UNPKG

opencv

Version:
1,509 lines (1,500 loc) 358 kB
<?xml version="1.0"?> <!-- 45x11 Eye pair detector computed with 7000 positive samples ////////////////////////////////////////////////////////////////////////// | Contributors License Agreement | IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. | By downloading, copying, installing or using the software you agree | to this license. | If you do not agree to this license, do not download, install, | copy or use the software. | | Copyright (c) 2006, Modesto Castrillon-Santana (IUSIANI, University of | Las Palmas de Gran Canaria, Spain). | All rights reserved. | | Redistribution and use in source and binary forms, with or without | modification, are permitted provided that the following conditions are | met: | | * Redistributions of source code must retain the above copyright | notice, this list of conditions and the following disclaimer. | * Redistributions in binary form must reproduce the above | copyright notice, this list of conditions and the following | disclaimer in the documentation and/or other materials provided | with the distribution. | * The name of Contributor may not used to endorse or promote products | derived from this software without specific prior written permission. | | THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS | "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT | LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR | A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE | CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, | EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, | PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR | PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF | LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING | NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS | SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. Back to | Top ////////////////////////////////////////////////////////////////////////// RESEARCH USE: If you are using any of the detectors or involved ideas please cite one of these papers: @ARTICLE{Castrillon07-jvci, author = "Castrill\'on Santana, M. and D\'eniz Su\'arez, O. and Hern\'andez Tejera, M. and Guerra Artal, C.", title = "ENCARA2: Real-time Detection of Multiple Faces at Different Resolutions in Video Streams", journal = "Journal of Visual Communication and Image Representation", year = "2007", vol = "18", issue = "2", month = "April", pages = "130-140" } @INPROCEEDINGS{Castrillon07-swb, author = "Castrill\'on Santana, M. and D\'eniz Su\'arez, O. and Hern\'andez Sosa, D. and Lorenzo Navarro, J. ", title = "Using Incremental Principal Component Analysis to Learn a Gender Classifier Automatically", booktitle = "1st Spanish Workshop on Biometrics", year = "2007", month = "June", address = "Girona, Spain", file = F } A comparison of this and other face related classifiers can be found in: @InProceedings{Castrillon08a-visapp, 'athor = "Modesto Castrill\'on-Santana and O. D\'eniz-Su\'arez, L. Ant\'on-Canal\'{\i}s and J. Lorenzo-Navarro", title = "Face and Facial Feature Detection Evaluation" booktitle = "Third International Conference on Computer Vision Theory and Applications, VISAPP08" year = "2008", month = "January" } More information can be found at http://mozart.dis.ulpgc.es/Gias/modesto_eng.html or in the papers. COMMERCIAL USE: If you have any commercial interest in this work please contact mcastrillon@iusiani.ulpgc.es --> <opencv_storage> <parojos_7000pos_15000neg_45x11 type_id="opencv-haar-classifier"> <size> 45 11</size> <stages> <_> <!-- stage 0 --> <trees> <_> <!-- tree 0 --> <_> <!-- root node --> <feature> <rects> <_> 7 3 30 3 -1.</_> <_> 17 3 10 3 3.</_></rects> <tilted>0</tilted></feature> <threshold>0.1012997999787331</threshold> <left_val>-0.7954636812210083</left_val> <right_val>0.7811083793640137</right_val></_></_> <_> <!