onnxruntime-web
Version:
A Javascript library for running ONNX models on browsers
462 lines (396 loc) • 15.1 kB
text/typescript
// Copyright (c) Microsoft Corporation. All rights reserved.
// Licensed under the MIT License.
import { DataType } from '../../../wasm-common';
import { TensorView } from '../../tensor-view';
import { ShapeUtil } from '../../util';
import { AttributeWithCacheKey, createAttributeWithCacheKey } from '../attribute-with-cache-key';
import { ComputeContext, ProgramInfo, ProgramUniform } from '../types';
import {
inputVariable,
outputVariable,
ShaderHelper,
tensorTypeToWsglValueType,
UniformDataElementType,
UniformsArrayType,
} from './common';
type BuiltinFunctionName = string;
type ElementwiseCustomExpression = (expression: string) => string;
type ElementwiseFunctionCall = BuiltinFunctionName | ElementwiseCustomExpression;
const createElementwiseProgramShader = (
shaderHelper: ShaderHelper,
datasize: number,
inputDataType: number,
outputDataType: number,
funcCall: ElementwiseFunctionCall,
additionalImplementation?: string,
additionalUniformsType?: UniformsArrayType,
): string => {
const vecSize = Math.ceil(datasize / 4);
let expression = '';
if (typeof funcCall === 'string') {
expression = `${funcCall}(a)`;
} else {
expression = funcCall('a');
}
const input = inputVariable('inputData', inputDataType, [vecSize], 4);
const output = outputVariable('outputData', outputDataType, [vecSize], 4);
const uniforms: UniformsArrayType = [{ name: 'vec_size', type: 'u32' }];
if (additionalUniformsType) {
uniforms.push(...additionalUniformsType);
}
return `
${shaderHelper.registerUniforms(uniforms).declareVariables(input, output)}
${additionalImplementation ?? ''}
${shaderHelper.mainStart()}
${shaderHelper.guardAgainstOutOfBoundsWorkgroupSizes('uniforms.vec_size')}
let a = ${input.getByOffset('global_idx')};
${output.setByOffset('global_idx', expression)}
}`;
};
const createElementwiseProgramInfo = (
input: TensorView,
name: string,
funcCall: ElementwiseFunctionCall,
additionalImplementation?: string,
cacheKey?: string,
outputDataType: number = input.dataType,
additionalUniforms?: ProgramUniform[],
additionalUniformsType?: UniformsArrayType,
): ProgramInfo => {
const programUniforms: ProgramUniform[] = [
{ type: DataType.uint32, data: Math.ceil(ShapeUtil.size(input.dims) / 4) },
];
if (additionalUniforms) {
programUniforms.push(...additionalUniforms);
}
return {
name,
shaderCache: { hint: cacheKey, inputDependencies: ['type'] },
getShaderSource: (shaderHelper) =>
createElementwiseProgramShader(
shaderHelper,
ShapeUtil.size(input.dims),
input.dataType,
outputDataType,
funcCall,
additionalImplementation,
additionalUniformsType,
),
getRunData: (inputTensors) => ({
outputs: [{ dims: input.dims, dataType: outputDataType }],
dispatchGroup: {
x: Math.ceil(ShapeUtil.size(inputTensors[0].dims) / 64 /* workgroup size */ / 4 /* vec size */),
},
programUniforms,
}),
};
};
export const abs = (context: ComputeContext): void => {
context.compute(createElementwiseProgramInfo(context.inputs[0], 'Abs', 'abs'));
};
export const acos = (context: ComputeContext): void => {
context.compute(createElementwiseProgramInfo(context.inputs[0], 'Acos', 'acos'));
};
export const acosh = (context: ComputeContext): void => {
context.compute(createElementwiseProgramInfo(context.inputs[0], 'Acosh', 'acosh'));
};
export const asin = (context: ComputeContext): void => {
context.compute(createElementwiseProgramInfo(context.inputs[0], 'Asin', 'asin'));
};
export const asinh = (context: ComputeContext): void => {
