onnxruntime-web
Version:
A Javascript library for running ONNX models on browsers
429 lines (417 loc) • 13.5 kB
TypeScript
// Copyright (c) Microsoft Corporation. All rights reserved.
// Licensed under the MIT License.
/* eslint-disable @typescript-eslint/naming-convention */
interface NavigatorML {
readonly ml: ML;
}
interface Navigator extends NavigatorML {}
interface WorkerNavigator extends NavigatorML {}
type MLDeviceType = 'cpu'|'gpu'|'npu';
type MLPowerPreference = 'default'|'high-performance'|'low-power';
interface MLContextOptions {
deviceType?: MLDeviceType;
powerPreference?: MLPowerPreference;
}
interface ML {
createContext(options?: MLContextOptions): Promise<MLContext>;
createContext(gpuDevice: GPUDevice): Promise<MLContext>;
}
type MLNamedArrayBufferViews = Record<string, ArrayBufferView>;
interface MLComputeResult {
inputs?: MLNamedArrayBufferViews;
outputs?: MLNamedArrayBufferViews;
}
interface MLContext {
compute(graph: MLGraph, inputs: MLNamedArrayBufferViews, outputs: MLNamedArrayBufferViews): Promise<MLComputeResult>;
}
interface MLGraph {}
type MLInputOperandLayout = 'nchw'|'nhwc';
type MLOperandDataType = 'float32'|'float16'|'int32'|'uint32'|'int64'|'uint64'|'int8'|'uint8'|'int4'|'uint4';
interface MLOperandDescriptor {
dataType: MLOperandDataType;
shape?: readonly number[];
/** @deprecated Use shape instead of dimensions */
dimensions?: readonly number[];
}
interface MLOperand {
dataType: MLOperandDataType;
shape: readonly number[];
}
interface MLActivation {}
type MLNamedOperands = Record<string, MLOperand>;
interface MLGraphBuilder {
// eslint-disable-next-line @typescript-eslint/no-misused-new
new(context: MLContext): MLGraphBuilder;
input(name: string, descriptor: MLOperandDescriptor): MLOperand;
constant(descriptor: MLOperandDescriptor, bufferView: ArrayBufferView): MLOperand;
constant(type: MLOperandDataType, value: number): MLOperand;
build(outputs: MLNamedOperands): Promise<MLGraph>;
}
interface MLArgMinMaxOptions {
axes?: number[];
keepDimensions?: boolean;
selectLastIndex?: boolean;
}
interface MLGraphBuilder {
argMin(input: MLOperand, options?: MLArgMinMaxOptions): MLOperand;
argMax(input: MLOperand, options?: MLArgMinMaxOptions): MLOperand;
}
interface MLBatchNormalizationOptions {
scale?: MLOperand;
bias?: MLOperand;
axis?: number;
epsilon?: number;
}
interface MLGraphBuilder {
batchNormalization(input: MLOperand, mean: MLOperand, variance: MLOperand, options?: MLBatchNormalizationOptions):
MLOperand;
}
interface MLGraphBuilder {
cast(input: MLOperand, type: MLOperandDataType): MLOperand;
}
interface MLClampOptions {
minValue?: number;
maxValue?: number;
}
interface MLGraphBuilder {
clamp(input: MLOperand, options?: MLClampOptions): MLOperand;
clamp(options?: MLClampOptions): MLActivation;
}
interface MLGraphBuilder {
concat(inputs: MLOperand[], axis: number): MLOperand;
}
type MLConv2dFilterOperandLayout = 'oihw'|'hwio'|'ohwi'|'ihwo';
interface MLConv2dOptions {
padding?: number[];
strides?: number[];
dilations?: number[];
groups?: number;
inputLayout?: MLInputOperandLayout;
filterLayout?: MLConv2dFilterOperandLayout;
bias?: MLOperand;
}
interface MLGraphBuilder {
conv2d(input: MLOperand, filter: MLOperand, options?: MLConv2dOptions): MLOperand;
}
type MLConvTranspose2dFilterOperandLayout = 'iohw'|'hwoi'|'ohwi';