-- tree 1 --> <_> <!-- root node --> <feature> <rects> <_> 34 5 11 6 -1.</_> <_> 34 8 11 3 2.</_></rects> <tilted>0</tilted></feature> <threshold>0.0312121100723743</threshold> <left_val>-0.7282348275184631</left_val> <right_val>0.6224442720413208</right_val></_></_> <_> <!-- tree 2 --> <_> <!-- root node --> <feature> <rects> <_> 6 1 6 9 -1.</_> <_> 8 4 2 3 9.</_></rects> <tilted>0</tilted></feature> <threshold>-0.0549067892134190</threshold> <left_val>0.6679443120956421</left_val> <right_val>-0.6076071262359619</right_val></_></_> <_> <!-- tree 3 --> <_> <!-- root node --> <feature> <rects> <_> 15 0 15 11 -1.</_> <_> 20 0 5 11 3.</_></rects> <tilted>0</tilted></feature> <threshold>0.1310410946607590</threshold> <left_val>-0.4881607890129089</left_val> <right_val>0.6749575734138489</right_val></_></_></trees> <stage_threshold>-1.4563479423522949</stage_threshold> <parent>-1</parent> <next>-1</next></_> <_> <!-- stage 1 --> <trees> <_> <!-- tree 0 --> <_> <!-- root node --> <feature> <rects> <_> 7 3 30 3 -1.</_> <_> 17 3 10 3 3.</_></rects> <tilted>0</tilted></feature> <threshold>0.1507283002138138</threshold> <left_val>-0.6390901207923889</left_val> <right_val>0.8053625822067261</right_val></_></_> <_> <!-- tree 1 --> <_> <!-- root node --> <feature> <rects> <_> 34 5 11 6 -1.</_> <_> 34 8 11 3 2.</_></rects> <tilted>0</tilted></feature> <threshold>0.0228874403983355</threshold> <left_val>-0.7231366038322449</left_val> <right_val>0.3992983996868134</right_val></_></_> <_> <!-- tree 2 --> <_> <!-- root node --> <feature> <rects> <_> 0 5 11 6 -1.</_> <_> 0 8 11 3 2.</_></rects> <tilted>0</tilted></feature> <threshold>0.0276746600866318</threshold> <left_val>-0.7064399719238281</left_val> <right_val>0.4885388016700745</right_val></_></_> <_> <!-- tree 3 --> <_> <!-- root node --> <feature> <rects> <_> 22 0 6 11 -1.</_> <_> 22 0 3 11 2.</_></rects> <tilted>0</tilted></feature> <threshold>0.0318998582661152</threshold> <left_val>-0.4218417108058929</left_val> <right_val>0.5392153263092041</right_val></_></_> <_> <!-- tree 4 --> <_> <!-- root node --> <feature> <rects> <_> 17 0 6 11 -1.</_> <_> 20 0 3 11 2.</_></rects> <tilted>0</tilted></feature> <threshold>0.0369728282094002</threshold> <left_val>-0.4240063130855560</left_val> <right_val>0.5681108236312866</right_val></_></_> <_> <!-- tree 5 --> <_> <!-- root node --> <feature> <rects> <_> 39 0 1 9 -1.</_> <_> 36 3 1 3 3.</_></rects> <tilted>1</tilted></feature> <threshold>-0.0167110897600651</threshold> <left_val>0.4617055952548981</left_val> <right_val>-0.4238983988761902</right_val></_></_></trees> <stage_threshold>-1.4917520284652710</stage_threshold> <parent>0</parent> <next>-1</next></_> <_> <!-- stage 2 --> <trees> <_> <!-- tree 0 --> <_> <!-- root node --> <feature> <rects> <_> 9 0 27 6 -1.</_> <_> 18 0 9 6 3.</_></rects> <tilted>0</tilted></feature> <threshold>0.2120860069990158</threshold> <left_val>-0.6502287983894348</left_val> <right_val>0.5993312001228333</right_val></_></_> <_> <!-- tree 1 --> <_> <!-- root node --> <feature> <rects> <_> 39 0 1 9 -1.</_> <_> 36 3 1 3 3.</_></rects> <tilted>1</tilted></feature> <threshold>-0.0227453205734491</threshold> <left_val>0.5193532109260559</left_val> <right_val>-0.4416399896144867</right_val></_></_> <_> <!-- tree 2 --> <_> <!-- root node --> <feature> <rects> <_> 7 3 4 8 -1.</_> <_> 7 7 4 4 2.</_></rects> <tilted>0</tilted></feature> <threshold>0.0215619597584009</threshold> <left_val>-0.6439520120620728</left_val> <right_val>0.5154399871826172</right_val></_></_> <_> <!-- tree 3 --> <_> <!-- root node --> <feature> <rects> <_> 17 2 12 8 -1.</_> <_> 21 2 4 8 3.</_></rects> <tilted>0</tilted></feature> <threshold>0.0875263586640358</threshold> <left_val>-0.3723556995391846</left_val> <right_val>0.4822827875614166</right_val></_></_> <_> <!-- tree 4 --> <_> <!-- root node --> <feature> <rects> <_> 1 7 5 4 -1.</_> <_> 1 9 5 2 2.