context.compute(createElementwiseProgramInfo(context.inputs[0], 'Asinh', 'asinh'));
};
export const atan = (context: ComputeContext): void => {
context.compute(createElementwiseProgramInfo(context.inputs[0], 'Atan', 'atan'));
};
export const atanh = (context: ComputeContext): void => {
context.compute(createElementwiseProgramInfo(context.inputs[0], 'Atanh', 'atanh'));
};
export interface CastAttributes extends AttributeWithCacheKey {
readonly to: number;
readonly saturate?: boolean;
}
export const parseCastAttributes = (attributes: Record<string, unknown>): CastAttributes =>
createAttributeWithCacheKey(attributes as { to: number });
export const cast = (context: ComputeContext, attributes: CastAttributes): void => {
let func: ElementwiseFunctionCall;
switch (attributes.to) {
case DataType.float16:
func = 'vec4<f16>';
break;
case DataType.float:
func = 'vec4<f32>';
break;
case DataType.uint32:
func = 'vec4<u32>';
break;
case DataType.int32:
func = 'vec4<i32>';
break;
case DataType.bool:
func = 'vec4<bool>';
break;
default:
throw new RangeError(`not supported type (specified in attribute 'to' from 'Cast' operator): ${attributes.to}`);
}
context.compute(
createElementwiseProgramInfo(context.inputs[0], 'Cast', func, undefined, attributes.cacheKey, attributes.to),
);
};
export interface ClipAttributes extends AttributeWithCacheKey {
readonly min: number;
readonly max: number;
}
const generateClipAttributesFromInputs = (inputs: readonly TensorView[]): ClipAttributes => {
let min: number;
let max: number;
const hasMin = inputs.length >= 2 && inputs[1].data !== 0;
const hasMax = inputs.length >= 3 && inputs[2].data !== 0;
switch (inputs[0].dataType) {
case DataType.float:
min = hasMin ? inputs[1].getFloat32Array()[0] : -3.4028234663852886e38;
max = hasMax ? inputs[2].getFloat32Array()[0] : 3.4028234663852886e38;
break;
case DataType.float16:
min = hasMin ? inputs[1].getUint16Array()[0] : 64511; // uint16(64511) <-> float16(-65504.0)
max = hasMax ? inputs[2].getUint16Array()[0] : 31743; // uint16(31743) <-> float16(65504.0)
break;
default:
throw new Error('Unsupport data type');
}
return createAttributeWithCacheKey({ min, max });
};
export const clip = (context: ComputeContext, clipAttributes: ClipAttributes): void => {
const attributes = clipAttributes ? clipAttributes : generateClipAttributesFromInputs(context.inputs);
const dataType = tensorTypeToWsglValueType(context.inputs[0].dataType);
context.compute(
createElementwiseProgramInfo(
context.inputs[0],
'Clip',
(a) => `clamp(${a}, vec4<${dataType}>(uniforms.min), vec4<${dataType}>(uniforms.max))`,
undefined,
attributes.cacheKey,
undefined,
[
{ type: context.inputs[0].dataType, data: attributes.min },
{ type: context.inputs[0].dataType, data: attributes.max },
],
[
{ name: 'min', type: dataType as UniformDataElementType },
{ name: 'max', type: dataType as UniformDataElementType },
],
),
{ inputs: [0] },
);
};
export const ceil = (context: ComputeContext): void => {
context.compute(createElementwiseProgramInfo(context.inputs[0], 'Ceil', 'ceil'));
};
export const cos = (context: ComputeContext): void => {
context.compute(createElementwiseProgramInfo(context.inputs[0], 'Cos', 'cos'));
};
export const cosh = (context: ComputeContext): void => {
context.compute(createElementwiseProgramInfo(context.inputs[0], 'Cosh', 'cosh'));
};
export interface AlphaAttributes extends AttributeWithCacheKey {
readonly alpha: number;
}
export const parseAlphaAttributes = (attributes: Record<string, unknown>): AlphaAttributes =>