interface MLConvTranspose2dOptions {
padding?: number[];
strides?: number[];
dilations?: number[];
outputPadding?: number[];
outputSizes?: number[];
groups?: number;
inputLayout?: MLInputOperandLayout;
filterLayout?: MLConvTranspose2dFilterOperandLayout;
bias?: MLOperand;
}
interface MLGraphBuilder {
convTranspose2d(input: MLOperand, filter: MLOperand, options?: MLConvTranspose2dOptions): MLOperand;
}
interface MLGraphBuilder {
add(a: MLOperand, b: MLOperand): MLOperand;
sub(a: MLOperand, b: MLOperand): MLOperand;
mul(a: MLOperand, b: MLOperand): MLOperand;
div(a: MLOperand, b: MLOperand): MLOperand;
max(a: MLOperand, b: MLOperand): MLOperand;
min(a: MLOperand, b: MLOperand): MLOperand;
pow(a: MLOperand, b: MLOperand): MLOperand;
}
interface MLGraphBuilder {
equal(a: MLOperand, b: MLOperand): MLOperand;
greater(a: MLOperand, b: MLOperand): MLOperand;
greaterOrEqual(a: MLOperand, b: MLOperand): MLOperand;
lesser(a: MLOperand, b: MLOperand): MLOperand;
lesserOrEqual(a: MLOperand, b: MLOperand): MLOperand;
logicalNot(a: MLOperand): MLOperand;
}
interface MLGraphBuilder {
abs(input: MLOperand): MLOperand;
ceil(input: MLOperand): MLOperand;
cos(input: MLOperand): MLOperand;
erf(input: MLOperand): MLOperand;
exp(input: MLOperand): MLOperand;
floor(input: MLOperand): MLOperand;
identity(input: MLOperand): MLOperand;
log(input: MLOperand): MLOperand;
neg(input: MLOperand): MLOperand;
reciprocal(input: MLOperand): MLOperand;
sin(input: MLOperand): MLOperand;
sqrt(input: MLOperand): MLOperand;
tan(input: MLOperand): MLOperand;
}
interface MLEluOptions {
alpha?: number;
}
interface MLGraphBuilder {
elu(input: MLOperand, options?: MLEluOptions): MLOperand;
elu(options?: MLEluOptions): MLActivation;
}
interface MLGraphBuilder {
expand(input: MLOperand, newShape: number[]): MLOperand;
}
interface MLGatherOptions {
axis?: number;
}
interface MLGraphBuilder {
gather(input: MLOperand, indices: MLOperand, options?: MLGatherOptions): MLOperand;
}
interface MLGraphBuilder {
gelu(input: MLOperand): MLOperand;
gelu(): MLActivation;
}
interface MLGemmOptions {
c?: MLOperand;
alpha?: number;
beta?: number;
aTranspose?: boolean;
bTranspose?: boolean;
}
interface MLGraphBuilder {
gemm(a: MLOperand, b: MLOperand, options?: MLGemmOptions): MLOperand;
}
type MLGruWeightLayout = 'zrn'|'rzn';
type MLRecurrentNetworkDirection = 'forward'|'backward'|'both';
interface MLGruOptions {
bias?: MLOperand;
recurrentBias?: MLOperand;
initialHiddenState?: MLOperand;
resetAfter?: boolean;
returnSequence?: boolean;
direction?: MLRecurrentNetworkDirection;
layout?: MLGruWeightLayout;
activations?: MLActivation[];
}
interface MLGraphBuilder {
gru(input: MLOperand, weight: MLOperand, recurrentWeight: MLOperand, steps: number, hiddenSize: number,
options?: MLGruOptions): MLOperand[];
}
interface MLGruCellOptions {
bias?: MLOperand;
recurrentBias?: MLOperand;
resetAfter?: boolean;
layout?: MLGruWeightLayout;
activations?: MLActivation[];
}
interface MLGraphBuilder {
gruCell(
input: MLOperand, weight: MLOperand, recurrentWeight: MLOperand, hiddenState: MLOperand, hiddenSize: number,
options?: MLGruCellOptions): MLOperand;
}
interface MLHardSigmoidOptions {
alpha?: number;
beta?: number;
}
interface MLGraphBuilder {