</_></rects> <tilted>0</tilted></feature> <threshold>1.7132370267063379e-003</threshold> <left_val>-0.6259062886238098</left_val> <right_val>0.3193156123161316</right_val></_></_> <_> <!-- tree 5 --> <_> <!-- root node --> <feature> <rects> <_> 31 1 9 9 -1.</_> <_> 34 4 3 3 9.</_></rects> <tilted>0</tilted></feature> <threshold>-0.1218293979763985</threshold> <left_val>0.4427149891853333</left_val> <right_val>-0.2849208116531372</right_val></_></_> <_> <!-- tree 6 --> <_> <!-- root node --> <feature> <rects> <_> 2 1 8 4 -1.</_> <_> 2 3 8 2 2.</_></rects> <tilted>0</tilted></feature> <threshold>-0.0165680497884750</threshold> <left_val>0.4386225938796997</left_val> <right_val>-0.3060705065727234</right_val></_></_> <_> <!-- tree 7 --> <_> <!-- root node --> <feature> <rects> <_> 18 2 12 9 -1.</_> <_> 22 2 4 9 3.</_></rects> <tilted>0</tilted></feature> <threshold>-0.0805537775158882</threshold> <left_val>0.6011540293693543</left_val> <right_val>-0.0198485106229782</right_val></_></_> <_> <!-- tree 8 --> <_> <!-- root node --> <feature> <rects> <_> 15 2 12 9 -1.</_> <_> 19 2 4 9 3.</_></rects> <tilted>0</tilted></feature> <threshold>0.0945484191179276</threshold> <left_val>-0.2503345906734467</left_val> <right_val>0.4800544977188110</right_val></_></_> <_> <!-- tree 9 --> <_> <!-- root node --> <feature> <rects> <_> 31 4 9 3 -1.</_> <_> 34 4 3 3 3.</_></rects> <tilted>0</tilted></feature> <threshold>-9.6633229404687881e-003</threshold> <left_val>0.2112565934658051</left_val> <right_val>-0.2550820112228394</right_val></_></_> <_> <!-- tree 10 --> <_> <!-- root node --> <feature> <rects> <_> 20 9 4 2 -1.</_> <_> 20 9 2 1 2.</_> <_> 22 10 2 1 2.</_></rects> <tilted>0</tilted></feature> <threshold>-1.7194730462506413e-003</threshold> <left_val>-0.7437624931335449</left_val> <right_val>0.1356191039085388</right_val></_></_></trees> <stage_threshold>-1.6821570396423340</stage_threshold> <parent>1</parent> <next>-1</next></_> <_> <!-- stage 3 --> <trees> <_> <!-- tree 0 --> <_> <!-- root node --> <feature> <rects> <_> 0 0 24 9 -1.</_> <_> 8 3 8 3 9.</_></rects> <tilted>0</tilted></feature> <threshold>-0.2984513044357300</threshold> <left_val>0.5768417119979858</left_val> <right_val>-0.5636575222015381</right_val></_></_> <_> <!-- tree 1 --> <_> <!-- root node --> <feature> <rects> <_> 7 3 36 4 -1.</_> <_> 16 3 18 4 2.</_></rects> <tilted>0</tilted></feature> <threshold>0.0848317891359329</threshold> <left_val>-0.4878582060337067</left_val> <right_val>0.3023360073566437</right_val></_></_> <_> <!-- tree 2 --> <_> <!-- root node --> <feature> <rects> <_> 9 5 4 2 -1.</_> <_> 11 5 2 2 2.</_></rects> <tilted>0</tilted></feature> <threshold>4.8235268332064152e-003</threshold> <left_val>-0.4168018996715546</left_val> <right_val>0.5473024249076843</right_val></_></_> <_> <!-- tree 3 --> <_> <!-- root node --> <feature> <rects> <_> 22 0 6 10 -1.</_> <_> 22 0 3 10 2.</_></rects> <tilted>0</tilted></feature> <threshold>0.0247961003333330</threshold> <left_val>-0.4074968099594116</left_val> <right_val>0.2987192869186401</right_val></_></_> <_> <!-- tree 4 --> <_> <!-- root node --> <feature> <rects> <_> 0 5 6 6 -1.</_> <_> 0 8 6 3 2.</_></rects> <tilted>0</tilted></feature> <threshold>7.8466311097145081e-003</threshold> <left_val>-0.6626297235488892</left_val> <right_val>0.3087947070598602</right_val></_></_> <_> <!-- tree 5 --> <_> <!-- root node --> <feature> <rects> <_> 21 0 8 11 -1.</_> <_> 21 0 4 11 2.</_></rects> <tilted>0</tilted></feature> <threshold>0.0881724432110786</threshold> <left_val>-0.1964032948017120</left_val> <right_val>0.1787654012441635</right_val></_></_> <_> <!-- tree 6 --> <_> <!-- root node --> <feature> <rects> <_> 1 3 42 8 -1.</_> <_> 1 3 21 4 2.</_> <_> 22 7 21 4 2.</_></rects> <tilted>0</tilted></feature> <threshold>6.7136192228645086e-004</threshold> <left_val>-0.4565294086933136</left_val> <right_val>0.4721651077270508</right_val></_></_> <_> <!