opencv4nodejs
Version:
Asynchronous OpenCV 3.x nodejs bindings with JavaScript and TypeScript API.
42 lines (40 loc) • 3.23 kB
TypeScript
import { Mat } from './Mat.d';
import { Size } from './Size.d';
import { Rect } from './Rect.d';
import { Point2 } from './Point2.d';
export class HOGDescriptor {
readonly winSize: Size;
readonly blockSize: Size;
readonly blockStride: Size;
readonly cellSize: Size;
readonly nbins: number;
readonly derivAperture: number;
readonly histogramNormType: number;
readonly nlevels: number;
readonly winSigma: number;
readonly L2HysThreshold: number;
readonly gammaCorrection: boolean;
readonly signedGradient: boolean;
constructor(winSize?: Size, blockSize?: Size, blockStride?: Size, cellSize?: Size, nbins?: number, derivAperture?: number, winSigma?: number, histogramNormType?: number, L2HysThreshold?: number, gammaCorrection?: boolean, nlevels?: number, signedGradient?: boolean);
constructor(params: { winSize?: Size, blockSize?: Size, blockStride?: Size, cellSize?: Size, nbins?: number, derivAperture?: number, winSigma?: number, histogramNormType?: number, L2HysThreshold?: number, gammaCorrection?: boolean, nlevels?: number, signedGradient?: boolean });
checkDetectorSize(): boolean;
compute(img: Mat, winStride?: Size, padding?: Size, locations?: Point2[]): number[];
computeAsync(img: Mat, winStride?: Size, padding?: Size, locations?: Point2[]): Promise<number[]>;
computeGradient(img: Mat, paddingTL?: Size, paddingBR?: Size): { grad: Mat, angleOfs: Mat };
computeGradientAsync(img: Mat, paddingTL?: Size, paddingBR?: Size): Promise<{ grad: Mat, angleOfs: Mat }>;
detect(img: Mat, hitThreshold?: number, winStride?: Size, padding?: Size, searchLocations?: Point2[]): { foundLocations: Point2[], weights: number[] };
detectAsync(img: Mat, hitThreshold?: number, winStride?: Size, padding?: Size, searchLocations?: Point2[]): Promise<{ foundLocations: Point2[], weights: number[] }>;
detectMultiScale(img: Mat, hitThreshold?: number, winStride?: Size, padding?: Size, scale?: number, finalThreshold?: number, useMeanshiftGrouping?: boolean): { foundLocations: Rect[], foundWeights: number[] };
detectMultiScaleAsync(img: Mat, hitThreshold?: number, winStride?: Size, padding?: Size, scale?: number, finalThreshold?: number, useMeanshiftGrouping?: boolean): Promise<{ foundLocations: Rect[], foundWeights: number[] }>;
detectMultiScaleROI(img: Mat, hitThreshold?: number, groupThreshold?: number): Rect[];
detectMultiScaleROIAsync(img: Mat, hitThreshold?: number, groupThreshold?: number): Promise<Rect[]>;
detectROI(img: Mat, locations: Point2[], hitThreshold?: number, winStride?: Size, padding?: Size): { foundLocations: Point2[], confidences: number[] };
detectROIAsync(img: Mat, locations: Point2[], hitThreshold?: number, winStride?: Size, padding?: Size): Promise<{ foundLocations: Point2[], confidences: number[] }>;
getDaimlerPeopleDetector(): number[];
getDefaultPeopleDetector(): number[];
groupRectangles(rectList: Rect[], weights: number[], groupThreshold: number, eps: number): Rect[];
groupRectanglesAsync(rectList: Rect[], weights: number[], groupThreshold: number, eps: number): Promise<Rect[]>;
load(path: string): void;
save(path: string): void;
setSVMDetector(detector: number[]): void;
}