UNPKG

opencv4nodejs

Version:

Asynchronous OpenCV 3.x nodejs bindings with JavaScript and TypeScript API.

42 lines (40 loc) 3.23 kB
import { Mat } from './Mat.d'; import { Size } from './Size.d'; import { Rect } from './Rect.d'; import { Point2 } from './Point2.d'; export class HOGDescriptor { readonly winSize: Size; readonly blockSize: Size; readonly blockStride: Size; readonly cellSize: Size; readonly nbins: number; readonly derivAperture: number; readonly histogramNormType: number; readonly nlevels: number; readonly winSigma: number; readonly L2HysThreshold: number; readonly gammaCorrection: boolean; readonly signedGradient: boolean; constructor(winSize?: Size, blockSize?: Size, blockStride?: Size, cellSize?: Size, nbins?: number, derivAperture?: number, winSigma?: number, histogramNormType?: number, L2HysThreshold?: number, gammaCorrection?: boolean, nlevels?: number, signedGradient?: boolean); constructor(params: { winSize?: Size, blockSize?: Size, blockStride?: Size, cellSize?: Size, nbins?: number, derivAperture?: number, winSigma?: number, histogramNormType?: number, L2HysThreshold?: number, gammaCorrection?: boolean, nlevels?: number, signedGradient?: boolean }); checkDetectorSize(): boolean; compute(img: Mat, winStride?: Size, padding?: Size, locations?: Point2[]): number[]; computeAsync(img: Mat, winStride?: Size, padding?: Size, locations?: Point2[]): Promise<number[]>; computeGradient(img: Mat, paddingTL?: Size, paddingBR?: Size): { grad: Mat, angleOfs: Mat }; computeGradientAsync(img: Mat, paddingTL?: Size, paddingBR?: Size): Promise<{ grad: Mat, angleOfs: Mat }>; detect(img: Mat, hitThreshold?: number, winStride?: Size, padding?: Size, searchLocations?: Point2[]): { foundLocations: Point2[], weights: number[] }; detectAsync(img: Mat, hitThreshold?: number, winStride?: Size, padding?: Size, searchLocations?: Point2[]): Promise<{ foundLocations: Point2[], weights: number[] }>; detectMultiScale(img: Mat, hitThreshold?: number, winStride?: Size, padding?: Size, scale?: number, finalThreshold?: number, useMeanshiftGrouping?: boolean): { foundLocations: Rect[], foundWeights: number[] }; detectMultiScaleAsync(img: Mat, hitThreshold?: number, winStride?: Size, padding?: Size, scale?: number, finalThreshold?: number, useMeanshiftGrouping?: boolean): Promise<{ foundLocations: Rect[], foundWeights: number[] }>; detectMultiScaleROI(img: Mat, hitThreshold?: number, groupThreshold?: number): Rect[]; detectMultiScaleROIAsync(img: Mat, hitThreshold?: number, groupThreshold?: number): Promise<Rect[]>; detectROI(img: Mat, locations: Point2[], hitThreshold?: number, winStride?: Size, padding?: Size): { foundLocations: Point2[], confidences: number[] }; detectROIAsync(img: Mat, locations: Point2[], hitThreshold?: number, winStride?: Size, padding?: Size): Promise<{ foundLocations: Point2[], confidences: number[] }>; getDaimlerPeopleDetector(): number[]; getDefaultPeopleDetector(): number[]; groupRectangles(rectList: Rect[], weights: number[], groupThreshold: number, eps: number): Rect[]; groupRectanglesAsync(rectList: Rect[], weights: number[], groupThreshold: number, eps: number): Promise<Rect[]>; load(path: string): void; save(path: string): void; setSVMDetector(detector: number[]): void; }