-- tree 7 --> <_> <!-- root node --> <feature> <rects> <_> 24 0 8 3 -1.</_> <_> 26 2 4 3 2.</_></rects> <tilted>1</tilted></feature> <threshold>-5.8130059187533334e-005</threshold> <left_val>0.0189487598836422</left_val> <right_val>-0.2790096104145050</right_val></_></_> <_> <!-- tree 8 --> <_> <!-- root node --> <feature> <rects> <_> 21 0 3 8 -1.</_> <_> 19 2 3 4 2.</_></rects> <tilted>1</tilted></feature> <threshold>-7.0680370554327965e-003</threshold> <left_val>0.4315592050552368</left_val> <right_val>-0.5228719115257263</right_val></_></_> <_> <!-- tree 9 --> <_> <!-- root node --> <feature> <rects> <_> 35 3 2 8 -1.</_> <_> 35 7 2 4 2.</_></rects> <tilted>0</tilted></feature> <threshold>0.0104867396876216</threshold> <left_val>-0.6200038194656372</left_val> <right_val>0.4006851017475128</right_val></_></_> <_> <!-- tree 10 --> <_> <!-- root node --> <feature> <rects> <_> 2 4 36 5 -1.</_> <_> 11 4 18 5 2.</_></rects> <tilted>0</tilted></feature> <threshold>0.0301965996623039</threshold> <left_val>-0.7257996201515198</left_val> <right_val>0.1910271048545837</right_val></_></_> <_> <!-- tree 11 --> <_> <!-- root node --> <feature> <rects> <_> 12 0 21 1 -1.</_> <_> 19 0 7 1 3.</_></rects> <tilted>0</tilted></feature> <threshold>2.2740899585187435e-003</threshold> <left_val>-0.7437924742698669</left_val> <right_val>0.1435914039611816</right_val></_></_> <_> <!-- tree 12 --> <_> <!-- root node --> <feature> <rects> <_> 8 5 2 6 -1.</_> <_> 8 8 2 3 2.</_></rects> <tilted>0</tilted></feature> <threshold>2.8281889390200377e-003</threshold> <left_val>-0.7035927176475525</left_val> <right_val>0.2077458947896957</right_val></_></_> <_> <!-- tree 13 --> <_> <!-- root node --> <feature> <rects> <_> 24 9 11 2 -1.</_> <_> 24 10 11 1 2.</_></rects> <tilted>0</tilted></feature> <threshold>9.4722010544501245e-005</threshold> <left_val>-0.6866136193275452</left_val> <right_val>0.2300024032592773</right_val></_></_> <_> <!-- tree 14 --> <_> <!-- root node --> <feature> <rects> <_> 2 7 2 4 -1.</_> <_> 2 9 2 2 2.</_></rects> <tilted>0</tilted></feature> <threshold>5.8486708439886570e-005</threshold> <left_val>-0.7492769956588745</left_val> <right_val>0.1742060035467148</right_val></_></_> <_> <!-- tree 15 --> <_> <!-- root node --> <feature> <rects> <_> 42 4 2 2 -1.</_> <_> 42 4 1 2 2.</_></rects> <tilted>1</tilted></feature> <threshold>-5.3329051297623664e-005</threshold> <left_val>0.1954517960548401</left_val> <right_val>-0.6460217237472534</right_val></_></_> <_> <!-- tree 16 --> <_> <!-- root node --> <feature> <rects> <_> 3 4 2 2 -1.</_> <_> 3 4 2 1 2.</_></rects> <tilted>1</tilted></feature> <threshold>-1.9914070435333997e-005</threshold> <left_val>0.3191055059432983</left_val> <right_val>-0.5000588893890381</right_val></_></_> <_> <!-- tree 17 --> <_> <!-- root node --> <feature> <rects> <_> 23 6 16 5 -1.</_> <_> 27 6 8 5 2.</_></rects> <tilted>0</tilted></feature> <threshold>-0.0284833405166864</threshold> <left_val>0.2720688879489899</left_val> <right_val>-0.1728384047746658</right_val></_></_> <_> <!-- tree 18 --> <_> <!-- root node --> <feature> <rects> <_> 10 2 2 4 -1.</_> <_> 9 3 2 2 2.</_></rects> <tilted>1</tilted></feature> <threshold>-7.0301168598234653e-003</threshold> <left_val>0.4906997084617615</left_val> <right_val>-0.2584682106971741</right_val></_></_></trees> <stage_threshold>-2.4261860847473145</stage_threshold> <parent>2</parent> <next>-1</next></_> <_> <!-- stage 4 --> <trees> <_> <!-- tree 0 --> <_> <!-- root node --> <feature> <rects> <_> 6 3 33 3 -1.</_> <_> 17 3 11 3 3.</_></rects> <tilted>0</tilted></feature> <threshold>0.1710568964481354</threshold> <left_val>-0.5641617774963379</left_val> <right_val>0.5475422739982605</right_val></_></_> <_> <!-- tree 1 --> <_> <!-- root node --> <feature> <rects> <_> 31 1 9 9 -1.</_> <_> 34 4 3 3 9.