hardSigmoid(input: MLOperand, options?: MLHardSigmoidOptions): MLOperand;
hardSigmoid(options?: MLHardSigmoidOptions): MLActivation;
}
interface MLGraphBuilder {
hardSwish(input: MLOperand): MLOperand;
hardSwish(): MLActivation;
}
interface MLInstanceNormalizationOptions {
scale?: MLOperand;
bias?: MLOperand;
epsilon?: number;
layout?: MLInputOperandLayout;
}
interface MLGraphBuilder {
instanceNormalization(input: MLOperand, options?: MLInstanceNormalizationOptions): MLOperand;
}
interface MLLayerNormalizationOptions {
scale?: MLOperand;
bias?: MLOperand;
axes?: number[];
epsilon?: number;
}
interface MLGraphBuilder {
layerNormalization(input: MLOperand, options?: MLLayerNormalizationOptions): MLOperand;
}
interface MLLeakyReluOptions {
alpha?: number;
}
interface MLGraphBuilder {
leakyRelu(input: MLOperand, options?: MLLeakyReluOptions): MLOperand;
leakyRelu(options?: MLLeakyReluOptions): MLActivation;
}
interface MLLinearOptions {
alpha?: number;
beta?: number;
}
interface MLGraphBuilder {
linear(input: MLOperand, options?: MLLinearOptions): MLOperand;
linear(options?: MLLinearOptions): MLActivation;
}
type MLLstmWeightLayout = 'iofg'|'ifgo';
interface MLLstmOptions {
bias?: MLOperand;
recurrentBias?: MLOperand;
peepholeWeight?: MLOperand;
initialHiddenState?: MLOperand;
initialCellState?: MLOperand;
returnSequence?: boolean;
direction?: MLRecurrentNetworkDirection;
layout?: MLLstmWeightLayout;
activations?: MLActivation[];
}
interface MLGraphBuilder {
lstm(
input: MLOperand, weight: MLOperand, recurrentWeight: MLOperand, steps: number, hiddenSize: number,
options?: MLLstmOptions): MLOperand[];
}
interface MLLstmCellOptions {
bias?: MLOperand;
recurrentBias?: MLOperand;
peepholeWeight?: MLOperand;
layout?: MLLstmWeightLayout;
activations?: MLActivation[];
}
interface MLGraphBuilder {
lstmCell(
input: MLOperand, weight: MLOperand, recurrentWeight: MLOperand, hiddenState: MLOperand, cellState: MLOperand,
hiddenSize: number, options?: MLLstmCellOptions): MLOperand[];
}
interface MLGraphBuilder {
matmul(a: MLOperand, b: MLOperand): MLOperand;
}
type MLPaddingMode = 'constant'|'edge'|'reflection'|'symmetric';
interface MLPadOptions {
mode?: MLPaddingMode;
value?: number;
}
interface MLGraphBuilder {
pad(input: MLOperand, beginningPadding: number[], endingPadding: number[], options?: MLPadOptions): MLOperand;
}
type MLRoundingType = 'floor'|'ceil';
interface MLPool2dOptions {
windowDimensions?: number[];
padding?: number[];
strides?: number[];
dilations?: number[];
layout?: MLInputOperandLayout;
roundingType?: MLRoundingType;
outputSizes?: number[];
}
interface MLGraphBuilder {
averagePool2d(input: MLOperand, options?: MLPool2dOptions): MLOperand;
l2Pool2d(input: MLOperand, options?: MLPool2dOptions): MLOperand;
maxPool2d(input: MLOperand, options?: MLPool2dOptions): MLOperand;
}
interface MLGraphBuilder {
prelu(input: MLOperand, slope: MLOperand): MLOperand;
}
interface MLReduceOptions {
axes?: number[];
keepDimensions?: boolean;
}
interface MLGraphBuilder {
reduceL1(input: MLOperand, options?: MLReduceOptions): MLOperand;
reduceL2(input: MLOperand, options?: MLReduceOptions): MLOperand;
reduceLogSum(input: MLOperand, options?: MLReduceOptions): MLOperand;
reduceLogSumExp(input: MLOperand, options?: MLReduceOptions): MLOperand;
