UNPKG

opencv.js

Version:
133 lines (107 loc) 4.62 kB
/*M/////////////////////////////////////////////////////////////////////////////////////// // Author: Sajjad Taheri, University of California, Irvine. sajjadt[at]uci[dot]edu // // LICENSE AGREEMENT // Copyright (c) 2015 The Regents of the University of California (Regents) // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are met: // 1. Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // 2. Redistributions in binary form must reproduce the above copyright // notice, this list of conditions and the following disclaimer in the // documentation and/or other materials provided with the distribution. // 3. Neither the name of the University nor the // names of its contributors may be used to endorse or promote products // derived from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ''AS IS'' AND ANY // EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED // WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE // DISCLAIMED. IN NO EVENT SHALL CONTRIBUTORS BE LIABLE FOR ANY // DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES // (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; // LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND // ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. //M*/ if (typeof module !== 'undefined' && module.exports) { // The envrionment is Node.js var cv = require('../opencv.js'); cv.FS_createLazyFile('/', 'haarcascade_frontalface_default.xml', 'haarcascade_frontalface_default.xml', true, false); } QUnit.module ("Object Detection", {}); QUnit.test("Cascade classification", function(assert) { // Group rectangle // CV_EXPORTS_W void groupRectangles(CV_IN_OUT std::vector<Rect>& rectList, CV_OUT std::vector<int>& weights, // int groupThreshold, double eps = 0.2); { let rectList = new cv.RectVector(), weights = new cv.IntVector(), groupThreshold = 1, eps = 0.2; let rect1 = new cv.Rect(1, 2, 3, 4), rect2 = new cv.Rect(1, 4, 2, 3); rectList.push_back(rect1); rectList.push_back(rect2); cv.groupRectangles(rectList, weights, groupThreshold, eps); rectList.delete(); weights.delete(); } // CascadeClassifier { let classifier = new cv.CascadeClassifier(), modelPath = '/haarcascade_frontalface_default.xml'; assert.equal(classifier.empty(), true); classifier.load(modelPath); assert.equal(classifier.empty(), false); // cv.HAAR = 0 //assert.equal(classifier.getFeatureType(), 0); let image = cv.Mat.eye({height: 10, width: 10}, cv.CV_8UC3), objects = new cv.RectVector(), numDetections = new cv.IntVector(), scaleFactor = 1.1, minNeighbors = 3, flags = 0, minSize = {height: 0, width: 0}, maxSize = {height: 10, width: 10}; classifier.detectMultiScale2(image, objects, numDetections, scaleFactor, minNeighbors, flags, minSize, maxSize); // test default parameters classifier.detectMultiScale2(image, objects, numDetections, scaleFactor, minNeighbors, flags, minSize); classifier.detectMultiScale2(image, objects, numDetections, scaleFactor, minNeighbors, flags); classifier.detectMultiScale2(image, objects, numDetections, scaleFactor, minNeighbors); classifier.detectMultiScale2(image, objects, numDetections, scaleFactor); classifier.delete(); objects.delete(); numDetections.delete(); } // HOGDescriptor { let hog = new cv.HOGDescriptor(), mat = new cv.Mat({height: 10, width: 10}, cv.CV_8UC1), descriptors = new cv.FloatVector(), locations = new cv.PointVector(); assert.equal(hog.winSize.height, 128); assert.equal(hog.winSize.width, 64); assert.equal(hog.nbins, 9); assert.equal(hog.derivAperture, 1); assert.equal(hog.winSigma, -1); assert.equal(hog.histogramNormType, 0); assert.equal(hog.nlevels, 64); hog.nlevels = 32; assert.equal(hog.nlevels, 32); //assert.equal(hog.empty(), false); //hog.compute(mat, descriptors, [4, 4], [4, 4], locations); // hog.detectMultiScale(); // hog.computeGradient(); hog.delete(); mat.delete(); descriptors.delete(); locations.delete(); } });