UNPKG

openai

Version:

The official TypeScript library for the OpenAI API

169 lines (144 loc) 5.32 kB
// File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. import { APIResource } from '../resource'; import * as Core from '../core'; export class Embeddings extends APIResource { /** * Creates an embedding vector representing the input text. */ create( body: EmbeddingCreateParams, options?: Core.RequestOptions<EmbeddingCreateParams>, ): Core.APIPromise<CreateEmbeddingResponse> { const hasUserProvidedEncodingFormat = !!body.encoding_format; // No encoding_format specified, defaulting to base64 for performance reasons // See https://github.com/openai/openai-node/pull/1312 let encoding_format: EmbeddingCreateParams['encoding_format'] = hasUserProvidedEncodingFormat ? body.encoding_format : 'base64'; if (hasUserProvidedEncodingFormat) { Core.debug('Request', 'User defined encoding_format:', body.encoding_format); } const response: Core.APIPromise<CreateEmbeddingResponse> = this._client.post('/embeddings', { body: { ...body, encoding_format: encoding_format as EmbeddingCreateParams['encoding_format'], }, ...options, }); // if the user specified an encoding_format, return the response as-is if (hasUserProvidedEncodingFormat) { return response; } // in this stage, we are sure the user did not specify an encoding_format // and we defaulted to base64 for performance reasons // we are sure then that the response is base64 encoded, let's decode it // the returned result will be a float32 array since this is OpenAI API's default encoding Core.debug('response', 'Decoding base64 embeddings to float32 array'); return (response as Core.APIPromise<CreateEmbeddingResponse>)._thenUnwrap((response) => { if (response && response.data) { response.data.forEach((embeddingBase64Obj) => { const embeddingBase64Str = embeddingBase64Obj.embedding as unknown as string; embeddingBase64Obj.embedding = Core.toFloat32Array(embeddingBase64Str); }); } return response; }); } } export interface CreateEmbeddingResponse { /** * The list of embeddings generated by the model. */ data: Array<Embedding>; /** * The name of the model used to generate the embedding. */ model: string; /** * The object type, which is always "list". */ object: 'list'; /** * The usage information for the request. */ usage: CreateEmbeddingResponse.Usage; } export namespace CreateEmbeddingResponse { /** * The usage information for the request. */ export interface Usage { /** * The number of tokens used by the prompt. */ prompt_tokens: number; /** * The total number of tokens used by the request. */ total_tokens: number; } } /** * Represents an embedding vector returned by embedding endpoint. */ export interface Embedding { /** * The embedding vector, which is a list of floats. The length of vector depends on * the model as listed in the * [embedding guide](https://platform.openai.com/docs/guides/embeddings). */ embedding: Array<number>; /** * The index of the embedding in the list of embeddings. */ index: number; /** * The object type, which is always "embedding". */ object: 'embedding'; } export type EmbeddingModel = 'text-embedding-ada-002' | 'text-embedding-3-small' | 'text-embedding-3-large'; export interface EmbeddingCreateParams { /** * Input text to embed, encoded as a string or array of tokens. To embed multiple * inputs in a single request, pass an array of strings or array of token arrays. * The input must not exceed the max input tokens for the model (8192 tokens for * `text-embedding-ada-002`), cannot be an empty string, and any array must be 2048 * dimensions or less. * [Example Python code](https://cookbook.openai.com/examples/how_to_count_tokens_with_tiktoken) * for counting tokens. Some models may also impose a limit on total number of * tokens summed across inputs. */ input: string | Array<string> | Array<number> | Array<Array<number>>; /** * ID of the model to use. You can use the * [List models](https://platform.openai.com/docs/api-reference/models/list) API to * see all of your available models, or see our * [Model overview](https://platform.openai.com/docs/models) for descriptions of * them. */ model: (string & {}) | EmbeddingModel; /** * The number of dimensions the resulting output embeddings should have. Only * supported in `text-embedding-3` and later models. */ dimensions?: number; /** * The format to return the embeddings in. Can be either `float` or * [`base64`](https://pypi.org/project/pybase64/). */ encoding_format?: 'float' | 'base64'; /** * A unique identifier representing your end-user, which can help OpenAI to monitor * and detect abuse. * [Learn more](https://platform.openai.com/docs/guides/safety-best-practices#end-user-ids). */ user?: string; } export declare namespace Embeddings { export { type CreateEmbeddingResponse as CreateEmbeddingResponse, type Embedding as Embedding, type EmbeddingModel as EmbeddingModel, type EmbeddingCreateParams as EmbeddingCreateParams, }; }