</_></rects> <tilted>0</tilted></feature> <threshold>-0.1049742996692658</threshold> <left_val>0.4727413058280945</left_val> <right_val>-0.4532259106636047</right_val></_></_> <_> <!-- tree 2 --> <_> <!-- root node --> <feature> <rects> <_> 9 0 6 3 -1.</_> <_> 11 2 2 3 3.</_></rects> <tilted>1</tilted></feature> <threshold>-0.0313814692199230</threshold> <left_val>0.4900924861431122</left_val> <right_val>-0.3593046963214874</right_val></_></_> <_> <!-- tree 3 --> <_> <!-- root node --> <feature> <rects> <_> 21 1 8 10 -1.</_> <_> 21 1 4 10 2.</_></rects> <tilted>0</tilted></feature> <threshold>0.0624266900122166</threshold> <left_val>-0.3127166032791138</left_val> <right_val>0.3738982081413269</right_val></_></_> <_> <!-- tree 4 --> <_> <!-- root node --> <feature> <rects> <_> 7 3 26 5 -1.</_> <_> 20 3 13 5 2.</_></rects> <tilted>0</tilted></feature> <threshold>0.0547255501151085</threshold> <left_val>-0.4385116994380951</left_val> <right_val>0.3331047892570496</right_val></_></_> <_> <!-- tree 5 --> <_> <!-- root node --> <feature> <rects> <_> 40 5 3 6 -1.</_> <_> 40 8 3 3 2.</_></rects> <tilted>0</tilted></feature> <threshold>4.7346241772174835e-003</threshold> <left_val>-0.6414120793342590</left_val> <right_val>0.2531161010265350</right_val></_></_> <_> <!-- tree 6 --> <_> <!-- root node --> <feature> <rects> <_> 2 5 3 6 -1.</_> <_> 2 8 3 3 2.</_></rects> <tilted>0</tilted></feature> <threshold>7.9919751733541489e-003</threshold> <left_val>-0.4680531024932861</left_val> <right_val>0.2431025952100754</right_val></_></_> <_> <!-- tree 7 --> <_> <!-- root node --> <feature> <rects> <_> 13 0 21 1 -1.</_> <_> 20 0 7 1 3.</_></rects> <tilted>0</tilted></feature> <threshold>0.0162186194211245</threshold> <left_val>-0.3655829131603241</left_val> <right_val>0.1935510039329529</right_val></_></_> <_> <!-- tree 8 --> <_> <!-- root node --> <feature> <rects> <_> 10 9 11 2 -1.</_> <_> 10 10 11 1 2.</_></rects> <tilted>0</tilted></feature> <threshold>-2.7070839423686266e-003</threshold> <left_val>-0.6236888766288757</left_val> <right_val>0.1524621993303299</right_val></_></_> <_> <!-- tree 9 --> <_> <!-- root node --> <feature> <rects> <_> 35 2 4 3 -1.</_> <_> 36 3 2 3 2.</_></rects> <tilted>1</tilted></feature> <threshold>-0.0145703395828605</threshold> <left_val>0.2548831999301910</left_val> <right_val>-0.1017727032303810</right_val></_></_> <_> <!-- tree 10 --> <_> <!-- root node --> <feature> <rects> <_> 9 0 26 10 -1.</_> <_> 9 0 13 5 2.</_> <_> 22 5 13 5 2.</_></rects> <tilted>0</tilted></feature> <threshold>-0.0742893293499947</threshold> <left_val>-0.5963190197944641</left_val> <right_val>0.1414172053337097</right_val></_></_> <_> <!-- tree 11 --> <_> <!-- root node --> <feature> <rects> <_> 1 9 44 2 -1.</_> <_> 23 9 22 1 2.</_> <_> 1 10 22 1 2.</_></rects> <tilted>0</tilted></feature> <threshold>0.0174824707210064</threshold> <left_val>0.0689812228083611</left_val> <right_val>-0.8075261712074280</right_val></_></_> <_> <!-- tree 12 --> <_> <!-- root node --> <feature> <rects> <_> 21 9 2 2 -1.</_> <_> 21 9 1 1 2.</_> <_> 22 10 1 1 2.</_></rects> <tilted>0</tilted></feature> <threshold>7.4595998739823699e-004</threshold> <left_val>0.0899708569049835</left_val> <right_val>-0.7547813057899475</right_val></_></_> <_> <!-- tree 13 --> <_> <!-- root node --> <feature> <rects> <_> 0 0 45 9 -1.</_> <_> 15 3 15 3 9.</_></rects> <tilted>0</tilted></feature> <threshold>0.6811965703964233</threshold> <left_val>0.1251329034566879</left_val> <right_val>-0.5950785279273987</right_val></_></_> <_> <!-- tree 14 --> <_> <!-- root node --> <feature> <rects> <_> 21 9 2 2 -1.</_> <_> 21 9 1 1 2.</_> <_> 22 10 1 1 2.</_></rects> <tilted>0</tilted></feature> <threshold>-3.2223601010628045e-004</threshold> <left_val>-0.5476635098457336</left_val> <right_val>0.1417046040296555</right_val></_></_> <_> <!-- tree 15 --> <_> <!-- root node --> <feature> <rects> <_> 39 9 5 2 -1.</_> <_> 39 10 5 1 2.