createAttributeWithCacheKey(attributes as { alpha: number });
export const elu = (context: ComputeContext, attributes: AlphaAttributes): void => {
const dataType = tensorTypeToWsglValueType(context.inputs[0].dataType);
context.compute(
createElementwiseProgramInfo(
context.inputs[0],
'Elu',
(a) => `elu_vf32(${a})`,
`
const elu_alpha_ = ${dataType}(${attributes.alpha});
fn elu_f32(a: ${dataType}) -> ${dataType} {
return select((exp(a) - 1.0) * elu_alpha_, a, a >= 0.0);
}
fn elu_vf32(v: vec4<${dataType}>) -> vec4<${dataType}> {
return vec4(elu_f32(v.x), elu_f32(v.y), elu_f32(v.z), elu_f32(v.w));
}`,
attributes.cacheKey,
),
);
};
export const erfImpl = (varType = 'f32') => `
const r0: ${varType} = 0.3275911;
const r1: ${varType} = 0.254829592;
const r2: ${varType} = -0.284496736;
const r3: ${varType} = 1.421413741;
const r4: ${varType} = -1.453152027;
const r5: ${varType} = 1.061405429;
fn erf_vf32(v: vec4<${varType}>) -> vec4<${varType}> {
let absv = abs(v);
let x = 1.0 / (1.0 + r0 * absv);
return sign(v) * (1.0 - ((((r5 * x + r4) * x + r3) * x + r2) * x + r1) * x * exp(-absv * absv));
}`;
export const erf = (context: ComputeContext): void => {
const dataType = tensorTypeToWsglValueType(context.inputs[0].dataType);
context.compute(createElementwiseProgramInfo(context.inputs[0], 'Erf', (a) => `erf_vf32(${a})`, erfImpl(dataType)));
};
export const exp = (context: ComputeContext): void => {
context.compute(createElementwiseProgramInfo(context.inputs[0], 'Exp', 'exp'));
};
export const floor = (context: ComputeContext): void => {
context.compute(createElementwiseProgramInfo(context.inputs[0], 'Floor', 'floor'));
};
export const gelu = (context: ComputeContext): void => {
const dataType = tensorTypeToWsglValueType(context.inputs[0].dataType);
context.compute(
createElementwiseProgramInfo(
context.inputs[0],
'Gelu',
(a) => `0.5 * ${a} * (1.0 + erf_vf32(${a} * 0.7071067811865475))`,
erfImpl(dataType),
),
);
};
export const leakyRelu = (context: ComputeContext, attributes: AlphaAttributes): void => {
const dataType = tensorTypeToWsglValueType(context.inputs[0].dataType);
context.compute(
createElementwiseProgramInfo(
context.inputs[0],
'LeakyRelu',
(a) => `select(leaky_relu_alpha_ * ${a}, ${a}, ${a} >= vec4<${dataType}>(0.0))`,
`const leaky_relu_alpha_ = ${dataType}(${attributes.alpha});`,
attributes.cacheKey,
),
);
};
export const not = (context: ComputeContext): void => {
context.compute(createElementwiseProgramInfo(context.inputs[0], 'Not', (a) => `!${a}`));
};
export const neg = (context: ComputeContext): void => {
context.compute(createElementwiseProgramInfo(context.inputs[0], 'Neg', (a) => `-${a}`));
};
export const reciprocal = (context: ComputeContext): void => {
context.compute(createElementwiseProgramInfo(context.inputs[0], 'Reciprocal', (a) => `1.0/${a}`));
};
export const relu = (context: ComputeContext): void => {
const dataType = tensorTypeToWsglValueType(context.inputs[0].dataType);
context.compute(
createElementwiseProgramInfo(
context.inputs[0],
'Relu',
(a) => `select(vec4<${dataType}>(0.0), ${a}, ${a} > vec4<${dataType}>(0.0))`,
),
);
};
export const sigmoid = (context: ComputeContext): void => {
context.compute(createElementwiseProgramInfo(context.inputs[0], 'Sigmoid', (a) => `(1.0 / (1.0 + exp(-${a})))`));
};
export interface HardSigmoidAttributes extends AttributeWithCacheKey {
readonly alpha: number;
readonly beta: number;
}
export const parseHardSigmoidAttributes = (attributes: Record<string, unknown>): HardSigmoidAttributes =>
createAttributeWithCacheKey(
attributes as {
alpha: number;
