connectory, false, 0); inversetransformation = z0connectory.getTransformationTo(planeconnector, false, 0); } var transformedcsg = csg.transform(transformation); var dotz = -plane.normal.dot(zvector); var bounds = transformedcsg.getBounds(); var zheight = bounds[1].z - bounds[0].z; var isbetter = isfirst; if (!isbetter) { if (zheight < minheight) { isbetter = true; } else if (zheight == minheight) { if (dotz > maxdotz) isbetter = true; } } if (isbetter) { // translate the transformation around the z-axis and onto the z plane: var translation = new CSG.Vector3D([-0.5 * (bounds[1].x + bounds[0].x), -0.5 * (bounds[1].y + bounds[0].y), -bounds[0].z]); transformation = transformation.multiply(CSG.Matrix4x4.translation(translation)); inversetransformation = CSG.Matrix4x4.translation(translation.negated()).multiply(inversetransformation); minheight = zheight; maxdotz = dotz; besttransformation = transformation; bestinversetransformation = inversetransformation; } isfirst = false; } return [besttransformation, bestinversetransformation]; } }, getTransformationToFlatLying: function() { var result = this.getTransformationAndInverseTransformationToFlatLying(); return result[0]; }, lieFlat: function() { var transformation = this.getTransformationToFlatLying(); return this.transform(transformation); }, // project the 3D CSG onto a plane // This returns a 2D CAG with the 'shadow' shape of the 3D solid when projected onto the // plane represented by the orthonormal basis projectToOrthoNormalBasis: function(orthobasis) { var EPS = 1e-5; var cags = []; this.polygons.filter(function(p) { // only return polys in plane, others may disturb result return p.plane.normal.minus(orthobasis.plane.normal).lengthSquared() < EPS*EPS; }) .map(function(polygon) { var cag = polygon.projectToOrthoNormalBasis(orthobasis); if (cag.sides.length > 0) { cags.push(cag); } }); var result = new CAG().union(cags); return result; }, sectionCut: function(orthobasis) { var EPS = 1e-5; var plane1 = orthobasis.plane; var plane2 = orthobasis.plane.flipped(); plane1 = new CSG.Plane(plane1.normal, plane1.w); plane2 = new CSG.Plane(plane2.normal, plane2.w + 5*EPS); var cut3d = this.cutByPlane(plane1); cut3d = cut3d.cutByPlane(plane2); return cut3d.projectToOrthoNormalBasis(orthobasis); }, /* fixTJunctions: Suppose we have two polygons ACDB and EDGF: A-----B | | | E--F | | | C-----D--G Note that vertex E forms a T-junction on the side BD. In this case some STL slicers will complain that the solid is not watertight. This is because the watertightness check is done by checking if each side DE is matched by another side ED. This function will return a new solid with ACDB replaced by ACDEB Note that this can create polygons that are slightly non-convex (due to rounding errors). Therefore the result should not be used for further CSG operations! */ fixTJunctions: function() { var csg = this.canonicalized(); var sidemap = {}; for (var polygonindex = 0; polygonindex < csg.polygons.length; polygonindex++) { var polygon = csg.polygons[polygonindex]; var numvertices = polygon.vertices.length; if (numvertices >= 3) // should be true { var vertex = polygon.vertices[0]; var vertextag = vertex.getTag(); for (var vertexindex = 0; vertexindex < numvertices; vertexindex++) { var nextvertexindex = vertexindex + 1; if (nextvertexindex == numvertices) nextvertexindex = 0; var nextvertex = polygon.vertices[nextvertexindex]; var nextvertextag = nextvertex.getT