</_></rects> <tilted>0</tilted></feature> <threshold>-1.3318139826878905e-003</threshold> <left_val>-0.4610851109027863</left_val> <right_val>0.0877417027950287</right_val></_></_></trees> <stage_threshold>-1.6515820026397705</stage_threshold> <parent>3</parent> <next>-1</next></_> <_> <!-- stage 5 --> <trees> <_> <!-- tree 0 --> <_> <!-- root node --> <feature> <rects> <_> 4 3 32 3 -1.</_> <_> 12 3 16 3 2.</_></rects> <tilted>0</tilted></feature> <threshold>0.0799669772386551</threshold> <left_val>-0.6659880876541138</left_val> <right_val>0.4235262870788574</right_val></_></_> <_> <!-- tree 1 --> <_> <!-- root node --> <feature> <rects> <_> 26 1 11 8 -1.</_> <_> 26 3 11 4 2.</_></rects> <tilted>0</tilted></feature> <threshold>-0.0272646602243185</threshold> <left_val>0.3397392928600311</left_val> <right_val>-0.5063499212265015</right_val></_></_> <_> <!-- tree 2 --> <_> <!-- root node --> <feature> <rects> <_> 17 1 6 9 -1.</_> <_> 20 1 3 9 2.</_></rects> <tilted>0</tilted></feature> <threshold>0.0288831908255816</threshold> <left_val>-0.4901154041290283</left_val> <right_val>0.4012367129325867</right_val></_></_> <_> <!-- tree 3 --> <_> <!-- root node --> <feature> <rects> <_> 27 3 11 8 -1.</_> <_> 27 7 11 4 2.</_></rects> <tilted>0</tilted></feature> <threshold>0.0397321991622448</threshold> <left_val>-0.4774664044380188</left_val> <right_val>0.2059060037136078</right_val></_></_> <_> <!-- tree 4 --> <_> <!-- root node --> <feature> <rects> <_> 5 1 9 9 -1.</_> <_> 8 4 3 3 9.</_></rects> <tilted>0</tilted></feature> <threshold>-0.0972145274281502</threshold> <left_val>0.4514232873916626</left_val> <right_val>-0.4699657857418060</right_val></_></_> <_> <!-- tree 5 --> <_> <!-- root node --> <feature> <rects> <_> 13 0 21 1 -1.</_> <_> 20 0 7 1 3.</_></rects> <tilted>0</tilted></feature> <threshold>7.0403199642896652e-003</threshold> <left_val>-0.5051323175430298</left_val> <right_val>0.1872223019599915</right_val></_></_> <_> <!-- tree 6 --> <_> <!-- root node --> <feature> <rects> <_> 9 3 11 8 -1.</_> <_> 9 7 11 4 2.</_></rects> <tilted>0</tilted></feature> <threshold>0.0100332498550415</threshold> <left_val>-0.6071605086326599</left_val> <right_val>0.2049857974052429</right_val></_></_> <_> <!-- tree 7 --> <_> <!-- root node --> <feature> <rects> <_> 38 5 6 2 -1.</_> <_> 40 5 2 2 3.</_></rects> <tilted>0</tilted></feature> <threshold>-2.2186320275068283e-003</threshold> <left_val>0.2791998982429504</left_val> <right_val>-0.3909184932708740</right_val></_></_> <_> <!-- tree 8 --> <_> <!-- root node --> <feature> <rects> <_> 8 9 16 1 -1.</_> <_> 16 9 8 1 2.</_></rects> <tilted>0</tilted></feature> <threshold>0.0728399306535721</threshold> <left_val>-8.7004872038960457e-003</left_val> <right_val>-4.3667841796875000e+003</right_val></_></_> <_> <!-- tree 9 --> <_> <!-- root node --> <feature> <rects> <_> 18 0 15 10 -1.</_> <_> 23 0 5 10 3.</_></rects> <tilted>0</tilted></feature> <threshold>-0.0686440467834473</threshold> <left_val>0.5467174053192139</left_val> <right_val>-0.0971203967928886</right_val></_></_> <_> <!-- tree 10 --> <_> <!-- root node --> <feature> <rects> <_> 3 9 4 2 -1.</_> <_> 3 10 4 1 2.</_></rects> <tilted>0</tilted></feature> <threshold>8.3757557149510831e-005</threshold> <left_val>-0.4377388954162598</left_val> <right_val>0.2073774039745331</right_val></_></_> <_> <!-- tree 11 --> <_> <!-- root node --> <feature> <rects> <_> 31 5 2 2 -1.</_> <_> 31 5 1 2 2.</_></rects> <tilted>0</tilted></feature> <threshold>-1.8882959848269820e-003</threshold> <left_val>0.2805308103561401</left_val> <right_val>-0.1123835965991020</right_val></_></_> <_> <!-- tree 12 --> <_> <!-- root node --> <feature> <rects> <_> 12 0 20 6 -1.</_> <_> 12 0 10 3 2.</_> <_> 22 3 10 3 2.</_></rects> <tilted>0</tilted></feature> <threshold>-0.0362426303327084</threshold> <left_val>-0.6370964050292969</left_val> <right_val>0.1478706002235413</right_val></_></_> <_> <!-- tree 13 --> <_> <!