beta: number;
},
);
export const hardSigmoid = (context: ComputeContext, attributes: HardSigmoidAttributes): void => {
const dataType = tensorTypeToWsglValueType(context.inputs[0].dataType);
context.compute(
createElementwiseProgramInfo(
context.inputs[0],
'HardSigmoid',
(a) =>
`max(vec4<${dataType}>(0.0), min(vec4<${dataType}>(1.0), ${attributes.alpha} * ${a} + vec4<${dataType}>(${attributes.beta})))`,
undefined,
attributes.cacheKey,
),
);
};
export const sin = (context: ComputeContext): void => {
context.compute(createElementwiseProgramInfo(context.inputs[0], 'Sin', 'sin'));
};
export const sinh = (context: ComputeContext): void => {
context.compute(createElementwiseProgramInfo(context.inputs[0], 'Sinh', 'sinh'));
};
export const sqrt = (context: ComputeContext): void => {
context.compute(createElementwiseProgramInfo(context.inputs[0], 'Sqrt', 'sqrt'));
};
export const tan = (context: ComputeContext): void => {
context.compute(createElementwiseProgramInfo(context.inputs[0], 'Tan', 'tan'));
};
export const tanhExpression = (a: string) => `sign(${a}) * (1 - exp(-2 * abs(${a}))) / (1 + exp(-2 * abs(${a})))`;
export const tanh = (context: ComputeContext): void => {
// TODO: revisit after https://github.com/gpuweb/gpuweb/issues/4458 is resolved
context.compute(createElementwiseProgramInfo(context.inputs[0], 'Tanh', tanhExpression));
};
export const fastGeluImpl = (varType = 'f32') => `
const fast_gelu_a: ${varType} = 0.5;
const fast_gelu_b: ${varType} = 0.7978845608028654;
const fast_gelu_c: ${varType} = 0.035677408136300125;
fn tanh_v(v: vec4<${varType}>) -> vec4<${varType}> {
return ${tanhExpression('v')};
}
`;
export const fastGeluExpression = (x: string) =>
`(fast_gelu_a + fast_gelu_a * tanh_v(${x} * (fast_gelu_c * ${x} * ${x} + fast_gelu_b))) * ${x}`;
export const fastGelu = (context: ComputeContext): void => {
const dataType = tensorTypeToWsglValueType(context.inputs[0].dataType);
context.compute(
createElementwiseProgramInfo(
context.inputs[0],
'FastGelu',
fastGeluExpression,
fastGeluImpl(dataType),
undefined,
context.inputs[0].dataType,
),
);
};
export const thresholdedRelu = (context: ComputeContext, attributes: AlphaAttributes): number => {
const dataType = tensorTypeToWsglValueType(context.inputs[0].dataType);
context.compute(
createElementwiseProgramInfo(
context.inputs[0],
'ThresholdedRelu',
(a) => `select(vec4<${dataType}>(0.0), ${a}, ${a} > thresholded_relu_alpha_)`,
`const thresholded_relu_alpha_ = vec4<${dataType}>(${attributes.alpha});`,
attributes.cacheKey,
),
);
return 0;
};
export const log = (context: ComputeContext): void => {
context.compute(createElementwiseProgramInfo(context.inputs[0], 'Log', 'log'));
};
export const quickGeluImpl = (varType: string, alpha: number) => `
const alpha = vec4<${varType}>(${alpha});
const one = ${varType}(1.0);
const zero = ${varType}(0.0);
fn quick_gelu_impl(x: vec4<${varType}>) -> vec4<${varType}> {
let v = x *alpha;
var x1 : vec4<${varType}>;
for (var i = 0; i < 4; i = i + 1) {
if (v[i] >= zero) {
x1[i] = one / (one + exp(-v[i]));
} else {
x1[i] = one - one / (one + exp(v[i]));
}
}
return x * x1;
}
`;
export const quickGeluExpression = (x: string) => `quick_gelu_impl(${x})`;
export const quickgelu = (context: ComputeContext, attributes: AlphaAttributes): void => {
const dType = tensorTypeToWsglValueType(context.inputs[0].dataType);
context.compute(
createElementwiseProgramInfo(
context.inputs[0],
'QuickGelu',
quickGeluExpression,
quickGeluImpl(dType, attributes.alpha),
attributes.cacheKey,
context.inputs[0].dataType,
),
);
};