onnxruntime-web
Version:
A Javascript library for running ONNX models on browsers
117 lines (105 loc) • 4.9 kB
text/typescript
// Copyright (c) Microsoft Corporation. All rights reserved.
// Licensed under the MIT License.
import { DataType } from '../../../wasm-common';
import { TensorView } from '../../tensor-view';
import { BroadcastUtil, ShapeUtil } from '../../util';
import { ComputeContext, ProgramInfo } from '../types';
import { createTensorShapeVariables, inputVariable, outputVariable, ShaderHelper } from './common';
const createWhereOpProgramShader = (
shaderHelper: ShaderHelper,
inputs: readonly TensorView[],
dimsOutput: readonly number[],
isBroadcast: boolean,
typeOutput: number,
) => {
const output = outputVariable('output_data', typeOutput, dimsOutput.length, 4);
const a = inputVariable('a_data', inputs[1].dataType, inputs[1].dims.length, 4);
const b = inputVariable('b_data', inputs[2].dataType, inputs[2].dims.length, 4);
const c = inputVariable('c_data', inputs[0].dataType, inputs[0].dims.length, 4);
let assignment: string;
const expression = (a: string, b: string, c: string) => `select(${b}, ${a}, ${c})`;
if (!isBroadcast) {
assignment = output.setByOffset(
'global_idx',
expression(a.getByOffset('global_idx'), b.getByOffset('global_idx'), c.getByOffset('global_idx')),
);
} else {
const singleAssignment = (resStr: string, x: number, typeCast = '') => {
const expressionA = `a_data[index_a${x}][component_a${x}]`;
const expressionB = `b_data[index_b${x}][component_b${x}]`;
// eslint-disable-next-line no-bitwise
const expressionC = `bool(c_data[index_c${x}] & (0xffu << (component_c${x} * 8)))`;
return `
let output_indices${x} = ${output.offsetToIndices(`global_idx * 4u + ${x}u`)};
let offset_a${x} = ${a.broadcastedIndicesToOffset(`output_indices${x}`, output)};
let offset_b${x} = ${b.broadcastedIndicesToOffset(`output_indices${x}`, output)};
let offset_c${x} = ${c.broadcastedIndicesToOffset(`output_indices${x}`, output)};
let index_a${x} = offset_a${x} / 4u;
let index_b${x} = offset_b${x} / 4u;
let index_c${x} = offset_c${x} / 4u;
let component_a${x} = offset_a${x} % 4u;
let component_b${x} = offset_b${x} % 4u;
let component_c${x} = offset_c${x} % 4u;
${resStr}[${x}] = ${typeCast}(${expression(expressionA, expressionB, expressionC)});
`;
};
if (typeOutput === DataType.bool) {
assignment = `
var data = vec4<u32>(0);
${singleAssignment('data', 0, 'u32')}
${singleAssignment('data', 1, 'u32')}
${singleAssignment('data', 2, 'u32')}
${singleAssignment('data', 3, 'u32')}
output_data[global_idx] = dot(vec4<u32>(0x1, 0x100, 0x10000, 0x1000000), vec4<u32>(data));`;
} else {
assignment = `
${singleAssignment('output_data[global_idx]', 0)}
${singleAssignment('output_data[global_idx]', 1)}
${singleAssignment('output_data[global_idx]', 2)}
${singleAssignment('output_data[global_idx]', 3)}
`;
}
}
return `
${shaderHelper.registerUniform('vec_size', 'u32').declareVariables(c, a, b, output)}
${shaderHelper.mainStart()}
${shaderHelper.guardAgainstOutOfBoundsWorkgroupSizes('uniforms.vec_size')}
${assignment}
}`;
};
const createWhereOpProgramInfo = (inputs: readonly TensorView[]): ProgramInfo => {
const dimsA = inputs[1].dims;
const dimsB = inputs[2].dims;
const dimsC = inputs[0].dims;
const outputDataType = inputs[1].dataType;
const isBroadcast = !(ShapeUtil.areEqual(dimsA, dimsB) && ShapeUtil.areEqual(dimsB, dimsC));
let outputShape = dimsA;
let outputSize = ShapeUtil.size(dimsA);
// TODO: deal with zero-sized tensors (eg. dims=[1,0])
if (isBroadcast) {
const calculatedShape = BroadcastUtil.calcShape(BroadcastUtil.calcShape(dimsA, dimsB, false)!, dimsC, false);
if (!calculatedShape) {
throw new Error("Can't perform where op on the given tensors");
}
outputShape = calculatedShape;
outputSize = ShapeUtil.size(outputShape);
}
const vecSize = Math.ceil(outputSize / 4);
return {
name: 'Where',
shaderCache: { inputDependencies: ['rank', 'rank', 'rank'] },
getShaderSource: (shaderHelper) =>
createWhereOpProgramShader(shaderHelper, inputs, outputShape, isBroadcast, outputDataType),
getRunData: () => ({
outputs: [{ dims: outputShape, dataType: outputDataType }],
dispatchGroup: { x: Math.ceil(outputSize / 64 /* workgroup size */ / 4 /* vec size */) },
programUniforms: [
{ type: DataType.uint32, data: vecSize },
...createTensorShapeVariables(dimsC, dimsA, dimsB, outputShape),
],
}),
};
};
export const where = (context: ComputeContext): void => {
context.compute(createWhereOpProgramInfo(context.inputs));
};