-- root node --> <feature> <rects> <_> 31 0 10 6 -1.</_> <_> 31 2 10 2 3.</_></rects> <tilted>0</tilted></feature> <threshold>-0.0333381183445454</threshold> <left_val>0.4726848006248474</left_val> <right_val>-0.2124014943838120</right_val></_></_> <_> <!-- tree 14 --> <_> <!-- root node --> <feature> <rects> <_> 7 10 4 1 -1.</_> <_> 9 10 2 1 2.</_></rects> <tilted>0</tilted></feature> <threshold>2.5847079232335091e-003</threshold> <left_val>0.1234423965215683</left_val> <right_val>-0.7409923076629639</right_val></_></_> <_> <!-- tree 15 --> <_> <!-- root node --> <feature> <rects> <_> 25 0 15 4 -1.</_> <_> 30 0 5 4 3.</_></rects> <tilted>0</tilted></feature> <threshold>-0.0203724894672632</threshold> <left_val>0.1377898007631302</left_val> <right_val>-0.1994089931249619</right_val></_></_> <_> <!-- tree 16 --> <_> <!-- root node --> <feature> <rects> <_> 5 10 6 1 -1.</_> <_> 7 10 2 1 3.</_></rects> <tilted>0</tilted></feature> <threshold>3.6333200987428427e-003</threshold> <left_val>0.0793613791465759</left_val> <right_val>-0.7600020766258240</right_val></_></_> <_> <!-- tree 17 --> <_> <!-- root node --> <feature> <rects> <_> 38 5 4 4 -1.</_> <_> 40 5 2 2 2.</_> <_> 38 7 2 2 2.</_></rects> <tilted>0</tilted></feature> <threshold>4.6827611513435841e-003</threshold> <left_val>-0.0661458671092987</left_val> <right_val>0.1733255982398987</right_val></_></_> <_> <!-- tree 18 --> <_> <!-- root node --> <feature> <rects> <_> 3 5 4 4 -1.</_> <_> 3 5 2 2 2.</_> <_> 5 7 2 2 2.</_></rects> <tilted>0</tilted></feature> <threshold>-4.8445351421833038e-003</threshold> <left_val>0.4480114877223969</left_val> <right_val>-0.1564396023750305</right_val></_></_> <_> <!-- tree 19 --> <_> <!-- root node --> <feature> <rects> <_> 15 2 18 9 -1.</_> <_> 21 2 6 9 3.</_></rects> <tilted>0</tilted></feature> <threshold>0.2481960952281952</threshold> <left_val>-0.0861529707908630</left_val> <right_val>0.3375715017318726</right_val></_></_> <_> <!-- tree 20 --> <_> <!-- root node --> <feature> <rects> <_> 12 0 15 11 -1.</_> <_> 17 0 5 11 3.</_></rects> <tilted>0</tilted></feature> <threshold>0.1942128986120224</threshold> <left_val>-0.1405933052301407</left_val> <right_val>0.5112164020538330</right_val></_></_></trees> <stage_threshold>-1.8342440128326416</stage_threshold> <parent>4</parent> <next>-1</next></_> <_> <!-- stage 6 --> <trees> <_> <!-- tree 0 --> <_> <!-- root node --> <feature> <rects> <_> 8 1 6 1 -1.</_> <_> 10 3 2 1 3.</_></rects> <tilted>1</tilted></feature> <threshold>-9.6888672560453415e-003</threshold> <left_val>0.3895721137523651</left_val> <right_val>-0.4811824858188629</right_val></_></_> <_> <!-- tree 1 --> <_> <!-- root node --> <feature> <rects> <_> 9 0 27 7 -1.</_> <_> 18 0 9 7 3.</_></rects> <tilted>0</tilted></feature> <threshold>0.2981027960777283</threshold> <left_val>-0.4800634086132050</left_val> <right_val>0.3955416977405548</right_val></_></_> <_> <!-- tree 2 --> <_> <!-- root node --> <feature> <rects> <_> 10 2 3 4 -1.</_> <_> 9 3 3 2 2.</_></rects> <tilted>1</tilted></feature> <threshold>-9.8945433273911476e-003</threshold> <left_val>0.4206601083278656</left_val> <right_val>-0.3444811105728149</right_val></_></_> <_> <!-- tree 3 --> <_> <!-- root node --> <feature> <rects> <_> 18 3 9 8 -1.</_> <_> 21 3 3 8 3.</_></rects> <tilted>0</tilted></feature> <threshold>0.0562895499169827</threshold> <left_val>-0.2323781996965408</left_val> <right_val>0.4200125038623810</right_val></_></_> <_> <!-- tree 4 --> <_> <!-- root node --> <feature> <rects> <_> 0 5 11 6 -1.</_> <_> 0 8 11 3 2.</_></rects> <tilted>0</tilted></feature> <threshold>0.0281865298748016</threshold> <left_val>-0.5498821139335632</left_val> <right_val>0.1948453038930893</right_val></_></_> <_> <!-- tree 5 --> <_> <!-- root node --> <feature> <rects> <_> 1 3 44 8 -1.</_> <_> 23 3 22 4 2.</_> <_> 1 7 22 4 2.