openai
Version:
The official TypeScript library for the OpenAI API
169 lines (144 loc) • 5.32 kB
text/typescript
// File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details.
import { APIResource } from '../resource';
import * as Core from '../core';
export class Embeddings extends APIResource {
/**
* Creates an embedding vector representing the input text.
*/
create(
body: EmbeddingCreateParams,
options?: Core.RequestOptions<EmbeddingCreateParams>,
): Core.APIPromise<CreateEmbeddingResponse> {
const hasUserProvidedEncodingFormat = !!body.encoding_format;
// No encoding_format specified, defaulting to base64 for performance reasons
// See https://github.com/openai/openai-node/pull/1312
let encoding_format: EmbeddingCreateParams['encoding_format'] =
hasUserProvidedEncodingFormat ? body.encoding_format : 'base64';
if (hasUserProvidedEncodingFormat) {
Core.debug('Request', 'User defined encoding_format:', body.encoding_format);
}
const response: Core.APIPromise<CreateEmbeddingResponse> = this._client.post('/embeddings', {
body: {
...body,
encoding_format: encoding_format as EmbeddingCreateParams['encoding_format'],
},
...options,
});
// if the user specified an encoding_format, return the response as-is
if (hasUserProvidedEncodingFormat) {
return response;
}
// in this stage, we are sure the user did not specify an encoding_format
// and we defaulted to base64 for performance reasons
// we are sure then that the response is base64 encoded, let's decode it
// the returned result will be a float32 array since this is OpenAI API's default encoding
Core.debug('response', 'Decoding base64 embeddings to float32 array');
return (response as Core.APIPromise<CreateEmbeddingResponse>)._thenUnwrap((response) => {
if (response && response.data) {
response.data.forEach((embeddingBase64Obj) => {
const embeddingBase64Str = embeddingBase64Obj.embedding as unknown as string;
embeddingBase64Obj.embedding = Core.toFloat32Array(embeddingBase64Str);
});
}
return response;
});
}
}
export interface CreateEmbeddingResponse {
/**
* The list of embeddings generated by the model.
*/
data: Array<Embedding>;
/**
* The name of the model used to generate the embedding.
*/
model: string;
/**
* The object type, which is always "list".
*/
object: 'list';
/**
* The usage information for the request.
*/
usage: CreateEmbeddingResponse.Usage;
}
export namespace CreateEmbeddingResponse {
/**
* The usage information for the request.
*/
export interface Usage {
/**
* The number of tokens used by the prompt.
*/
prompt_tokens: number;
/**
* The total number of tokens used by the request.
*/
total_tokens: number;
}
}
/**
* Represents an embedding vector returned by embedding endpoint.
*/
export interface Embedding {
/**
* The embedding vector, which is a list of floats. The length of vector depends on
* the model as listed in the
* [embedding guide](https://platform.openai.com/docs/guides/embeddings).
*/
embedding: Array<number>;
/**
* The index of the embedding in the list of embeddings.
*/
index: number;
/**
* The object type, which is always "embedding".
*/
object: 'embedding';
}
export type EmbeddingModel = 'text-embedding-ada-002' | 'text-embedding-3-small' | 'text-embedding-3-large';
export interface EmbeddingCreateParams {
/**
* Input text to embed, encoded as a string or array of tokens. To embed multiple
* inputs in a single request, pass an array of strings or array of token arrays.
* The input must not exceed the max input tokens for the model (8192 tokens for
* `text-embedding-ada-002`), cannot be an empty string, and any array must be 2048
* dimensions or less.
* [Example Python code](https://cookbook.openai.com/examples/how_to_count_tokens_with_tiktoken)
* for counting tokens. Some models may also impose a limit on total number of
* tokens summed across inputs.
*/
input: string | Array<string> | Array<number> | Array<Array<number>>;
/**
* ID of the model to use. You can use the
* [List models](https://platform.openai.com/docs/api-reference/models/list) API to
* see all of your available models, or see our
* [Model overview](https://platform.openai.com/docs/models) for descriptions of
* them.
*/
model: (string & {}) | EmbeddingModel;
/**
* The number of dimensions the resulting output embeddings should have. Only
* supported in `text-embedding-3` and later models.
*/
dimensions?: number;
/**
* The format to return the embeddings in. Can be either `float` or
* [`base64`](https://pypi.org/project/pybase64/).
*/
encoding_format?: 'float' | 'base64';
/**
* A unique identifier representing your end-user, which can help OpenAI to monitor
* and detect abuse.
* [Learn more](https://platform.openai.com/docs/guides/safety-best-practices#end-user-ids).
*/
user?: string;
}
export declare namespace Embeddings {
export {
type CreateEmbeddingResponse as CreateEmbeddingResponse,
type Embedding as Embedding,
type EmbeddingModel as EmbeddingModel,
type EmbeddingCreateParams as EmbeddingCreateParams,
};
}