reduceMax(input: MLOperand, options?: MLReduceOptions): MLOperand;
reduceMean(input: MLOperand, options?: MLReduceOptions): MLOperand;
reduceMin(input: MLOperand, options?: MLReduceOptions): MLOperand;
reduceProduct(input: MLOperand, options?: MLReduceOptions): MLOperand;
reduceSum(input: MLOperand, options?: MLReduceOptions): MLOperand;
reduceSumSquare(input: MLOperand, options?: MLReduceOptions): MLOperand;
}
interface MLGraphBuilder {
relu(input: MLOperand): MLOperand;
relu(): MLActivation;
}
type MLInterpolationMode = 'nearest-neighbor'|'linear';
interface MLResample2dOptions {
mode?: MLInterpolationMode;
scales?: number[];
sizes?: number[];
axes?: number[];
}
interface MLGraphBuilder {
resample2d(input: MLOperand, options?: MLResample2dOptions): MLOperand;
}
interface MLGraphBuilder {
reshape(input: MLOperand, newShape: number[]): MLOperand;
}
interface MLGraphBuilder {
sigmoid(input: MLOperand): MLOperand;
sigmoid(): MLActivation;
}
interface MLGraphBuilder {
slice(input: MLOperand, starts: number[], sizes: number[]): MLOperand;
}
interface MLGraphBuilder {
softmax(input: MLOperand, axis: number): MLOperand;
softmax(axis: number): MLActivation;
}
interface MLGraphBuilder {
softplus(input: MLOperand): MLOperand;
softplus(): MLActivation;
}
interface MLGraphBuilder {
softsign(input: MLOperand): MLOperand;
softsign(): MLActivation;
}
interface MLSplitOptions {
axis?: number;
}
interface MLGraphBuilder {
split(input: MLOperand, splits: number|number[], options?: MLSplitOptions): MLOperand[];
}
interface MLGraphBuilder {
tanh(input: MLOperand): MLOperand;
tanh(): MLActivation;
}
interface MLTransposeOptions {
permutation?: number[];
}
interface MLGraphBuilder {
transpose(input: MLOperand, options?: MLTransposeOptions): MLOperand;
}
interface MLTriangularOptions {
upper?: boolean;
diagonal?: number;
}
interface MLGraphBuilder {
triangular(input: MLOperand, options?: MLTriangularOptions): MLOperand;
}
interface MLGraphBuilder {
where(condition: MLOperand, input: MLOperand, other: MLOperand): MLOperand;
}
// Experimental MLTensor interface
interface MLTensor {
destroy(): void;
}
type MLNamedTensor = Record<string, MLTensor>;
type MLTensorUsageFlags = number;
// TODO(@Honry): Remove this once it is deprecated in Chromium.
declare const MLTensorUsage: {
readonly WEBGPU_INTEROP: MLTensorUsageFlags;
readonly READ: MLTensorUsageFlags;
readonly WRITE: MLTensorUsageFlags;
};
interface MLTensorDescriptor extends MLOperandDescriptor {
/** @deprecated Use readable/writeable instead of usage */
usage: MLTensorUsageFlags | undefined;
importableToWebGPU?: boolean;
readable?: boolean;
writable?: boolean;
}
interface MLContext {
createTensor(descriptor: MLTensorDescriptor): Promise<MLTensor>;
writeTensor(
destinationTensor: MLTensor, sourceData: ArrayBufferView|ArrayBuffer, sourceElementOffset?: number,
sourceElementSize?: number): void;
readTensor(sourceTensor: MLTensor): Promise<ArrayBuffer>;
readTensor(sourceTensor: MLTensor, destinationData: ArrayBufferView|ArrayBuffer): Promise<undefined>;
dispatch(graph: MLGraph, inputs: MLNamedTensor, outputs: MLNamedTensor): void;
opSupportLimits() : MLOpSupportLimits;
}
interface MLOpSupportLimits {
input: MLSupportLimits;
output: MLSupportLimits;
}
interface MLSupportLimits {
dataTypes: MLOperandDataType[];
}