</_></rects> <tilted>0</tilted></feature> <threshold>0.0471157617866993</threshold> <left_val>0.1684277057647705</left_val> <right_val>-0.5307763814926148</right_val></_></_> <_> <!-- tree 6 --> <_> <!-- root node --> <feature> <rects> <_> 0 4 4 4 -1.</_> <_> 2 4 2 4 2.</_></rects> <tilted>0</tilted></feature> <threshold>-3.1187951099127531e-003</threshold> <left_val>0.1967993974685669</left_val> <right_val>-0.3741619884967804</right_val></_></_> <_> <!-- tree 7 --> <_> <!-- root node --> <feature> <rects> <_> 24 3 11 8 -1.</_> <_> 24 7 11 4 2.</_></rects> <tilted>0</tilted></feature> <threshold>0.0194239094853401</threshold> <left_val>-0.4466922879219055</left_val> <right_val>0.1685253977775574</right_val></_></_> <_> <!-- tree 8 --> <_> <!-- root node --> <feature> <rects> <_> 3 1 39 9 -1.</_> <_> 16 4 13 3 9.</_></rects> <tilted>0</tilted></feature> <threshold>-0.2618069946765900</threshold> <left_val>-0.8378089070320129</left_val> <right_val>0.0617749504745007</right_val></_></_> <_> <!-- tree 9 --> <_> <!-- root node --> <feature> <rects> <_> 24 7 11 4 -1.</_> <_> 24 9 11 2 2.</_></rects> <tilted>0</tilted></feature> <threshold>-4.8632198013365269e-003</threshold> <left_val>-0.4800944924354553</left_val> <right_val>0.0667717605829239</right_val></_></_> <_> <!-- tree 10 --> <_> <!-- root node --> <feature> <rects> <_> 11 4 22 6 -1.</_> <_> 11 4 11 3 2.</_> <_> 22 7 11 3 2.</_></rects> <tilted>0</tilted></feature> <threshold>0.0384115986526012</threshold> <left_val>0.1338039934635162</left_val> <right_val>-0.5834993124008179</right_val></_></_> <_> <!-- tree 11 --> <_> <!-- root node --> <feature> <rects> <_> 33 9 6 2 -1.</_> <_> 35 9 2 2 3.</_></rects> <tilted>0</tilted></feature> <threshold>5.7644587941467762e-003</threshold> <left_val>0.0822187215089798</left_val> <right_val>-0.8142058849334717</right_val></_></_> <_> <!-- tree 12 --> <_> <!-- root node --> <feature> <rects> <_> 6 0 7 6 -1.</_> <_> 6 2 7 2 3.</_></rects> <tilted>0</tilted></feature> <threshold>-0.0277032200247049</threshold> <left_val>0.4725336134433746</left_val> <right_val>-0.1494240015745163</right_val></_></_> <_> <!-- tree 13 --> <_> <!-- root node --> <feature> <rects> <_> 24 0 6 1 -1.</_> <_> 24 0 3 1 2.</_></rects> <tilted>0</tilted></feature> <threshold>2.9970629839226604e-004</threshold> <left_val>-0.3508217036724091</left_val> <right_val>0.1178899034857750</right_val></_></_> <_> <!-- tree 14 --> <_> <!-- root node --> <feature> <rects> <_> 4 1 10 3 -1.</_> <_> 4 2 10 1 3.</_></rects> <tilted>0</tilted></feature> <threshold>6.6997818648815155e-003</threshold> <left_val>-0.1563594043254852</left_val> <right_val>0.3656086921691895</right_val></_></_> <_> <!-- tree 15 --> <_> <!-- root node --> <feature> <rects> <_> 36 9 9 2 -1.</_> <_> 36 10 9 1 2.</_></rects> <tilted>0</tilted></feature> <threshold>1.8159940736950375e-005</threshold> <left_val>-0.3140079081058502</left_val> <right_val>0.1277565956115723</right_val></_></_> <_> <!-- tree 16 --> <_> <!-- root node --> <feature> <rects> <_> 7 9 4 2 -1.</_> <_> 8 9 2 2 2.</_></rects> <tilted>0</tilted></feature> <threshold>-2.3775480221956968e-003</threshold> <left_val>-0.7156819105148315</left_val> <right_val>0.0758587494492531</right_val></_></_> <_> <!-- tree 17 --> <_> <!-- root node --> <feature> <rects> <_> 18 9 10 2 -1.</_> <_> 23 9 5 1 2.</_> <_> 18 10 5 1 2.</_></rects> <tilted>0</tilted></feature> <threshold>-4.4308858923614025e-003</threshold> <left_val>-0.5795493125915527</left_val> <right_val>0.0658802017569542</right_val></_></_> <_> <!-- tree 18 --> <_> <!-- root node --> <feature> <rects> <_> 7 0 30 6 -1.</_> <_> 7 0 15 3 2.</_> <_> 22 3 15 3 2.</_></rects> <tilted>0</tilted></feature> <threshold>0.0826033428311348</threshold> <left_val>0.0700204968452454</left_val> <right_val>-0.6617522239685059</right_val></_></_> <_> <!-- tree 19 --> <_> <!-- root node --> <feature> <rects> <_> 21 5 3 6 -1.</_> <_> 22 7 1 2 9.</_></rects> <tilted>0</til